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Abstract
P versus NP is considered as one of the most important open problems in computer science. This
consists in knowing the answer of the following question: Is P equal to NP? A precise statement
of the P versus NP problem was introduced independently by Stephen Cook and Leonid Levin.
Since that date, all efforts to find a proof for this problem have failed. NP is the complexity class
of languages defined by polynomial time verifiers M such that when the input is an element of
the language with its certificate, then M outputs a string which belongs to a single language in P.
Another major complexity classes are L and NL. The certificate-based definition of NL is based on
logarithmic space Turing machine with an additional special read-once input tape: This is called
a logarithmic space verifier. NL is the complexity class of languages defined by logarithmic space
verifiers M such that when the input is an element of the language with its certificate, then M
outputs 1. To attack the P versus NP problem, the NP-completeness is a useful concept. We
demonstrate there is an NP-complete language defined by a logarithmic space verifier M such that
when the input is an element of the language with its certificate, then M outputs a string which
belongs to a single language in L.
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tation → Problems, reductions and completeness
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1 Introduction

The P versus NP problem is a major unsolved problem in computer science [4]. This is
considered by many to be the most important open problem in the field [4]. It is one of
the seven Millennium Prize Problems selected by the Clay Mathematics Institute to carry a
US$1,000,000 prize for the first correct solution [4]. It was essentially mentioned in 1955 from
a letter written by John Nash to the United States National Security Agency [1]. However,
the precise statement of the P = NP problem was introduced in 1971 by Stephen Cook in
a seminal paper [4]. In 2012, a poll of 151 researchers showed that 126 (83%) believed the
answer to be no, 12 (9%) believed the answer is yes, 5 (3%) believed the question may be
independent of the currently accepted axioms and therefore impossible to prove or disprove,
8 (5%) said either do not know or do not care or don’t want the answer to be yes nor the
problem to be resolved [7]. It is fully expected that P 6= NP [11]. Indeed, if P = NP then
there are stunning practical consequences [11]. For that reason, P = NP is considered as
a very unlikely event [11]. Certainly, P versus NP is one of the greatest open problems in
science and a correct solution for this incognita will have a great impact not only in computer
science, but for many other fields as well [1]. Whether P = NP or not is still a controversial
and unsolved problem [1]. In this work, we show some results that might be helpful in facing
one of the most important open problems in computer science.

2 Preliminaries

In 1936, Turing developed his theoretical computational model [13]. The deterministic and
nondeterministic Turing machines have become in two of the most important definitions
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related to this theoretical model for computation [13]. A deterministic Turing machine has
only one next action for each step defined in its program or transition function [13]. A
nondeterministic Turing machine could contain more than one action defined for each step of
its program, where this one is no longer a function, but a relation [13].

Let Σ be a finite alphabet with at least two elements, and let Σ∗ be the set of finite
strings over Σ [3]. A Turing machine M has an associated input alphabet Σ [3]. For each
string w in Σ∗ there is a computation associated with M on input w [3]. We say that M
accepts w if this computation terminates in the accepting state, that is M(w) = 1 (when
M outputs 1 on the input w) [3]. Note that M fails to accept w either if this computation
ends in the rejecting state, that is M(w) = 0, or if the computation fails to terminate, or
the computation ends in the halting state with some output, that is M(w) = y (when M
outputs the string y on the input w) [3].

Another relevant advance in the last century has been the definition of a complexity class.
A language over an alphabet is any set of strings made up of symbols from that alphabet [5].
A complexity class is a set of problems, which are represented as a language, grouped by
measures such as the running time, memory, etc [5]. The language accepted by a Turing
machine M , denoted L(M), has an associated alphabet Σ and is defined by:

L(M) = {w ∈ Σ∗ : M(w) = 1}.

We denote by tM (w) the number of steps in the computation of M on input w [3]. For n ∈ N
we denote by TM (n) the worst case run time of M ; that is:

TM (n) = max{tM (w) : w ∈ Σn}

where Σn is the set of all strings over Σ of length n [3]. We say that M runs in polynomial
time if there is a constant k such that for all n, TM (n) ≤ nk + k [3]. In other words, this
means the language L(M) can be decided by the Turing machine M in polynomial time.
Therefore, P is the complexity class of languages that can be decided by deterministic Turing
machines in polynomial time [5]. A verifier for a language L1 is a deterministic Turing
machine M , where:

L1 = {w : M(w, c) = 1 for some string c}.

We measure the time of a verifier only in terms of the length of w, so a polynomial time
verifier runs in polynomial time in the length of w [3]. A verifier uses additional information,
represented by the symbol c, to verify that a string w is a member of L1. This information
is called certificate. NP is the complexity class of languages defined by polynomial time
verifiers [11].

I Lemma 1. Given a language L1 ∈ P , a language L2 is in NP if there is a deterministic
Turing machine M , where:

L2 = {w : M(w, c) = y for some string c such that y ∈ L1}

and M runs in polynomial time in the length of w. In this way, NP is the complexity class
of languages defined by polynomial time verifiers M such that when the input is an element
of the language with its certificate, then M outputs a string which belongs to a single language
in P .

Proof. If L1 can be decided by the Turing machine M ′ in polynomial time, then the determ-
inistic Turing machine M ′′(w, c) = M ′(M(w, c)) will output 1 when w ∈ L2. Consequently,
M ′′ is a polynomial time verifier of L2 and thus, L2 is in NP . J
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3 Hypothesis

A function f : Σ∗ → Σ∗ is a polynomial time computable function if some deterministic
Turing machine M , on every input w, halts in polynomial time with just f(w) on its tape
[13]. Let {0, 1}∗ be the infinite set of binary strings, we say that a language L1 ⊆ {0, 1}∗
is polynomial time reducible to a language L2 ⊆ {0, 1}∗, written L1 ≤p L2, if there is a
polynomial time computable function f : {0, 1}∗ → {0, 1}∗ such that for all x ∈ {0, 1}∗:

x ∈ L1 if and only if f(x) ∈ L2.

An important complexity class is NP–complete [8]. A language L1 ⊆ {0, 1}∗ is NP–complete
if:

L1 ∈ NP , and
L′ ≤p L1 for every L′ ∈ NP .

If L1 is a language such that L′ ≤p L1 for some L′ ∈ NP–complete, then L1 is NP–hard
[5]. Moreover, if L1 ∈ NP , then L1 ∈ NP–complete [5]. A principal NP–complete problem is
SAT [6]. An instance of SAT is a Boolean formula φ which is composed of:

1. Boolean variables: x1, x2, . . . , xn;
2. Boolean connectives: Any Boolean function with one or two inputs and one output, such

as ∧(AND), ∨(OR), ⇁(NOT), ⇒(implication), ⇔(if and only if);
3. and parentheses.

A truth assignment for a Boolean formula φ is a set of values for the variables in φ. A
satisfying truth assignment is a truth assignment that causes φ to be evaluated as true. A
formula with a satisfying truth assignment is a satisfiable formula. The problem SAT asks
whether a given Boolean formula is satisfiable [6]. We define a CNF Boolean formula using
the following terms:

A literal in a Boolean formula is an occurrence of a variable or its negation [5]. A Boolean
formula is in conjunctive normal form, or CNF , if it is expressed as an AND of clauses, each
of which is the OR of one or more literals [5]. A Boolean formula is in 3-conjunctive normal
form or 3CNF , if each clause has exactly three distinct literals [5].

For example, the Boolean formula:

(x1∨⇁ x1∨⇁ x2) ∧ (x3 ∨ x2 ∨ x4) ∧ (⇁ x1∨⇁ x3∨⇁ x4)

is in 3CNF . The first of its three clauses is (x1∨⇁ x1∨⇁ x2), which contains the three
literals x1, ⇁ x1, and ⇁ x2. Another relevant NP–complete language is 3CNF satisfiability,
or 3SAT [5]. In 3SAT , it is asked whether a given Boolean formula φ in 3CNF is satisfiable.

A logarithmic space Turing machine has a read-only input tape, a write-only output
tape, and read/write work tapes [13]. The work tapes may contain at most O(logn) symbols
[13]. In computational complexity theory, L is the complexity class containing those decision
problems that can be decided by a deterministic logarithmic space Turing machine [11].
NL is the complexity class containing the decision problems that can be decided by a
nondeterministic logarithmic space Turing machine [11].

A logarithmic space transducer is a Turing machine with a read-only input tape, a
write-only output tape, and read/write work tapes [13]. The work tapes must contain at most
O(logn) symbols [13]. A logarithmic space transducer M computes a function f : Σ∗ → Σ∗,
where f(w) is the string remaining on the output tape after M halts when it is started with
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w on its input tape [13]. We call f a logarithmic space computable function [13]. We say that
a language L1 ⊆ {0, 1}∗ is logarithmic space reducible to a language L2 ⊆ {0, 1}∗, written
L1 ≤l L2, if there exists a logarithmic space computable function f : {0, 1}∗ → {0, 1}∗ such
that for all x ∈ {0, 1}∗,

x ∈ L1 if and only if f(x) ∈ L2.

The logarithmic space reduction is frequently used for L and NL [11]. A Boolean formula is
in 2-conjunctive normal form, or 2CNF , if it is in CNF and each clause has exactly two
distinct literals. There is a problem called 2SAT , where we asked whether a given Boolean
formula φ in 2CNF is satisfiable. 2SAT is complete for NL [11]. Another special case is
the class of problems where each clause contains XOR (i.e. exclusive or) rather than (plain)
OR operators. This is in P , since an XOR SAT formula can also be viewed as a system of
linear equations mod 2, and can be solved in cubic time by Gaussian elimination [9]. We
denote the XOR function as ⊕. The XOR 2SAT problem will be equivalent to XOR SAT,
but the clauses in the formula have exactly two distinct literals. XOR 2SAT is in L [2], [12].

We can give a certificate-based definition for NL [3]. The certificate-based definition of
NL assumes that a logarithmic space Turing machine has another separated read-only tape
[3]. On each step of the machine the machine’s head on that tape can either stay in place or
move to the right [3]. In particular, it cannot reread any bit to the left of where the head
currently is [3]. For that reason this kind of special tape is called “read once" [3].

I Definition 2. A language L1 is in NL if there exists a deterministic logarithmic space
Turing machine M with an additional special read-once input tape polynomial p : N → N
such that for every x ∈ {0, 1}∗,

x ∈ L1 ⇔ ∃u ∈ {0, 1}p(|x|) such that M(x, u) = 1

where by M(x, u) we denote the computation of M where x is placed on its input tape and u
is placed on its special read-once tape, and M uses at most O(log |x|) space on its read/write
tapes for every input x where | . . . | is the bit-length function [3]. M is called a logarithmic
space verifier [3].

We state the following Hypothesis:

B Hypothesis 3. Given a language L1 ∈ L, there is a language L2 in NP–complete with a
deterministic Turing machine M , where:

L2 = {w : M(w, u) = y for some string u such that y ∈ L1}

when M runs in logarithmic space in the length of w, u is placed on the special read-once
tape of M , and u is polynomially bounded by w. In this way, there is an NP–complete
language defined by a logarithmic space verifier M such that when the input is an element of
the language with its certificate, then M outputs a string which belongs to a single language
in L.

4 Results

We show a previous known NP–complete problem:

I Definition 4. MONOTONE NAE 3SAT
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INSTANCE: A Boolean formula φ in 3CNF such that each clause has no negation
variables.

QUESTION: Is there a truth assignment for φ such that each clause has at least one true
literal and at least one false literal?

REMARKS: This is equivalent to the special case of the NP–complete problem known
as SET SPLITTING when the sets in the input have exactly three elements and therefore,
MONOTONE NAE 3SAT ∈ NP–complete [6].

We define a new problem:

I Definition 5. MINIMUM EXCLUSIVE-OR 2-SATISFIABILITY
INSTANCE: A positive integer K and a Boolean formula φ that is an instance of

XOR 2SAT such that each clause has no negation variables.
QUESTION: Is there a truth assignment in φ such that at most K clauses are unsatis-

fiable?
REMARKS: We denote this problem as MIN ⊕ 2SAT .

I Theorem 6. MIN ⊕ 2SAT ∈ NP–complete.

Proof. It is trivial to see MIN ⊕ 2SAT ∈ NP [11]. Given a Boolean formula φ in 3CNF
with n variables and m clauses such that each clause has no negation variables, we create
three new variables aci

, bci
and dci

for each clause ci = (x ∨ y ∨ z) in φ, where x, y and z
are positive literals, in the following formula:

Pi = (aci
⊕ bci

) ∧ (bci
⊕ dci

) ∧ (aci
⊕ dci

) ∧ (x⊕ aci
) ∧ (y ⊕ bci

) ∧ (z ⊕ dci
).

We can see Pi has at most one unsatisfiable clause for some truth assignment if and only if
at least one member of {x, y, z} is true and at least one member of {x, y, z} is false for the
same truth assignment. Hence, we can create the Boolean formula ψ as the conjunction of
the Pi formulas for every clause ci in φ, such that ψ = P1 ∧ . . .∧Pm. Finally, we obtain that

φ ∈ MONOTONE NAE 3SAT if and only if (ψ,m) ∈MIN ⊕ 2SAT.

Consequently, we prove MONOTONE NAE 3SAT ≤p MIN ⊕ 2SAT where we already know
the language MONOTONE NAE 3SAT ∈ NP–complete [6]. To sum up, we show MIN ⊕
2SAT ∈ NP–hard and MIN ⊕ 2SAT ∈ NP and thus, MIN ⊕ 2SAT ∈ NP–complete. J

I Theorem 7. There is a deterministic Turing machine M , where:

MIN ⊕ 2SAT = {w : M(w, u) = y for some string u such that y ∈ XOR 2SAT}

when M runs in logarithmic space in the length of w, u is placed on the special read-once
tape of M , and u is polynomially bounded by w.

Proof. Given a valid instance (ψ,K) for MIN ⊕ 2SAT when ψ has m clauses, we can create
a certificate array A which contains K different natural numbers in ascending order which
represents the indexes of the clauses in ψ that we are going to remove from the instance. We
read at once the elements of the array A and we reject whether this is not a valid certificate:
That is when the numbers are not sorted in ascending order, or the array A does not contain
exactly K elements, or the array A contains a number that is not between 1 and m. While
we read the elements of the array A, we remove the clauses from the instance (ψ,K) for
MIN ⊕ 2SAT just creating another instance φ for XOR 2SAT where the Boolean formula
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φ does not contain the K different indexed clauses ψ represented by the numbers in A.
Therefore, we obtain that:

(ψ,K) ∈MIN ⊕ 2SAT if and only if φ ∈ XOR 2SAT.

Furthermore, we can make this verification in logarithmic space such that the array A is
placed on the special read-once tape, because we read at once the elements in the array A
and we assume the clauses in the input ψ are indexed from left to right. Hence, we only need
to iterate from the elements of the array A to verify whether the array is a valid certificate
and also remove the K different clauses from the Boolean formula ψ when we write the
final clauses to the output. This logarithmic space verification will be the Algorithm 1. We
assume whether a value does not exist in the array A into the cell of some position i when
A[i] = undefined. In addition, we reject immediately when the following comparisons

A[i] ≤ max ∨A[i] < 1 ∨A[i] > m

hold at least into one single binary digit. Note, in the loop j from min to max− 1, we do
not output any clause when max− 1 < min.

Algorithm 1 Logarithmic space verifier
1: /*A valid instance for MIN ⊕ 2SAT with its certificate*/
2: procedure VERIFIER((ψ,K), A)
3: /*Initialize minimum and maximum values*/
4: min← 1
5: max← 0
6: /*Iterate for the elements of the certificate array A*/
7: for i ← 1 to K + 1 do
8: if i = K + 1 then
9: /*There exists a K + 1 element in the array*/
10: if A[i] 6= undefined then
11: /*Reject the certificate*/
12: return 0
13: end if
14: /*m is the number of clauses in ψ*/
15: max← m+ 1
16: else if A[i] = undefined ∨A[i] ≤ max ∨A[i] < 1 ∨A[i] > m then
17: /*Reject the certificate*/
18: return 0
19: else
20: max← A[i]
21: end if
22: /*Iterate for the clauses of the Boolean formula ψ*/
23: for j ← min to max− 1 do
24: /*Output the indexed j clause in ψ*/
25: output “ ∧ cj”
26: end for
27: min← max+ 1
28: end for
29: end procedure
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J

I Theorem 8. The Hypothesis 3 is true.

Proof. This is a consequence of Theorems 6 and 7. J

5 Materials and Methods

This work is implemented into a GitHub Project programmed in Scala [14]. In this GitHub
Project, we use the Assertion on the properties of the instances of each problem and the
Unit Test for checking the correctness of every reduction [14]. We need to install JDK 8 in
order to test the Scala Project [10]. In addition, we need to install SBT to run the unit test
(we could run the unit test with the sbt test command) [10].
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