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Introduction

The P versus N P problem is a major unsolved problem in computer science [START_REF] Cook | The P versus NP Problem[END_REF]. This is considered by many to be the most important open problem in the field [START_REF] Cook | The P versus NP Problem[END_REF]. It is one of the seven Millennium Prize Problems selected by the Clay Mathematics Institute to carry a US 1,000,000 prize for the first correct solution [START_REF] Cook | The P versus NP Problem[END_REF]. It was essentially mentioned in 1955 from a letter written by John Nash to the United States National Security Agency. However, a precise statement of the P = N P problem was introduced in 1971 by Stephen Cook in a seminal paper [START_REF] Cook | The P versus NP Problem[END_REF]. In 2012, a poll of 151 researchers showed that 126 (83%) believed the answer to be no, 12 (9%) believed the answer is yes, 5 (3%) believed the question may be independent of the currently accepted axioms and therefore impossible to prove or disprove, 8 (5%) said either do not know or do not care or don't want the answer to be yes nor the problem to be resolved [START_REF] William | Guest column: The second P ? NP poll[END_REF].

The P = N P question is also singular in the number of approaches that researchers have brought to bear upon it over the years [START_REF] Deolalikar | Woeginger Home[END_REF]. From the initial question in logic, the focus moved to complexity theory where early work used diagonalization and relativization techniques [START_REF] Deolalikar | Woeginger Home[END_REF]. It was showed that these methods were perhaps inadequate to resolve P versus N P by demonstrating relativized worlds in which P = N P and others in which P vs NP P = N P [START_REF] Baker | Relativizations of the P =?N P Question[END_REF]. This shifted the focus to methods using circuit complexity and for a while this approach was deemed the one most likely to resolve the question [START_REF] Deolalikar | Woeginger Home[END_REF]. Once again, a negative result showed that a class of techniques known as "Natural Proofs" that subsumed the above could not separate the classes N P and P , provided one-way functions exist [START_REF] Razborov | Natural Proofs[END_REF]. There has been speculation that resolving the P = N P question might be outside the domain of mathematical techniques [START_REF] Deolalikar | Woeginger Home[END_REF]. More precisely, the question might be independent of standard axioms of set theory [START_REF] Deolalikar | Woeginger Home[END_REF]. Some results have showed that some relativized versions of the P = N P question are independent of reasonable formalizations of set theory [START_REF] Hartmanis | Independence Results in Computer Science[END_REF].

A major complexity class is Sharp-P (denoted as #P ) [START_REF] Valiant | The complexity of computing the permanent[END_REF]. This can be defined by the class of function problems of the form "compute f (x)", where f is the number of accepting paths of a nondeterministic Turing machines, where this machine always accepts in polynomial time [START_REF] Valiant | The complexity of computing the permanent[END_REF]. In previous years there has been great interest in the verification or checking of computations [START_REF] Lipton | Efficient checking of computations[END_REF]. Interactive proofs introduced by Goldwasser, Micali and Rackoff and Babi can be viewed as a model of the verification process [START_REF] Lipton | Efficient checking of computations[END_REF]. Dwork and Stockmeyer and Condon have studied interactive proofs where the verifier is a space bounded computation instead of the original model where the verifier is a time bounded computation [START_REF] Lipton | Efficient checking of computations[END_REF]. In addition, Blum and Kannan have studied another model where the goal is to check a computation based solely on the final answer [START_REF] Lipton | Efficient checking of computations[END_REF]. More about probabilistic logarithmic space verifiers and the complexity class N P has been investigated on a technique of Lipton [START_REF] Lipton | Efficient checking of computations[END_REF]. We show some results about the logarithmic space verifiers applied to a problem in the class #P .

A set

L 1 ⊆ {0, 1} * is defined to be p-selective if there is a function f : {0, 1} * × {0, 1} * → {0, 1} * so that f is computable in polynomial time, f (x, y) = x or f (x, y) = y, x ∈ L 1 or y ∈ L 1 implies that f (x, y) ∈ L 1 .
The function f is a selector for L 1 . P-Sel is the class of decision problems defined on languages which are p-selective [START_REF] Selman | P-Selective Sets, Tally Languages, and the Behavior of Polynomial Time Reducibilities on NP[END_REF]. It is known that if N P is contained in P-Sel, then P = N P [START_REF] Selman | P-Selective Sets, Tally Languages, and the Behavior of Polynomial Time Reducibilities on NP[END_REF]. We claim a possible selector for 3SAT and thus, P = N P .
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Materials & Methods

Polynomial time verifiers

Let Σ be a finite alphabet with at least two elements, and let Σ * be the set of finite strings over Σ [START_REF] Arora | Computational complexity: a modern approach[END_REF]. A Turing machine M has an associated input alphabet Σ [START_REF] Arora | Computational complexity: a modern approach[END_REF]. For each string w in Σ * there is a computation associated with M on input w [START_REF] Arora | Computational complexity: a modern approach[END_REF]. We say that M accepts w if this computation terminates in the accepting state, that is M (w) = "yes" [START_REF] Arora | Computational complexity: a modern approach[END_REF]. Note that M fails to accept w either if this computation ends in the rejecting state, that is M (w) = "no", or if the computation fails to terminate, or the computation ends in the halting state with some output, that is M (w) = y (when M outputs the string y on the input w) [START_REF] Arora | Computational complexity: a modern approach[END_REF].

The language accepted by a Turing machine M , denoted L(M ), has an associated alphabet Σ and is defined by:

L(M ) = {w ∈ Σ * : M (w) = "yes"}.
Moreover, L(M ) is decided by M , when w / ∈ L(M ) if and only if M (w) = "no" [START_REF] Thomas | Introduction to Algorithms[END_REF]. We denote by t M (w) the number of steps in the computation of M on input w [START_REF] Arora | Computational complexity: a modern approach[END_REF]. For n ∈ N we denote by T M (n) the worst case run time of M ; that is:

T M (n) = max{t M (w) : w ∈ Σ n }
where Σ n is the set of all strings over Σ of length n [START_REF] Arora | Computational complexity: a modern approach[END_REF]. We say that M runs in polynomial time if there is a constant k such that for all n, T M (n) ≤ n k + k [START_REF] Arora | Computational complexity: a modern approach[END_REF]. In other words, this means the language L(M ) can be decided by the Turing machine M in polynomial time. Therefore, P is the complexity class of languages that can be decided by deterministic Turing machines in polynomial time [START_REF] Thomas | Introduction to Algorithms[END_REF]. A verifier for a language L 1 is a deterministic Turing machine M , where: L 1 = {w : M (w, c) = "yes" for some string c}.

We measure the time of a verifier only in terms of the length of w, so a polynomial time verifier runs in polynomial time in the length of w [START_REF] Arora | Computational complexity: a modern approach[END_REF]. A verifier uses additional information, represented by the symbol c, to verify that a string w is a member of L 1 . This information is called certificate. N P is also the complexity class of languages defined by polynomial time verifiers [START_REF] Papadimitriou | Computational complexity[END_REF].

A decision problem in N P can be restated in this way: There is a string c with M (w, c) = "yes" if and only if w ∈ L 1 , where L 1 is defined by the polynomial time verifier M [START_REF] Papadimitriou | Computational complexity[END_REF]. The function problem associated with L 1 , denoted F L 1 , is the following computational problem: Given w, find a string c such that M (w, c) = "yes" if such string exists; if no such string exists, then reject, that is, return "no" [START_REF] Papadimitriou | Computational complexity[END_REF]. The complexity class of all function problems associated with languages in N P is called F N P [START_REF] Papadimitriou | Computational complexity[END_REF]. F P is the complexity class that contains those problems in F N P which can be solved in polynomial time [START_REF] Papadimitriou | Computational complexity[END_REF].

To attack the P versus N P question the concept of NP-completeness has been very useful [START_REF] Garey | Computers and Intractability: A Guide to the Theory of NP-Completeness[END_REF]. A principal NP-complete problem is SAT [START_REF] Garey | Computers and Intractability: A Guide to the Theory of NP-Completeness[END_REF]. An instance of SAT is a Boolean formula φ which is composed of:

1. Boolean variables: x 1 , x 2 , . . . , x n ; 2. Boolean connectives: Any Boolean function with one or two inputs and one output, such as ∧(AND), ∨(OR), (NOT), ⇒(implication), ⇔(if and only if); 3. and parentheses.

A truth assignment for a Boolean formula φ is a set of values for the variables in φ. On the one hand, a satisfying truth assignment is a truth assignment that causes φ to be evaluated as true. On the other hand, a truth assignment that causes φ to be evaluated as false is a unsatisfying truth assignment. A Boolean formula with some satisfying truth assignment is satisfiable and without any satisfying truth assignment is unsatisfiable. The problem SAT asks whether a given Boolean formula is satisfiable [START_REF] Garey | Computers and Intractability: A Guide to the Theory of NP-Completeness[END_REF].

A literal in a Boolean formula is an occurrence of a variable or its negation [START_REF] Thomas | Introduction to Algorithms[END_REF]. A Boolean formula is in conjunctive normal form, or CN F , if it is expressed as an AND of clauses, each of which is the OR of one or more literals [START_REF] Thomas | Introduction to Algorithms[END_REF]. A Boolean formula is in 3-conjunctive normal form or 3CN F , if each clause has exactly three distinct literals [START_REF] Thomas | Introduction to Algorithms[END_REF]. Another relevant NP-complete language is 3CN F satisfiability, or 3SAT [START_REF] Thomas | Introduction to Algorithms[END_REF]. In 3SAT , it is asked whether a given Boolean formula φ in 3CN F is satisfiable.

An important complexity is Sharp-P (denoted as #P ) [START_REF] Valiant | The complexity of computing the permanent[END_REF]. We can also define the class #P using polynomial time verifiers. Let {0, 1} * be the infinite set of binary strings, a function f : {0, 1} * → N is in #P if there exists a polynomial time verifier M such that for every

x ∈ {0, 1} * , f (x) = |{y : M (x, y) = "yes"}| where | • • • | denotes the cardinality set function [3].

Logarithmic space verifiers

A logarithmic space Turing machine has a read-only input tape, a write-only output tape, and read/write work tapes [START_REF] Sipser | Introduction to the Theory of Computation[END_REF]. The work tapes may contain at most O(log n) symbols [START_REF] Sipser | Introduction to the Theory of Computation[END_REF]. In computational complexity theory, L is the complexity class containing those decision problems that can be decided by a deterministic logarithmic space Turing machine [START_REF] Papadimitriou | Computational complexity[END_REF]. N L is the complexity class containing the decision problems that can be decided by a nondeterministic logarithmic space Turing machine [START_REF] Papadimitriou | Computational complexity[END_REF].

We can give a certificate-based definition for N L [START_REF] Arora | Computational complexity: a modern approach[END_REF]. The certificate-based definition of N L assumes that a logarithmic space Turing machine has another separated read-only tape [START_REF] Arora | Computational complexity: a modern approach[END_REF]. On each step of the machine, the machine's head on that tape can either stay in place or move to the right [START_REF] Arora | Computational complexity: a modern approach[END_REF]. In particular, it cannot reread any bit to the left of where the head currently is [START_REF] Arora | Computational complexity: a modern approach[END_REF]. For that reason, this kind of special tape is called "read-once" [START_REF] Arora | Computational complexity: a modern approach[END_REF].

Definition 1. A language L 1 is in N L if
there exists a deterministic logarithmic space Turing machine M with an additional special read-once input tape polynomial p : N → N such that for every x ∈ {0, 1} * :

x ∈ L 1 ⇔ ∃ u ∈ {0, 1} p([x]) such that M (x, u) = "yes"
where by M (x, u) we denote the computation of M where x is placed on its input tape, and the certificate u is placed on its special read-once tape, and M uses at most O(log[x]) space on its read/write work tapes for every input x, where [. . .] is the bit-length function [START_REF] Arora | Computational complexity: a modern approach[END_REF]. M is called a logarithmic space verifier [START_REF] Arora | Computational complexity: a modern approach[END_REF].

An interesting complexity class is Sharp-L (denoted as #L). #L has the same relation to L as #P does to P [START_REF] Álvarez | A Very Hard Log-Space Counting Class[END_REF]. We can define the class #L using logarithmic space verifiers as well. Definition 2. Let {0, 1} * be the infinite set of binary strings, a function f : {0, 1} * → N is in #L if there exists a logarithmic space verifier M such that for every x ∈ {0, 1} * ,

f (x) = |{u : M (x, u) = "yes"}|
where | • • • | denotes the cardinality set function [START_REF] Álvarez | A Very Hard Log-Space Counting Class[END_REF].

A logarithmic space transducer is a Turing machine with a read-only input tape, a write-only output tape, and read/write work tapes [START_REF] Sipser | Introduction to the Theory of Computation[END_REF]. The work tapes must contain at most O(log n) symbols [START_REF] Sipser | Introduction to the Theory of Computation[END_REF]. A logarithmic space transducer M computes a function f : Σ * → Σ * , where f (w) is the string remaining on the output tape after M halts when it is started with w on its input tape [START_REF] Sipser | Introduction to the Theory of Computation[END_REF]. We call f a logarithmic space computable function [START_REF] Sipser | Introduction to the Theory of Computation[END_REF]. We say that a language L 1 ⊆ {0, 1} * is logarithmic space reducible to a language L 2 ⊆ {0, 1} * , written L 1 ≤ l L 2 , if there exists a logarithmic space computable function f : {0, 1} * → {0, 1} * such that for all x ∈ {0, 1} * :

x ∈ L 1 if and only if f (x) ∈ L 2 .
The two-way Turing machines may move their head on the input tape into two-way (left and right directions) while the one-way Turing machines are not allowed to move the head on the input tape to the left [START_REF] Hartmanis | Languages Simultaneously Complete for One-Way and Two-Way Log-Tape automata[END_REF]. Hartmanis and Mahaney have investigated the classes 1L and 1N L of languages recognizable by deterministic one-way logarithmic space Turing machine and nondeterministic one-way logarithmic space Turing machine, respectively [START_REF] Hartmanis | Languages Simultaneously Complete for One-Way and Two-Way Log-Tape automata[END_REF]. Lemma 3. N L is closed under nondeterministic logarithmic space reductions to every language in 1N L.

Proof. Suppose, we have two languages L 1 and L 2 ∈ 1N L, such that there is a nondeterministic logarithmic space Turing machine M which makes a reduction from x ∈ L 1 into M (x) ∈ L 2 . Besides, we assume there is a nondeterministic one-way logarithmic space Turing machine M which decides L 2 . Hence, we only need to prove that M (M (x)) is a nondeterministic logarithmic space Turing machine. The solution to this problem is simple: We do not explicitly store the output result of M in the work tapes of M . Instead, whenever M needs to move the head on the input tape (this tape will be the output tape of M ), then we continue the computation of M on input x long enough for it to produce the new output symbol; this is the symbol that will be the next scanned symbol on the input tape of M .

If M only needs to read currently from the work tapes, then we just pause the computation of M on the input x and continue the computation of M until this needs to move to the right on the input tape. We can always continue the simulation, because M never moves the head on the input tape to the left. We only accept when the machine M enters in the halting state and M enters in the accepting state otherwise we reject. It is clear that this simulation indeed computes M (M (x)) in a nondeterministic logarithmic space. In this way, we obtain x ∈ L 1 if and only if M (M (x)) = "yes" which is a clear evidence that L 1 is in N L.

We can give an equivalent definition for N L, but this time the output is a string which belongs to a language in 1N L. Definition 4. A language L 1 is in N L if there exists another nonempty language L 2 ∈ 1N L and a deterministic logarithmic space Turing machine M with an additional special read-once input tape polynomial p : N → N such that for every x ∈ {0, 1} * :

x ∈ L 1 ⇔ ∃ u ∈ {0, 1} p([x]) such that M (x, u) = y, where y ∈ L 2
and by M (x, u) = y we denote the computation of M where x is placed on its input tape, and y is the remaining string in the output tape on M after the halting state, and the certificate u is placed on its special read-once tape, and M uses at most O(log[x]) space on its read/write work tapes for every input x, where [. . .] is the bit-length function [START_REF] Arora | Computational complexity: a modern approach[END_REF]. We call M an output-one-way logarithmic space verifier. This definition is still valid, because of Lemma 3.

According to the previous definition, we can redefine #L as follows: Definition 5. Let {0, 1} * be the infinite set of binary strings, a function f : {0, 1} * → N is in #L if there exists another nonempty language L 2 ∈ 1N L, and a nondeterministic one-way logarithmic space Turing machine M which decides L 2 , and an output-one-way logarithmic space verifier M such that for every x ∈ {0, 1} * , 

f (x) = |{(u, p) : M (x, u) = y,

Results

Definition 6. Given a Boolean formula φ with m clauses, the density of states n(E) for some integer 0 ≤ E ≤ m counts the number of truth assignments that leave exactly E clauses unsatisfied in φ [START_REF] Ermon | Computing the Density of States of Boolean Formulas[END_REF]. The weighted density of states m(E) is equal to E × n(E). The sum of the weighted densities of states of a Boolean formula in 3CN F with m clauses is equal to m E=0 m(E).

P vs NP

We define a new problem:

Definition 7. EXACTLY-THRICE INSTANCE:

A unary string 0 q and a collection of binary strings, such that each element in the collection represents a power number in base 2 with a bit-length lesser than or equal to q. The collection of numbers is represented by an array N .

QUESTION: Is there an element repeated exactly thrice in N ?

Theorem 8. EXACTLY-THRICE ∈ 1N L.
Proof. Given an instance (0 q , N ) of EXACTLY-THRICE, then we can read its elements from left to right on the input tape, verify that every element in the collection is a binary string, and finally check whether every element in N has a bit-length lesser than or equal to q. In addition, we can nondeterministically pick a binary integer d between 1 and q and accept in case of there exists the number 2 d-1 exactly thrice in N .

We can make all this computation in a nondeterministic one-way using logarithmic space. Certainly, the verification of the membership of 2 d-1 in N could be done in logarithmic space, since it is trivial to check whether a binary string represents the power 2 d-1 . Besides, we can store a logarithmic amount of symbols, because of d has an exponential more succinct representation in relation to the unary string 0 q [START_REF] Papadimitriou | Computational complexity[END_REF]. Moreover, the variables that we could use for the iteration of the elements in N have a logarithmic space in relation to the length of the instance (0 q , N ).

We never need to move to the left on the input tape for the acceptance or rejection of the elements in EXACTLY-THRICE in a nondeterministic logarithmic space. We describe this nondeterministic one-way logarithmic space computation in the Algorithm 1. In this algorithm, we assume a value does not exist in the array N into the cell of some position i when N [i] = undefined. To sum up, we actually prove that EXACTLY-THRICE is in 1N L. Proof. We are going to show there is a deterministic Turing machine M , where:

#CLAUSES-3UNSAT = {w : M (w, u) = y, ∃ u such that y ∈ EXACTLY-THRICE} when M runs in logarithmic space in the length of w, u is placed on the special readonce tape of M , and u is polynomially bounded by w. Given an instance (n, m, C) of #CLAUSES-3UNSAT, we firstly check whether this instance has an appropriate representation according to the constraints introduced in the Definition 9. The constraints for the Definition 9 are the following ones:

ALGORITHM 1: ONE-WAY-ALGO Data: (0 q , N ) where (0 q , N ) is an instance of EXACTLY-THRICE Result: A nondeterministic acceptance or rejection in one-way logarithmic space // Get the length of the unary string 0 q as a binary string q ←-length(0 q ); // Generate nondeterministically an arbitrary integer between 1 and q d ←-random(1, q); t ←-0; // Initial position in N i ←-1;

while

N [i] = undefined do s ←-0; // N [i][j] represents the j th digit of the string in N [i] for j ← 1 to q + 1 do if j = q + 1 then if N [i][j] = undefined then //
There exists an element with bit-length greater than q return "no"; end end else if 1. The array C must contain exactly m sets and, 2. each variable must be represented by a unique integer between 1 and n and, 3. there are no two equals sets inside of C and finally, 4. every set element must contain exactly three distinct literals.

(j = 1 ∧ N [i][j] = 1) ∨ (j > 1 ∧ N [i][j] = 1) ∨ N [i][j] / ∈ {0,
[i][j] in N [i] s ←-s + 1; end end if s = d ∧ t < 4 then // The element N [i] is equal to 2 d-1 t ←-t + 1; end i ←-i + 1; end if t = 3 then //
[i] = undefined ∨ abs(A[i]) < 1 ∨ abs(A[i]) > n ∨ abs(A[i]) ≤ x then //
All these requirements are verified in the logarithmic space Algorithm 2, where this subroutine decides whether the instance has an appropriate representation according to the Definition 9. After that verification, we use a certificate as an array A, such that this consists in an array of n different integer numbers in ascending absolute value order. We read at once the elements of the array A and we reject whether this is not an appropriate certificate: That is, when the absolute value of the numbers are not sorted in ascending order, or the array A does not contain exactly n elements, or the array A contains a number that its absolute value is not between 1 and n, since every variable is represented by an integer between 1 and n in C.

While we read each element x of the array A, then we copy the binary numbers 2 j-1 that represent the sets C[j] which contain the literal x just creating another instance (0 q , N ) of EXACTLY-THRICE, where the value of q is equal to m. Since the array A does not contain repeated elements, then we could correspond each certificate A to a truth assignment for φ with a representation of all the variables in φ, such that the literals in A are false where the literals are represented by positive or negative integers according to the Definition 9. We know a set C[j] that represents a clause is false if and only if the three literals in C[i] are false. Therefore, the evaluation as false into the literals of the array A corresponds to a unsatisfying truth assignment in φ if and only if we write some number 2 j-1 thrice to the output tape, where 2 j-1 represents a set C[j] for some 1 ≤ j ≤ m.

Furthermore, we can make this verification in logarithmic space such that the array A is placed on the special read-once tape, because we read at once the elements in the array A. Indeed, the variables that we could use for the iteration of the elements in A and C have a logarithmic space in relation to the length of the instance (n, m, C). Hence, we only need to iterate from the elements of the array A to verify whether the array is an appropriate certificate and write to the output tape the representation as a power of two of the sets in C that contain the literals in A. This logarithmic space verification will be the Algorithm 3. We assume whether a value does not exist in the arrays A or C into the cell of some position i when

A[i] = undefined or C[i] = undefined, respectively.
The Algorithm 3 is an output-one-way logarithmic space verifier, since this never moves the head on the special read-once tape to the left, where it is placed the certificate A. Moreover, for every unsatisfying truth assignment represented by the array A, then the output of this output-one-way logarithmic space verifier will always belong to the language EXACTLY-THRICE, where we know that EXACTLY-THRICE ∈ 1N L as a consequence of Theorem 8. In addition, every appropriate certificate A is always polynomially bounded by the instance (n, m, C).

Consequently, we demonstrate that #CLAUSES-3UNSAT belongs to the complexity class #L under the Definition 5. Certainly, every truth assignment in φ corresponds to a single certificate in our output-one-way logarithmic space verifier. In addition, the number of accepting paths in the Algorithm 1 for the generated instance (0 q , N ) of EXACTLY-THRICE is exactly the number of unsatisfied clauses for a single truth assignment.

The number of accepting paths in the Algorithm 1 for a single instance is equal to the number of different powers of two that exist exactly thrice in the array N . Actually, this corresponds to the number of unsatisfied clauses for the truth assignment that represents the certificate A. We know that #L is contained in the class F P [START_REF] Álvarez | A Very Hard Log-Space Counting Class[END_REF], [START_REF] Borodin | Parallel Computation for Well-Endowed Rings and Space-Bounded Probabilistic Machines[END_REF], [START_REF] Arora | Computational complexity: a modern approach[END_REF]. As result, #L remains in the class F P under the Definition 5 as a consequence of Lemma 3. In conclusion, we show that #CLAUSES-3UNSAT is indeed in F P .

Let's consider an interesting problem: Definition 11. SELECTOR-3SAT INSTANCE: Two Boolean formulas φ 1 and φ 2 in 3CN F with simultaneously n variables and m clauses, where every clause from φ 1 and φ 2 can be unsatisfied for some truth assignment. The clauses in the Boolean formula φ j is represented by a set S j , such that S j represents a set of m set elements, where S i,j ∈ S j if and only if S i,j is exactly the set of literals into a clause c i in φ j for 1 ≤ i ≤ m and j ∈ {1, 2}. Besides, each variable from the formulas φ 1 and φ 2 is represented by a unique integer between 1 and n within the sets S 1 and S 2 , respectively. In addition, a negative or positive integer represents a negated or non-negated literal, respectively.

ANSWER: The Boolean formula that is satisfiable between φ 1 and φ 2 when φ 1 ∈ 3SAT or φ 2 ∈ 3SAT . Proof. Consider the Algorithm 4, where POLY-ALGO is a polynomial time algorithm for #CLAUSES-3UNSAT. Indeed, POLY-ALGO converts a set of clauses S in an appropriate instance of #CLAUSES-3UNSAT and solve it. We state that the Algorithm 4 solves SELECTOR-3SAT. Certainly, given two Boolean formulas φ 1 and φ 2 in 3CN F with n variables and m clauses, then they comply that the one which is satisfiable contains the minimum sum of the weighted densities of states, when every clause from the formulas φ 1 and φ 2 can be unsatisfied for some truth assignment. Moreover, the Algorithm 4 is computable in polynomial time due to the Theorem 10.

If a Boolean formula φ in 3CN F with n variables is unsatisfiable, then This is based on there are more chances that n(1) is bigger in φ i between the two Boolean formulas φ i and φ k when φ i ∈ 3SAT and φ k / ∈ 3SAT , where the tuple of φ i and φ k represents an instance of SELECTOR-3SAT. In general, this is the behavior when E is less close to m. However, when the value of E is more close to m then n(E) is bigger in φ k between the two Boolean formulas φ i and φ k when φ i ∈ 3SAT and φ k / ∈ 3SAT : Note that, as much as E and n(E) increase their values, then m(E) increases its value as well, where this happens exactly when E is more close to m. In general, as much as m(E) increases its value, then the sum of the weighted densities of states increases its value in the same way. In conclusion, we show that SELECTOR-3SAT is in F P . Theorem 13. P = N P .

Proof. The combinatorial optimization problem SELECTOR-3SAT could be used for a possible selector of 3SAT [START_REF] Selman | P-Selective Sets, Tally Languages, and the Behavior of Polynomial Time Reducibilities on NP[END_REF]. We claim that given two Boolean formulas φ 1 and φ 2 in 3CN F that represents an instance of SELECTOR-3SAT, such that this tuple of formulas consists in a pair of a satisfiable and an unsatisfiable formula, then the problem SELECTOR-3SAT can always select the satisfiable formula. Certainly, we could extend this to use it for every pair of Boolean formulas φ 1 and φ 2 in 3CN F with not necessarily the same amount of variables and clauses.

For example, we could modify every pair of Boolean formulas φ 1 and φ 2 in 3CN F into another tuple of Boolean formulas φ 1 and φ 2 in 3CN F that represents an instance of SELECTOR-3SAT, such that φ i is satisfiable if and only if φ i is satisfiable for i ∈ {1, 2}. Indeed, we can add an arbitrary number of variables and clauses to a Boolean formula ψ in 3CN F , such that ψ remains satisfiable or unsatisfiable after the modification. In this way, we can polynomially add a number of variables and clauses to the Boolean formulas φ 1 and φ 2 in 3CN F until we obtain another equivalent tuple of Boolean formulas φ 1 and φ 2 in 3CN F that represents an instance of SELECTOR-3SAT. For that reason, we could prove that P = N P as a consequence of Theorem 12.

Conclusions

No one has been able to find a polynomial time algorithm for any of more than 300 important known NP-complete problems [START_REF] Garey | Computers and Intractability: A Guide to the Theory of NP-Completeness[END_REF]. A proof of P = N P will have stunning practical consequences, because it possibly leads to efficient methods for solving some of the important problems in N P [START_REF] Cook | The P versus NP Problem[END_REF]. The consequences, both positive and negative, arise since various NP-complete problems are fundamental in many fields [START_REF] Cook | The P versus NP Problem[END_REF]. Cryptography, for example, relies on certain problems being difficult. A constructive and efficient solution to an NP-complete problem such as 3SAT will break most existing cryptosystems including: Public-key cryptography [START_REF] Horie | Hard instance generation for SAT[END_REF], symmetric ciphers [START_REF] Massacci | Logical Cryptanalysis as a SAT Problem[END_REF] and one-way functions used in cryptographic hashing [START_REF] De | Inversion Attacks on Secure Hash Functions Using SAT Solvers[END_REF]. These would need to be modified or replaced by information-theoretically secure solutions not inherently based on P-NP equivalence.

There are positive consequences that will follow from rendering tractable many currently mathematically intractable problems. For instance, many problems in operations research are NP-complete, such as some types of integer programming and the traveling salesman problem [START_REF] Garey | Computers and Intractability: A Guide to the Theory of NP-Completeness[END_REF]. Efficient solutions to these problems have enormous implications for logistics [START_REF] Cook | The P versus NP Problem[END_REF]. Many other important problems, such as some problems in protein structure prediction, are also NP-complete, so this will spur considerable advances in biology [START_REF] Berger | Protein Folding in the Hydrophobic-Hydrophilic (HP) Model is NP-complete[END_REF].

Since all the NP-complete optimization problems become easy, everything will be much more efficient [START_REF] Fortnow | The Status of the P Versus NP Problem[END_REF]. Transportation of all forms will be scheduled optimally to move people and goods around quicker and cheaper [START_REF] Fortnow | The Status of the P Versus NP Problem[END_REF]. Manufacturers can improve their production to increase speed and create less waste [START_REF] Fortnow | The Status of the P Versus NP Problem[END_REF]. Learning becomes easy by using the principle of Occam's razor: We simply find the smallest program consistent with the data [START_REF] Fortnow | The Status of the P Versus NP Problem[END_REF]. Near perfect vision recognition, language comprehension and translation and all other learning tasks become trivial [START_REF] Fortnow | The Status of the P Versus NP Problem[END_REF]. We will also have much better predictions of weather and earthquakes and other natural phenomenon [START_REF] Fortnow | The Status of the P Versus NP Problem[END_REF].

But such changes may pale in significance compared to the revolution an efficient method for solving NP-complete problems will cause in mathematics itself [START_REF] Cook | The P versus NP Problem[END_REF]. Research mathematicians spend their careers trying to prove theorems, and some proofs have taken decades or even centuries to find after problems have been stated [START_REF] Scott Aaronson | Electronic Colloquium on Computational Complexity[END_REF]. For instance, Fermat's Last Theorem took over three centuries to prove [START_REF] Scott Aaronson | Electronic Colloquium on Computational Complexity[END_REF]. A method that is guaranteed to find proofs to theorems, should one exist of a "reasonable" size, would essentially end this struggle [START_REF] Cook | The P versus NP Problem[END_REF].

  where y ∈ L 2 and p is an accepting path of M (y)}| and | • • • | denotes the cardinality set function. This definition is still valid under the result of Lemma 3 even for the certificate tape that we can guarantee that is continually read at once.

Let's consider a function problem: Definition 9 .

 9 #CLAUSES-3UNSAT INSTANCE: Two natural numbers n, m, and a Boolean formula φ in 3CN F of n variables and m clauses. The clauses are represented by an array C, such that C represents a set of m set elements, where C[i] = S i if and only if S i is exactly the set of literals into a clause c i in φ for 1 ≤ i ≤ m. Besides, each variable in φ is represented by a unique integer between 1 and n. In addition, a negative or positive integer represents a negated or non-negated literal, respectively. ANSWER: The sum of the weighted densities of states of the Boolean formula φ. Theorem 10. #CLAUSES-3UNSAT ∈ F P .

ALGORITHM 4 :

 4 SELECTOR-ALGO Data: (S1, S2) where (S1, S2) represents two Boolean formulas in 3CN F with n variables and m clauses Result: A polynomial time algorithm if (S1, S2) is not an appropriate instance of SELECTOR-3SAT then return "no"; end else if POLY-ALGO(S1) ≤ POLY-ALGO(S2) then return S1; end else return S2; end Theorem 12. SELECTOR-3SAT ∈ F P .

mE=0E

  × n(E) < m E=0 E × n(E)when the tuple of φ and ψ represents an instance of SELECTOR-3SAT.

  The element 2 d-1 appears exactly thrice in N

	ALGORITHM 3: VERIFIER-ALGO
	Data: (n, m, C, A) where (n, m, C) is an instance of #CLAUSES-3UNSAT and A is a
	certificate
	Result: An output-one-way logarithmic space verifier
	if CHECK-ALGO(n, m, C) = "no" then
	// (n, m, C) is not an appropriate instance of #CLAUSES-3UNSAT
	return "no";
	end
	else
	output 0 m ;
	end
	// Minimum current variable during the iteration of the array A
	x ←-0;
	return "yes";
	end
	else
	return "no";
	end

for i ← 1 to n + 1 do if i = n + 1 then if A[i] = undefined then //

The array A contains more than n elements return "no"; end end else if A

  = 2 n is true. Certainly, if the Boolean formula φ has n variables, then φ has exactly 2 n possible truth assignments. Besides, if another Boolean formula ψ in 3CN F with n variables is satisfiable, then

	m E=1 n(E) < 2 n is true. In this way, if we have that	m E=1 n(E) <	m E=1 n(E) ,
	then we should also have that		

m E=1 n(E)
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