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Abstract: Separation of variables (SoV) is a special property of integrable models which

ensures that the wavefunction has a very simple factorised form in a specially designed

basis. Even though the factorisation of the wavefunction was recently established for

higher rank models by two of the authors and G. Sizov, the measure for the scalar product

was not known beyond the case of rank one symmetry. In this paper we show how this

measure can be found, bypassing an explicit SoV construction. A key new observation is

that the measure for spin chains in a highest-weight infinite dimensional representation of

slpNq couples Q-functions at different nesting levels in a non-symmetric fashion. We also

managed to express a large number of form factors as ratios of determinants in our new

approach. We expect our method to be applicable in a much wider setup including the

problem of computing correlators in integrable CFTs such as the fishnet theory, N “ 4

SYM and the ABJM model.
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1 Introduction

Integrability provides powerful methods to study certain quantum systems at the nonper-

turbative level. The integrable models share many universal features and the underlying

mathematical structures which to a great extent depend on the global symmetries of the

model. While a bit counterintuitive, in fact the integrable structure becomes increasingly

more complex for systems with a larger symmetry.

The observables that are most easily accessible to integrability are the eigenvalues of

the Hamiltonian and other integrals of motion. However, it is usually much more difficult to

extract information on the energy eigenvectors, as well as on more complicated observables

such as form factors and correlators. A very powerful method that allows one to make

advance in this direction was pioneered by Sklyanin in [1–4] and is known as the Separation

of Variables (SoV). It is based on the fact that in integrable systems the wave functions

|Ψy for eigenstates of the integrals of motion (also known as Bethe states) are expected to

factorize completely in a suitable system of coordinates. The most elementary example is

the wavefunction for the hydrogen atom which factorizes in spherical coordinates.
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In the case of a spin chain with L sites and rank-one slp2q symmetry one aims to find

a basis for the Hilbert space parametrized by a set of L separated variables, xx|, labelled

by a set of L real numbers x “ txiu
L
i“1, such that the Bethe state becomes a product,

Ψpxq ” xx|Ψy “
Lź

i“1

Qpxiq . (1.1)

In most realizations of SoV, the one-particle factors coincide precisely with the Q-function,

which is a fundamental object in quantum integrability directly related to the solution

of the spectral problem. The Q-function is fixed by the Baxter TQ relation, a finite

difference equation of order equal to the rank of the symmetry group, which in the SoV

framework can be interpreted as equivalent to the Schrödinger equation. The explicit form

of the change of coordinates to the SoV basis is quite complicated, however, in many

important cases one could reformulate the problem directly in the SoV coordinates. It was

observed that for a number of important observables the result written in the SoV basis

is surprisingly simple [5–13]. Crucially, one can define the scalar product bypassing the

original physical basis directly in SoV. The scalar product involves the so-called Sklyanin’s

measure Mpxq such that xΨA|ΨBy “
ş
dLx ΨApxqMpxqΨBpxq. In particular for the Bethe

states it becomes

xΨA|ΨBy“

ż
dLx

¨
˚̊
˚̊
˝

Lź

i“1

QpAqpxiq

loooooomoooooon
state A

˛
‹‹‹‹‚
Mpxqloomoon
measure

¨
˚̊
˚̊
˝

Lź

i“1

QpBqpxiq

loooooomoooooon
state B

˛
‹‹‹‹‚

. (1.2)

As emphasised by the colours in the formula, the two states are represented by the re-

spective factorized wavefunctions. The scalar product is implemented by integration over

the values of the separated variables with the measure Mpxq, which is independent of

the states.

Of course, different eigenstates of Hermitian integrals of motion are orthogonal, there-

fore the integral in (1.2) should vanish for any two different Bethe states xΨA| and |ΨBy.

One can, in fact, reverse the logic and derive the measure (up to a constant factor) from

the orthogonality of the Bethe states. In this paper we use this fact as an inspiration for

the generalisation to higher rank symmetries.

Originally, for slp2q spin chains the basis |xy was constructed explicitly and the measure

derived rigorously in [14, 15]. It was shown to take the form of a determinant of a L ˆ L

matrix1,2

Mpxq “ symtθiu

∣

∣

∣

∣

ˆ
x
j´1

i

1`e2πpxi´θiq

˙∣

∣

∣

∣

1ďi,jďL

, (1.3)

1This formula is valid for the most general case of inhomogeneous spin chain with twisted boundary

conditions. The reduction to the untwisted case can be obtained by carefully taking the corresponding

limit.
2For compact spin chains we have sums instead of integrals and the corresponding measure was derived

in e.g. [6] (see also [10, 16, 17]).
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where θi are L distinct inhomogeneities, and “sym” denotes symmetrization of the determi-

nant w.r.t. the inhomogeneities. This operation makes the expression (1.3) completely sym-

metric w.r.t. the variables xi, and does not affect the integral defining the scalar product.

For models with higher rank symmetries, SoV methods have so far not been understood

to the same extent as we described above. In fact, problems with obtaining the measure

were anticipated recently in [18]. At the same time, extra motivation to explore this

direction comes from string theory and integrability observed in N “ 4 super Yang-Mills,

which has a much more complicated psup2, 2|4q symmetry [19].

It was essentially conjectured in the original papers of Sklyanin [20, 21] how to construct

the SoV basis |xiy in the first higher rank case, i.e. for slp3q. These results were extended

to slpNq by Smirnov [22] following the classical case [23, 24] (see also [25, 26]). However,

for a long time there was no precise indication of how Bethe states can be written in the

separated coordinates and what are the corresponding factors.

One of the obvious difficulties in generalizing (1.2) to higher rank is that for glpNq-

invariant systems there are 2N independent Q-functions (see [27–32] and [33–35] for a

recent pedagogical introduction), and it not clear a priori which of them should enter the

factorised expression for the Bethe states generalising (1.1). A convenient way to label the

Q-functions is by using completely antisymmetric multi-indices3

Qi1...ik , in P t1, . . . , Nu . (1.4)

The answer to the question about which Q-functions should appear in the factorization

of the Bethe states was obtained in [17] for the case of compact spin chain in the funda-

mental representation of slpNq. Firstly, it was demonstrated that the Bethe states can be

constructed as

|Ψy “
ź

k

B̂goodpukq|0y , (1.5)

where B̂goodpuq is a degree L ˆ pN ´ 1q polynomial in u operator,4 such that it commutes

with itself for different values of u. Importantly, uk’s are the roots of the Q1 polynomial

Q-function.5 Following the same procedure as in [3, 37] for slp2q case one can label the left

eigenstates of the operator B̂goodpuq by a set of L ˆ pN ´ 1q real numbers x ” txi,au with

i “ 1, . . . , L and a “ 1, . . . , N ´ 1, such that

xx|B̂goodpuq “
Lź

i“1

N´1ź

a“1

pxi,a ´ uqxx| , (1.6)

3At the same time there are only N ´ 1 Q-functions whose roots appear in the nested Bethe ansatz

equations. These are for example Q1, Q12, . . . , Q12...N´1. However, the nesting procedure contains

ambiguity and can generate a number of equivalent sets of equations. Considering all such possibilities we

will recover all 2N Q-functions. For more details see e.g. [34].
4When building this operator it is important to introduce an extra similarity transformation of the

monodromy matrix. Such a transformation was also studied for the slp2q case in [36] for a slightly different

model.
5In fact depending on the choice of the reference state |0y one can use roots of any Qi, the Q-function

with one index.
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from which, together with (1.5), it immediately follows that the Bethe state |Ψy does indeed

factorize into the product of Q1pxi,aq in this basis,

xx|Ψy “
Lź

i“1

N´1ź

a“1

Q1pxi,aq , (1.7)

thus generalizing (1.1). These results were later proven and shown to hold beyond the

fundamental representation, first for slp3q in [38] and then for slpNq in [39] where the

spectrum of separated variables x in more general cases was also obtained.6 The eigenstates

construction (1.5) was extended to the supersymmetric case in [47].

However, the factorisation property (1.7) does not guarantee the existence of a simple

formula for the scalar product. The main difficulty is that B̂good is not self-conjugate,

thus its left and right eigenvectors are not simply Hermitian conjugate to each other. This

implies that the bra xΨ| and ket |Ψy Bethe states cannot be simultaneously factorised in

the same way (1.7). Alternatively, one can ensure the factorization property by using the

Hermitian conjugate of (1.1); however the completeness relation for |xy and p|xyq: is not

diagonal since there is no reason to expect that |xy and p|x̃yq: are orthogonal for x ‰ x̃,

meaning that the measure would depend on the two sets of variables Mpx, x̃q giving a

much more complicated expression for the norm.

In this paper, we find a different argument, independent on the explicit construction

of separated variables, leading us to a concise proposal for a formula generalising (1.2) at

any rank. Our derivation is based only on the Baxter TQ relations. The main difference

with the approach based on B̂good, described above, is that our result indicates that the

factorization of the bra and ket states takes place in a more intriguing way — whereas

one state still factorizes into the product of Q1’s as in (1.7), the other state necessarily

decomposes into a different set of factors. More precisely we find

xΨA|ΨBy “

ż ˜
N´1ź

a“1

Lź

i“1

dxi,a

¸
¨
˚̊
˚̊
˝

N´1ź

a“1

Lź

i“1

Q
pAq
1 pxi,aq

loooooooooomoooooooooon
state A

˛
‹‹‹‹‚

M̂pxq

¨
˚̊
˚̊
˝

N´1ź

a“1

Lź

i“1

Q
pBq
ā pxi,aq

loooooooooomoooooooooon
state B

˛
‹‹‹‹‚

, (1.8)

where Qā are the Q-functions containing the Bethe roots at the deepest level of nesting.

Explicitly,

Qā ”
ǫb1,...,bN´1,N`1´a

pN ´ 1q!
Qb1,...,bN´1

, (1.9)

and the analogue of Sklyanin’s measure is a state-independent operator acting on the wave

function for one of the states. Like the Sklyanin’s measure is a determinant of L ˆ L

matrix (1.3), M̂pxq is a determinant of a L ˆ pN ´ 1q-dimensional matrix. For instance,

for slp3q we only have two functions Q1̄ “ Q12 and Q2̄ “ Q13 and the measure factor takes

6The form of the SoV basis |xiy for the noncompact slp3q case was elucidated recently in [40], while

for compact spin chains an alternative construction was proposed in [41–43]. Some related results for the

noncompact case such as the construction of Q-operators were presented in [44–46].
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the form

M̂pxq ” symtθiu det

∣

∣

∣

∣

∣

∣

∣

∣

ˆ
x
j´1

i,1 Dxi,1

1`e
2πpxi,1´θiq

˙ ˆ
x
j´1

i,1 D
´1
xi,1

1`e
2πpxi,1´θiq

˙

ˆ
x
j´1

i,2 Dxi,2

1`e
2πpxi,2´θiq

˙ ˆ
x
j´1

i,2 D
´1
xi,2

1`e
2πpxi,2´θiq

˙

∣

∣

∣

∣

∣

∣

∣

∣

1ďi,jďL

, (1.10)

where Dx is the shift operator in variable x:

Dx ˝ fpxq ” fpx ` i{2q . (1.11)

For illustration we write this result explicitly in the simplest case of L “ 1 slp3q spin

chain in appendix A. Schematically, we can represent (1.10) as the determinant of a tensor

product

M̂pxq “ symtθiu det

∣

∣

∣

∣

∣

∣

∣

ˆ
x̂j´1

1 ` e2πpx̂´θiq

˙

looooooooomooooooooon
1ďi,jďL

b

˜
Dx D´1

x

Dx D´1
x

¸∣

∣

∣

∣

∣

∣

∣

, (1.12)

where the first factor is the matrix appearing in the standard slp2q Sklyanin’s measure. In

this form the generalization to any rank is simply

M̂pxq “ symtθiu det

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ˆ
x̂j´1

1 ` e2πpx̂´θiq

˙

looooooooomooooooooon
1ďi,jďL

b

¨
˚̋

DN´2
x DN´4

x . . . D2´N
x

...
...

. . .
...

DN´2
x DN´4

x . . . D2´N
x

˛
‹‚

looooooooooooooooomooooooooooooooooon
pN ´ 1q ˆ pN ´ 1q

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (1.13)

It would still be interesting to derive this formula starting from (1.5). It should involve the

construction of a new operator, which we can tentatively denote Ĉgoodpuq, which would

also create the states but when acting from the right on the vacuum and evaluated at the

roots of the Qā’s. This would lead to a rigorous derivation of the scalar product we found

in this paper.

For concreteness, in this paper we exemplify the method in the case of non-compact

spin chains in a specific representation7 with highest weight p´1, 0, . . . , 0q. We expect

that the argument can be generalized to other representations, as well as to the compact

case, and to be applicable also in the case of the fishnet model [48] and N=4 super Yang-

Mills. In fact methods similar to the ones used in this paper already played a role in

the computation of certain three point functions in these theories [50, 51], and we expect

this extension to higher rank will help to develop a SoV approach to the computation of

correlation functions.

Let us mention that the rough structure of the general type (1.13) was anticipated

in [52] (for a different model) based on hints from the classical SoV construction. In

particular, the presence of the shift operators is nicely suggested by the classical picture

(see also [53]).

The paper is organised as follows. In section 2 we discuss in more detail our strategy

and outline the derivation of our results. In section 3 we discuss the simplest example of

7In our notation the fundamental representation has highest weight p1, 0, . . . , 0q.
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the slp2q spin chain, for which in particular we reproduce the known Sklyanin’s measure,

which was obtained before in [14, 15] via a highly involved computation. Then in section 4

we derive the scalar product for the first higher rank case slp3q and discuss in detail various

complications which we will see are neatly resolved by using algebraic properties of transfer

matrices. Finally in section 5 we generalize our results to any slpNq. We summarize and

conclude in section 6.

2 General strategy and notation

In this section we briefly outline the strategy, which we use in the rest of the paper to

derive our main result — the expression for the measure factor in the scalar product in

separated variables given in (1.8). We skip most of the technical details here.

Q-functions and Bethe roots. The most familiar approach to the spin chains is in

terms of the Bethe ansatz, which is a set of algebraic equations on the Bethe roots uk,α,

where α “ 1, . . . , N ´ 1 represents the nesting level [56, 57]. The lowest level roots uk,1 are

the momentum-carrying Bethe roots: they play a special role as the energy and momentum

of a Bethe states can be expressed solely in terms of those. Instead of using explicitly the

Bethe roots it is much more convenient to pack them into the Q-functions also known

as twisted Baxter polynomials. In particular Q1 “ euφ1

ś
kpu ´ uk,1q, where eiφ1 is an

eigenvalue of the twist matrix for the quasi-periodic chain. One can show that the twisted

polynomial Q1 uniquely identifies the Bethe state (by twisted polynomial we mean polyno-

mial times exponent). Another important set of objects, which will play the central role,

are the Q-functions with N ´ 1 indices, which we denote by Qā as in (1.9). Those contain

the roots on the last level of nesting uk,N´1, however, there is a number of ways the Bethe

ansatz equations can be written, which results in N ´ 1 different sets of roots at the level

α “ N ´1, which are labelled by the index a “ 1, . . . , N ´1 of Qā. The Bethe roots uk,N´1

do not characterise the state uniquely, as there are plenty of states with no roots at the

last nesting level. However, the set of all Qā, a “ 1, . . . , N ´ 1 does determine the state

uniquely as is clear from the identity

Q1 “ det
´
Q

rN´2bs
ā

¯
1ďa,bďN´1

, (2.1)

where we introduced the notation

f rns ” fpu ` in{2q, f˘ ” fpu ˘ i{2q (2.2)

for the shifts in the argument. The relation (2.1) follows from the QQ-relations, see e.g.

the review [34].

Baxter TQ relations. In order to find the Q-functions Q1puq, one should solve an N -th

order finite-difference Baxter equation, which schematically has the form

Ô ˝ Q1 “ 0 , (2.3)

– 6 –



J
H
E
P
0
9
(
2
0
1
9
)
0
5
2

where the difference operator Ô is given by

Ô˝f ” τ
rNs
0 f rNs ´τ

rN´2s
1 f rN´2s `¨ ¨ ¨`p´1qN´1τ

r´N`2s
N´1 f r´N`2s `p´1qNτ

r´Ns
N f r´Ns (2.4)

and the coefficients τkpuq for a spin chain of length L are Lth order polynomials, which are8

the eigenvalues of the spin chain transfer matrices in the finite-dimensional antisymmetric

slpNq irreps (see e.g. [25]). The first and the last coefficients are related by τ0pu ` i{2q “

τN pu´i{2q and fixed to be the same for all states, which allows to introduce the polynomial

Qθ such that τ0 “ Q´
θ , τN “ Q`

θ . The other polynomials τa, whose expansion in u yields

the integrals of motion for the state under consideration,

τapuq “ uLχapGq `
Lÿ

j“1

uj´1 Ia,j´1, a “ 1, . . . , N ´ 1 , (2.5)

have to be determined from the self-consistency of the equations (2.3) with certain polyno-

miality conditions for the Q-functions. The leading uL coefficient in τapuq is the character

of the a-th antisymmetric supNq representation χapGq of the diagonal SUpNq twist matrix

G “ diag
`
eiφ1 , . . . , eiφN

˘
.9 In the generic situation we will find only one twisted polynomial

solution Q1puq to the difference equation (2.3), which would determine us the momentum-

carrying Bethe roots. The polynomial Qθ determines the system and its roots have the

meaning of inhomogeneities. In the simplest case of the homogeneous spin chain Qθ “ uL.

However, the expressions we obtain are more natural in the most general case when

Qθ “
Lź

i“1

pu ´ θiq , (2.6)

with all θi taken different.

It happens that the “dual” set of Q-functions Qā satisfies a very similar finite difference

equation
ŝO ˝ Qā “ 0, a “ 1, 2, . . . , N ´ 1 , (2.7)

with

ŝO ˝ g ” τ0g
r´Ns ´ τ1g

r´N`2s ` ¨ ¨ ¨ ` p´1qN´1τN´1g
rN´2s ` p´1qNτNgrNs . (2.8)

Again, one can check that the equation (2.8), where the polynomial coefficients are already

fixed to be the same as in (2.3), in general has N independent solutions, but only N ´ 1 of

them can be chosen to be twisted polynomials, which are precisely our Qā, a “ 1, . . . , N´1.

The strategy. By looking at (2.3) and (2.8) we may notice that the operators Ô and
ŝO are in a sense conjugate to each other. Indeed, they contain the same coefficients, but

with different shifts in the argument. To make this idea more precise we have to define an

inner product for functions of one variable (which should not be confused with the scalar

8Up to shifts of the argument and trivial overall factors.
9More precisely we have detp1 ` λGq “

řN

a“0
χapGqλa.

– 7 –
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product of two spin chain states). The key observation is that in fact one can define not

just one but L such inner products

xgfyj ”

ż `8

´8
du gpuqµjpuqfpuq , j “ 1, . . . , L . (2.9)

Below we specify more precisely the explicit form of the factors µjpuq defining the norm,

at this stage we notice that µjpuq should be i-periodic functions. In this case, assuming

we can move the integration contour up and down in the complex plane by a multiple of i,

we can transfer the shifts from f onto g while also modifying the shifts in the polynomial

coefficients τn. In this way we precisely obtain that the two finite difference operators Ô

and ŝO are indeed conjugate to each other with respect to these inner products,

xfÔgyj “ xg ŝOfyj , 1 ď j ď L . (2.10)

In practice the exact form of the factors µj is constrained by the possibility to move the

contours up and down and by the convergence of the integral when f and g are twisted

polynomials. In addition, the proof of (2.10) involves certain identities, which f and g

should satisfy, which luckily do hold in the situations where we use this argument below.

In the next sections we provide more details on this and show how our approach works in

explicit examples.

Having the conjugation property (2.10), we can use standard arguments to prove “or-

thogonality” conditions that are satisfied by the Q-functions QA and QB corresponding to

different Bethe states |ΨAy and |ΨBy. In fact, using (2.10) we immediately derive LˆpN´1q

independent equations

xQA
1 p ŝOA ´ ŝOBq ˝ QB

ā yj “ 0 , 1 ď a ď N ´ 1 , 1 ď j ď L , (2.11)

where ŝOA and ŝOB are the Baxter operators (2.8) defined in terms of the transfer matrix

eigenvalues τAa puq and τBa puq for the two states. Notice that (2.11) can also be viewed as a

linear system of equations on the coefficients of the polynomials τAa puq´τBa puq. At least one

of these coefficients is nonzero whenever we consider two different Bethe states. We have

N´1 non-trivial polynomials τa of degree L, which makes in total around „ pN´1qˆL non-

trivial coefficients.10 At the same time we have exactly pN´1qˆL equations (2.11). In order

for this homogeneous system to have a non-zero solution we must have the determinant of

the system to be zero for A ‰ B:

det
pa,iq,pb,jq

´
xQA

1 u
iQ

BrN´2bs
ā yj

¯
9 δAB , (2.12)

where we use the above notation to denote the determinants of the L ˆ pN ´ 1q matrix

10In order to make the precise counting one needs to consider the generic twisted boundary conditions.
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defined by blocks. Explicity,
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

´
xQA

1 Q
B rN´2s
1̄

uj´1yi

¯ ´
xQA

1 Q
B rN´4s
1̄

uj´1yi

¯
. . .

´
xQA

1 Q
B r´N`2s
1̄

uj´1yi

¯
´

xQA
1 Q

B rN´2s
2̄

uj´1yi

¯ ´
xQA

1 Q
B rN´4s
2̄

uj´1yi

¯
. . .

´
xQA

1 Q
B r´N`2s
2̄

uj´1yi

¯

...
...

. . .
...´

xQA
1 Q

B rN´2s

N´1
uj´1yi

¯ ´
xQA

1 Q
B rN´4s

N´1
uj´1yi

¯
. . .

´
xQA

1 Q
B r´N`2s

N´1
uj´1yi

¯

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1ďi,jďL

9 δAB ,

(2.13)

which leads to the Sklyanin-like scalar product defined as the r.h.s. of (1.8). Therefore,

we have proved rigorously that this expression satisfies a crucial property for the scalar

product xΨA|ΨBy: it vanishes for any two different Bethe states. This derivation also

reproduces the slp2q result as its particular case N “ 2.

To offer more justification to why the proposed expression (1.8) is the scalar product in

the SoV basis, we will also consider the computation of a physically well defined quantity

that is easily obtainable in our formalism. Namely, we compute the matrix element of the

derivative of one of the conserved quantities In with respect to some parameter p (it could

be the twist angle or the inhomogeneity). Whereas În itself acts diagonally on the Bethe

states, its derivative BÎn{Bp is not diagonalized by the Bethe states. By computing the

expectation value of this operator on a Bethe state we found that the result is a ratio of

two determinants. The one in the denominator again precisely coincides with the scalar

product (1.8) for A “ B.

Note that the condition of orthogonality, which our result does obey, is extremely con-

straining. The spectrum of the spin chain contains infinitely many states and even more

distinct pairs of states, which imposes infinitely many conditions on the state-independent

operator M̂pxq. Given its amazingly simple form (1.10) and the fact that it reduces to the

known norm in the N “ 2 case, there is little doubt in the validity of our result. Neverthe-

less, it would be interesting to develop a rigorous derivation, which would involve explicit

construction of the operator Ĉgood and its spectrum as described in the introduction.

3 Sklyanin measure for slp2q revisited

In this section we pedagogically describe how our method works for the simplest example,

namely the slp2q noncompact rational spin chain. We will consider the case when at each

site of the spin chain we have an infinite-dimensional s “ ´1{2 representation of slp2q. The

Bethe ansatz equations in the most general case of inhomogeneous spin chain with twisted

boundary conditions are

Lź

n“1

uj ´ θn ´ i{2

uj ´ θn ` i{2
“ ´e2iφ

Mź

k“1

uj ´ uk ` i

uj ´ uk ´ i
, j “ 1, . . . ,M , (3.1)

where the θn’s are the fixed inhomogeneities at each site, which we assume to be real,11

and φ is the fixed twist parameter. We assume φ is nonzero and real and then as we see

11this does not reduce the generality of our results as one can always analytically continue the result in

θi’s, treating carefully the integration contours.
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from (3.1) we can always restrict to φ P p0, πq. The spectrum of integrals of motion is

determined in terms of the Bethe roots uj , which one can find from (3.1).

In order to define the eigenvalues of the integrals of motion we introduce the twisted

Baxter polynomial12

Q1puq “ euφ
ź

i

pu ´ uiq , (3.2)

then the eigenvalues of the transfer matrix can be deduced from the Baxter TQ relation

Ô ˝ Q1 ” Q`
θ Q

``
1 ´ τ1 Q1 ` Q´

θ Q
´´
1 “ 0 , (3.3)

with Qθ defined as before in (2.6). The transfer matrix eigenvalue τpuq is a polynomial in

u of the form

τpuq “ 2 cosφ uL `
L´1ÿ

n“0

Inu
n . (3.4)

Notice that its first coefficient is fixed by (3.2) together with the Baxter equation. The

remaining coefficients In correspond to eigenvalues of the nontrivial integrals of motion,

which in general are different for different states.

The Baxter equation (3.3) is equivalent to the initial set of Bethe ansatz equations (3.1)

after imposing polynomiality of τ1puq and also requiring Q1puq to be of the form euφ ˆ

rpolynomials. Under these conditions the Baxter equation (3.3) has a discrete set of solu-

tions which are in one-to-one correspondence with the states of the spin chain.

3.1 Orthogonality relations

In this section we describe yet another way of finding the Bethe roots or equivalently Q1puq.

One notices that the Q-function has many similarities with orthogonal polynomials. For

instance, for the case of spin chain of length L “ 1 one can show that the polynomials

qpuq “ e´φuQ1puq are orthogonal polynomials for the measure e2uφ

1`e2πpu´θ1q . More precisely

xQA
1 QB

1 y ”

ż 8

´8
µpuqQA

1 puqQB
1 puqdu 9 δAB , µpuq ”

1

1 ` e2πpu´θ1q
. (3.5)

First, we see that the integral above is convergent due to the choice 0 ă φ ă π.13 Second,

the orthogonality relation actually defines the polynomials qpuq uniquely for a given degree

of the polynomial. Thus (3.5) is an alternative way of writing the Bethe ansatz equations

for Q1puq.

For general L ą 1 there is more than one solution of the Bethe equations for a given

number of roots, so the strict analogy with the orthogonal polynomials does not go further

in the naive way. To understand how that works, let us first derive (3.5) for L “ 1 from

the Baxter equation, which defines for us a finite difference operator Ô (2.4) (which itself

depends on the Bethe state through τpuq) such that Ô ˝ Q1 “ 0. As we discussed in

12We use the subscript Q1 to emphasize the fact that the Q-system contains in this case two Q-functions.

Indeed the Baxter equation has a second independent solution, Q2, which contrary to Q1 is not a twisted

polynomial but instead has poles.
13The untwisting limit φ “ 0 can be derived in a similar way.
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section 2 there is a second operator ŝO which in general annihilates the dual Q-functions

Qā, but in the case of slp2q there is only one Q1̄ and it coincides with Q1. In other words we

need to show that Ô is self-conjugate under the scalar product (3.5), i.e. for any14 twisted

polynomials F1, F2

xF1 Ô ˝ F2y “ xF2 Ô ˝ F1y . (3.6)

We start from

xF1 Ô ˝ F2y “

ż
du µpuqF1pQ`

θ F
``
2 ` Q´

θ F
´´
2 ´ τF2q . (3.7)

Shifting the integration contour by ´i in the first term (i.e. replacing there u Ñ u ´ i)

and by i in the second term, we find that this expression becomes precisely xF2 Ô ˝ F1y

as we wanted. However, we should justify the possibility to shift the integration contour.

When doing the shift u Ñ u ´ i for the first term in r.h.s. of (3.7), we should be careful

as we are moving the contour through the point u “ θ1 ´ i{2 where the measure µ has a

simple pole. However, we have chosen this pole to be precisely at the location where the

factor Q`
θ , originating from the Baxter equation, has a zero. Thus we can indeed move

the contour. The same argument applies to the second term in (3.7), in which the pole at

u “ θ1 ` i{2 is compensated by Q´
θ . As a result, (3.6) is indeed valid. Now, the proof of

the orthogonality (3.5) is almost immediate:

0 “ 0 ´ 0 “ xQA
1 ÔB ˝ QB

1 y ´ xQB
1 ÔA ˝ QA

1 y “ xQA
1 pÔB ´ ÔAq ˝ QB

1 y (3.8)

“ xQA
1 pτA ´ τBqQB

1 y “ pIA0 ´ IB0 qxQA
1 Q

B
1 y ,

where we added the superscripts A and B to indicate that Ô is different for the two different

states. Finally, we note that for two different states the values of integrals of motion I0

have to be distinct, leading to the conclusion that (3.5) is indeed true.

Orthogonality for general L. Now we can see the difficulty one would have for L ą 1.

The self-conjugation property of Ô would be still valid and all steps in (3.8) would go

through, except for the last one. What we get instead is

xQA
1 pτA ´ τBqQB

1 y “
L´1ÿ

i“0

pIAi ´ IBi qxQA
1 u

iQB
1 y “ 0 , (3.9)

which no longer implies (3.5). However, for L ą 1 we also gain a freedom in how to define

µpuq. Namely, we can use any of the following measures:

µjpuq “
1

1 ` e2πpu´θjq
, j “ 1, . . . , L , (3.10)

and we will denote the corresponding integrals as

xfyj ”

ż 8

´8
µjpuqfpuqdu . (3.11)

14Their twists should be such that the integral is convergent.
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This means that we have a set of L equations like (3.9),

Lÿ

i“1

pIAi´1 ´ IBi´1qxQA
1 ui´1QB

1 yj “ 0 , j “ 1, . . . , L , (3.12)

where x¨yj is defined by (3.11). This homogeneous system of equations is only compatible

if the determinant of the linear system is zero, so we get

det
ˇ̌
xQA

1 ui´1QB
1 yj

ˇ̌
1ďi,jďL

9 δAB . (3.13)

Note that each entry in the matrix (3.13) is defined as a single integral. However, we can

rewrite it in the form that leads precisely to Sklyanin’s scalar product for slp2q,

ż Lź

i“1

dxi Q
A
1 pxiqMpxqQB

1 pxiq 9 δAB , (3.14)

where we also use that we can symmetrize over the integration coordinates xi, ensuring

that the measure factor M is symmetric in its L arguments:

Mpxq “

ś
jăk

pe2πxj ´ e2πxkqpxj ´ xkq

ś
j,k

p1 ` e2πpxj´θkqq
, (3.15)

which is precisely the measure derived in [14, 15]. So, in conclusion, we have re-derived

the orthogonality of the Bethe states |Ψy written in the SoV basis via (3.12). We can now

change the direction of the logic and declare that the orthogonality relation (3.14) is a way

alternative to (3.1) for defining this system from which one can determine Q1puq and thus

find the spectrum. We see that the knowledge of the measure is a powerful and non-trivial

seed containing the knowledge of the spectrum. In addition one can utilize it to compute

some non-trivial matrix elements as we show in the next section.

3.2 Simple form factors

Some form-factors, such as 1-point functions in 2D Sinh-Gordon theory, can be expressed

in a nice way in terms of the Sklyanin’s type of measure [58]. Generalization of this

approach could lead to a non-perturbative expression of some 3-point functions in much

more complicated theories such as 4D N “ 4 SYM. Here we consider a prototype of such

observable — a diagonal matrix element of the variation of an integral of motion În w.r.t. a

parameter p. In N “ 4 SYM for instance one could consider the variation of the dilatation

operator with respect to the coupling constant. The corresponding expectation values are

associated to diagonal OPE coefficients involving the Lagrangian L.15 In some limits of

this theory studied together with A. Sever we indeed found a formula reminiscent of SoV

for this observable [50, 51]. Here we generalise the method introduced there.

15More generally, in any CFT one can obtain in this way diagonal OPE coefficients COOM, involving a

generic operator O and a marginal operator M [49].
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For simplicity in the present setting we consider variations with respect to the twist,

p “ φ. To study the matrix element one can use the standard logic of the perturbation

theory,16

0 “ BpxΨ|pÎn ´ Inq|Ψy “ xΨ|pBpÎn ´ BpInq|Ψy (3.16)

meaning that the expectation value of the non-diagonal operator BpÎn is given by the

derivative of the eigenvalue In w.r.t. the parameter,

xΨ| BÎn
Bp |Ψy

xΨ|Ψy
“

BIn
Bp

. (3.17)

The r.h.s. is already much easier to compute — one could find a solution of the Bethe

ansatz equations at two close values of the parameter p and then find the difference of the

T-function coefficient. However, if we think about the l.h.s. of (3.17) as a matrix element we

should be able to write it in the SoV basis, which should look similar to the expression for

the norm (3.14) with possible extra insertions, meaning that we should be able to express

the result in terms of Q1 computed at one given value of p.

To achieve this we can use some tricks from the previous section. Namely, consider

0 “ xQ1 pÔ ` δÔq ˝ pQ1 ` δQ1qyi “ xQ1 Ô ˝ δQ1yi ` xQ1δÔ ˝ Q1yi , (3.18)

where δ stands for the variation w.r.t. the parameter p. Note that the first term vanishes

since we can act with Ô to the left, as a result we get

xQ1 pBpÔq ˝ Q1yi “ 0 . (3.19)

For definiteness let us take p “ φ. In this case BpÔ “ Bpτpuq “
řL

n“0 u
nBpIn. The main

difference with the previous section is that the leading term in τpuq does not cancel, since

IL “ 2 cosφ. This means that the system of equations (3.19) is a non-homogeneous system

of the form
L´1ÿ

n“0

xQ2
1 u

nyi BφIn “ 2 sinφ xQ2
1 u

Lyi , i “ 1, . . . , L , (3.20)

We see that the matrix in this linear system is exactly the same as in (3.12) with A “ B.

This means that by solving the linear equation (3.20) by Cramer’s rule, we obtain an

expression of the form factor in terms of a ratio of determinants, where in the denominator

we have the same determinant (3.13) defining the “square norm” of the state, and in the

numerator the determinant of the same matrix, but with one column replaced:

BφIk “
1

2 sinφ

det
i,j“1,...,L

m
pkq
ij

det
i,j“1,...,L

mij
, k “ 0, . . . , L ´ 1 , (3.21)

where

mij ” xQ2
1 u

j´1yi ; m
pkq
ij “ mij , for j ‰ k ` 1 and m

pkq
i,k`1 “ xQ2

1 u
Lyi . (3.22)

16For real inhomogeneities and twists the coefficients În in the transfer matrix should be linear combina-

tions of mutially commuting self-conjugate operators.
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Evaluating these determinants explicitly we get the SoV-type formula

xΨ| BÎl
Bφ |Ψy

xΨ|Ψy
“

p´1ql

2 sinφ

ş
dLx ΨpxqMpxqPL´l`1pxqΨpxqş

dLx ΨpxqMpxqΨpxq
, (3.23)

where the wave function in separated variables is given by the factorized product of the

Q-function (1.1), and Pn is a homogeneous polynomial of degree n, obtained as a sym-

metrized product of n distinct variables from x1, . . . , xL, with unit normalization for each

monomial.17

Note that in our case the insertion resulting from BφÎn is just a function of x, however,

it is clear that already for Bθj În we would get also some shift operators acting on one of

the Ψpxq in the numerator of (3.23). This is in fact a generic feature of the SoV type of

integrals as we will see in the next section.

4 SoV scalar product in slp3q spin chains

In this section we exemplify our approach for the slp3q case. Our starting point is a set of

nested Bethe ansatz equations [56, 57],

Lź

n“1

uj ´ θn ´ i{2

uj ´ θn ` i{2
“ eipφ1´φ2q

Nuź

k‰j

uj ´ uk ` i

uj ´ uk ´ i

Nvź

l“1

uj ´ vl ´ i{2

uj ´ vl ` i{2
, (4.1)

1 “ eipφ2´φ3q
Nvź

k‰j

vj ´ vk ` i

vj ´ vk ´ i

Nuź

l“1

vj ´ ul ´ i{2

vj ´ ul ` i{2
, (4.2)

where uj are the momentum-carrying roots and vj are the auxiliary Bethe roots. We

consider the quasi-periodic boundary conditions parametrized by three twist angles φi,

with
ř3

i“1 φi “ 0.

As we already mentioned in the introduction the nested Bethe ansatz is ambiguous

and in the current case has an alternative “dual” form (see e.g. [32, 59, 60])

Lź

n“1

uj ´ θn ´ i{2

uj ´ θn ` i{2
“ eipφ1´φ3q

Nuź

k‰j

uj ´ uk ` i

uj ´ uk ´ i

Nwź

l“1

uj ´ wl ´ i{2

uj ´ wl ` i{2
, (4.3)

1 “ eipφ3´φ2q
Nwź

k‰j

wj ´ wk ` i

wj ´ wk ´ i

Nuź

l“1

wj ´ ul ´ i{2

wj ´ ul ` i{2
, (4.4)

where Nw “ Nu ´ Nv.

As in the previous section we introduce the Baxter (twisted) polynomials

Q1 “ eφ1u
Nuź

j“1

pu´ujq , Q12 “ epφ1`φ2qu
Nvź

j“1

pu´vjq , Q13 “ epφ1`φ3qu
Nwź

j“1

pu´wjq . (4.5)

The “dual” roots wk are not independent and can be derived from given uj and vk via the

QQ-relation

Q1 9 Q`
12Q

´
13 ´ Q´

12Q
`
13 , (4.6)

which is valid up to a trivial proportionality factor.

17E.g., for L “ 3, P1pxq “ x1 ` x2 ` x3, P2pxq “ x1x2 ` x1x3 ` x2x3, P3pxq “ x1x2x3.
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Like in the previous section, we need to show that the Q-functions satisfy a finite

difference equation with some polynomial coefficients as we outlined in (2.4) and (2.8). Let

us define two polynomials τ1 and τ2 [29, 61]

τ1 “ Q`
θ

Q``
1

Q1
` Q´

θ

Q´´
1

Q1

Q`
12

Q´
12

` Q´
θ

Q
r´3s
12

Q´
12

, (4.7)

τ2 “ Q`
θ

Q
r`3s
12

Q`
12

` Q`
θ

Q``
1

Q1

Q´
12

Q`
12

` Q´
θ

Q´´
1

Q1
.

One can check that these combinations of the Q-functions are indeed polynomials by ob-

serving that all poles must cancel due to the Bethe equations (4.1) and (4.2). Also, it is

easy to check from (4.6) that in (4.7) one can replace Q12 by Q13 without changing the

l.h.s. Finally, one can see that τ2 and τ1 are complex conjugate to each other.

Having τ1 and τ2 defined, we can easily verify that

Ô ˝ Q1 ” Q``
θ Q

r`3s
1 ´ τ`

1 Q`
1 ` τ´

2 Q´
1 ´ Q´´

θ Q
r´3s
1 “ 0 , (4.8)

ŝO ˝ Qā ” Q´
θ Q

r´3s
ā ´ τ1Q

´
ā ` τ2Q

`
ā ´ Q`

θ Q
r`3s
ā “ 0 , (4.9)

where the second equation is satisfied by both Q1̄ ” Q12 and Q2̄ ” Q13. To check (4.8)

and (4.9) one should simply plug the definition (4.7) into the above equations and check

that all terms cancel.

As was outlined in the section 2, we need to demonstrate that these two finite difference

operators (4.8) and (4.9) are conjugate w.r.t. some inner product. Since (4.8) and (4.9)

do have the correct form as in (2.4) and (2.8), this property is almost guaranteed if we

are allowed to move the integration contour. In the next section we verify that all extra

contributions arising from the shifts of the contours do cancel.

4.1 Poles cancellation

Like in the previous section we define the bracket

xfyj ”

ż 8

´8
µjpuqfpuqdu , µjpuq “

1

1 ` e2πpu´θjq
. (4.10)

What we are going to show is that

xQ1
ŝO ˝ fyj “ 0 , (4.11)

where f is a twisted polynomial with the same asymptotic as any of Qā, it other words we

do not require the roots of f to satisfy the Bethe ansatz equations, otherwise the state-

ment (4.11) would be trivial. First let us comment on the convergence of this integral. As-

suming f “ eαuˆrpolynomials, the integrand in (4.11) goes like epφ1`α´2πquˆrpolynomials

at u Ñ `8 and epφ1`αqu ˆ rpolynomials at u Ñ ´8. From this we deduce the condition

of convergence 0 ă φ1 ` α ă 2π. Since this inequality should hold for α “ φ1 ` φ2 or

α “ φ1 ` φ3, which are the twists in Q1̄ and Q2̄, we get

0 ă φ1 ´ φ2 ă 2π , 0 ă φ1 ´ φ3 ă 2π . (4.12)
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Note, that the condition (4.12) does not restrict the generality of our consideration as

one can always choose φa’s so that (4.12) is satisfied. The only physically distinguished

combinations of the φa’s are the phases eipφ1´φ2q and eipφ2´φ3q, appearing in the Bethe

ansatz equations (4.1) (where we still assume that φ1 ` φ2 ` φ3 “ 0).

To prove (4.11), we show that we can transfer ŝO to become Ô acting on Q1, which

gives zero,

xQ1
ŝO ˝ fyj “

ż `8

´8
µjpuqQ1puq

”
Q´

θ f
r´3s ´ τ1f

´ ` τ2f
` ´ Q`

θ f
r`3s

ı
du (4.13)

“

ż `8`i0

´8`i0

µj

ˆ
u `

i

2

˙ «
Q``

θ Q
r`3s
1 ´ τ`

1 Q`
1 ` τ´

2 Q´
1 ´ Q´´

θ Q
r´3s
1looooooooooooooooooooooooooomooooooooooooooooooooooooooon

Ô˝Q1“0

ff
fpuq du

`residues from poles ,

where we shifted the integration contour in each term so that at the end f appears with no

shift. This results in shifts in Q1 and we see that we get precisely the Baxter equation for

Q1 in the square brackets and also a shift of the argument in the i-periodic measure factor

µj

`
u ` i

2

˘
. As a result, the only potentially nonzero contribution comes from residues at

poles of the measure µj that we cross when shifting the contour. The measure µjpuq has

poles at u “ θj ` i
2

` in, n P Z with the same residue ´ 1
2π
. We are going to compute these

residues.

Residues from the first term. For the first term µjpuqQ1puqQθ

`
u ´ i

2

˘
f

`
u ´ 3i

2

˘
we

will need to shift the contour up by 3i
2

` 0i, so that the final integration in the second line

of (4.13) is slightly above the real axis. While shifting the contour we have two potential

locations of residues which can contribute to the result — these are at u “ θj ` i
2
and at

u “ θj ` 3i
2
. However, the first one does not contribute since Qθpθjq “ 0. So we are left

with the contribution

r1 “ ´iQ1

ˆ
θj `

3i

2

˙
Qθ

ˆ
θj `

i

2

˙
fpθjq . (4.14)

Residues from the second term. For the second term ´µjpuqQ1puqτ1puqf
`
u ´ i

2

˘
we

only have one contribution at u “ θj ` i
2
, which gives

r2 “ `iQ1

ˆ
θj `

i

2

˙
τ1

ˆ
θj `

i

2

˙
fpθjq . (4.15)

Similarly, one can see there are no extra contributions from the remaining two terms and

we get the following result

xQ1
ŝO ˝ fyj “ r1 ` r2 “ ifpθjq

„
Q1

ˆ
θj `

i

2

˙
τ1

ˆ
θj `

i

2

˙
´ Q1

ˆ
θj `

3i

2

˙
Qθ

ˆ
θj `

i

2

˙
.

(4.16)

Finally, by looking at the definition (4.7) of the transfer matrix eigenvalue we see that the

expression in the square brackets is precisely zero. This leads to the result (4.11).
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We view this cancellation of residues as a significant indication of the validity of our

approach. We see that even though those extra poles can spoil the generalisation from slp2q

to slp3q, luckily there exist these extra relations between Q-functions and transfer matrix

eigenvalues, enabling the formalism to work.

4.2 Orthogonality relations

As we have already explained in section 2, the relation of the type (4.11) is the starting point

for the derivation of the scalar product. Here we demonstrate that the general argument

for the scalar product and the orthogonality relation goes through in the slp3q case.

First, consider the relation
A
QA

1 p ŝOA ´ ŝOBq ˝ QB
ā

E
i

“ 0 , a “ 1, 2 , i “ 1, . . . , L , (4.17)

where we again use the superscript A and B to indicate that those Q-functions and Baxter

operators correspond to two different Bethe states |ΨAy and |ΨBy. To prove the relation

above we use that ŝOBQB
ā “ 0 and the property (4.11) with f “ QB

ā .

Next, we use again that the first and the last terms in ŝO do not depend on the state

by definition (4.9) and we get

´
ŝOA ´ ŝOB

¯
˝QB

ā “
Lÿ

j“1

“
´pIA1,j´1 ´ IB1,j´1quj´1D´1 ˝ QB

ā ` pIA2,j´1 ´ IB2,j´1quj´1D ˝ QB
ā

‰
,

(4.18)

with the shift operator defined as in (1.11). Plugging (4.18) into the relation (4.17) we get

a linear system of equations:

p2,Lqÿ

pb,jq“p1,1q

A
QA

1 uj´1 D´3`2b ˝ QB
ā

E
i

ˆ p´1qb
`
IAb,j´1 ´ IBb,j´1

˘
“ 0 , (4.19)

where we introduce the multi-index pb, jq, which takes 2L different values. This equation

tell that p´1qb
´
IAb,j´1 ´ IBb,j´1

¯
should be a null vector of the 2L ˆ 2L matrix. In other

words the determinant of this matrix should be zero for |ΨAy ‰ |ΨBy, as for two different

states at least some conserved charges should be different, so we get

det
pa,iq,pb,jq

A
QA

1 uj´1
D

´3`2b ˝ QB
ā

E
i

“ 0 . (4.20)

This is our orthogonality relation (2.13). We emphasise again that the existence of a

simple orthogonality relation is highly nontrivial as there are infinitely many states in

this model. Such an orthogonality relation should have an explanation at the level of the

operators acting on the spin chain states such as B̂goodpuq and Ĉgoodpuq, discussed in the

introduction.

5 Extension to any slpN q

In this section we extend the observations made in the previous section to the case of slpNq

and prove the general formula for the scalar product (2.13).
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There are two main relations to prove. First, we have to show that the Baxter equations

for Q1 and Qā are indeed of the form (2.4), (2.8). Second, we need to demonstrate the

cancellation of poles in the identity (4.11) for the case of any slpNq. After that we can

can use p4.11q to derive the orthogonality relation between two different states in the SoV

basis and read off the SoV measure from that as was done in the previous section.

5.1 Baxter operators for slpNq spin chain

Here we use the general formalism which allows one to build the eigenvalues of the transfer

matrices in finite-dimensional totally antisymmetric representations τk.
18 corresponding to

Young diagrams with k boxes developed in [29] (for a review see [61]). In this method they

are obtained from the generating functional

W “
Nÿ

k“0

p´1qkτk D
2k , (5.1)

which can be written in analogy with the generating function for characters of antisym-

metric slpNq representations as

W “ Q´
θ p1 ´ R1D

2qp1 ´ R2D
2q . . . p1 ´ RND

2q , (5.2)

where each of the factors contains the shift operator D and a rational function Ri, which

is a combination of the twisted Baxter polynomials,

R1 “
Q`

θ

Q´
θ

Q``
1

Q1
, Ri “

Q
r´is
Ji´1

Q
r2´is
Ji´1

Q
r3´is
Ji

Q
r1´is
Ji

, i “ 2, . . . , N , (5.3)

where we define the multi-index Ji ” 12 . . . i, such that for example Q1̄ “ QJN´1
. We also

define

QJ0 ”
1

Qθ

, QJN ” 1 . (5.4)

We assume that the twisted Baxter polynomials have the following form

Qi1...il “ eu
řl

p“1
φip ˆ rpolynomials , (5.5)

with
řN

a“1 φa “ 0.

We also have to show that τk’s are actually polynomials. This is not totally trivial as

Ri are rational functions with various poles. We need to show that these poles cancel as

a consequence of the Bethe ansatz equations. Let’s look at the poles related to the Bethe

roots at nesting level k, i.e. coming from zeros of QJk . There are two R’s which contain

QJk in the denominator: Rk and Rk`1. Let us focus on the two terms containing these R’s,

. . . p1 ´ RkD
2qp1 ´ Rk`1D

2q ¨ ¨ ¨ “ . . .
`
1 ´ pRk ` Rk`1qD2 ` RkR

``
k`1D

4
˘
. . . (5.6)

“ . . .

¨
˝1 ´

»
– Q

r´ks
Jk´1

Q
r2´ks
Jk´1

Q
r3´ks
Jk

Q
r1´ks
Jk

`
Q

r´k´1s
Jk

Q
r1´ks
Jk

Q
r2´ks
Jk`1

Q
r´ks
Jk`1

fi
flD

2 `
Q

r´ks
Jk´1

Q
r2´ks
Jk´1

Q
r4´ks
Jk`1

Q
r2´ks
Jk`1

D
4

˛
‚. . . (5.7)

18The actual eigenvalues Tk of the transfer matrices are related to τk in the following way: Tk “śk

l“2
Q

r2l´3s
θ τk and T1 “ τ1, T0 “ 1.
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We see that the poles due to zeros of QJk in the square bracket cancel if we impose at the

roots of QJkpuq “ 0 the following condition

Q´
Jk´1

Q`
Jk´1

Q``
Jk

Q´´
Jk

Q´
Jk`1

Q`
Jk`1

“ ´1 , (5.8)

which is exactly the Bethe ansatz equation at the nesting level k. This argument applies

for all k “ 1, . . . , N ´ 1. In addition we should check that the poles at u “ θj ` i
2
in R1

cancel, however, this pole is nicely cancelled by the Q´
θ prefactor in W. Thus indeed all

τk’s are polynomials due to the Bethe equations, just like in the slp3q case.

Now let us show that

ŝO “ WD
´N , (5.9)

indeed we see that it annihilates Q1̄,

WD´NQ1̄ “ WD´NQJN´1
“ . . . p1 ´ RND2qQ

r´Ns
JN´1

(5.10)

“ . . .

¨
˝Q

r´Ns
JN´1

´
Q

r´Ns
JN´1

Q
r2´Ns
JN´1

Q
r2´Ns
JN´1

˛
‚“ 0 .

Furthermore, it is obvious that τ0 “ Q´
θ and

τN “ Q´
θ R1R

``
2 . . . R

r2Ns
N “ Q`

θ . (5.11)

So indeed the Baxter equation for Q1̄ is of the general form given in (2.8). We should

also show that ŝO annihilates any Qā, a “ 1, . . . , N ´ 1. The remaining Qā’s are defined

through the bosonic duality transformation [59–61]. Like in the slp3q case, one can show

that the polynomials τk’s are invariant under this transformation [61]. For example, the

duality transformation which defines Q2̄ “ Q1,2,...,N´2,N is

QJN´2
9 Q`

1̄
Q´

2̄
´ Q`

1̄
Q´

2̄
, (5.12)

which leads to the following identity

p1 ´ RN´1D
2qp1 ´ RND2q “ p1 ´ R̃N´1D

2qp1 ´ R̃ND2q , (5.13)

where R̃i are the same as Ri with QJN´1
“ Q1̄ replaced by Q2̄. After that one can repeat

the same argument as in (5.10) to show that WD´NQ2̄ “ 0. To obtain all Qā one should

apply the bosonic duality to other factors in W as well, as explained in detail in [61].

In a similar way we can construct the Baxter equation for Q1. For that consider

W
: ” p1 ´ R´´

N D
´2qp1 ´ R´´

N´1D
´2q . . . p1 ´ R´´

1 D
´2qQ´

θ , (5.14)

which is related to W by a formal conjugation, which flips the order of the operators and

replaces D by its inverse i.e. these two generating functionals are related according to the
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rules D: ” D´1 and fpuq: ” fpuq and pABq: ” B:A:.19 Applying this operation to the

representation of W (5.1) we get

W
: “

Nÿ

k“0

p´1qkτ
r´2ks
k D

´2k . (5.15)

We now can see that Ô “ W:. Indeed

W
:Q1 “ . . . p1 ´ R´´

1 D
´2qQ´

θ Q1 “ . . .

˜
Q´

θ Q1 ´
Q´

θ

Q
r´3s
θ

Q1

Q´´
1

Q
r´3s
θ Q´´

1

¸
“ 0 . (5.16)

Also we see that Ô defined in this way indeed agrees with (2.4) in section 2 due to (5.15).

5.2 Poles cancellation

We have to demonstrate that the relation (4.11) still holds for general slpNq. First, we

need to ensure the convergence of the integral (4.11). This time we assume that fpuq can

be of the form e´uφc ˆ rpolynomials for c “ 2, . . . , N . In analogy with the analysis of the

convergence for the slp3q case we have to require 0 ă φ1 ´ φc ă 2π for c “ 2, . . . , N , which

should be always possible to achieve without reducing the generality.20

Plugging the explicit form of ŝO from (5.9) into (4.11) we get

xQ1
ŝO ˝ fyj “

ż 8

´8
µjpuqQ1Q

´
θ p1 ´ R1D

2q p1 ´ R2D
2q . . . p1 ´ RND

2qD´Nflooooooooooooooooooooomooooooooooooooooooooon
”F puq

du . (5.17)

Writing R1 in an explicit way, and using the notation F puq for the product of all factors

starting from the second acting on fpuq, we find

xQ1
ŝO ˝ fyj “

ż 8

´8
µjpuq

„
Q1puqQθ

ˆ
u ´

i

2

˙
F puq ´ Q1pu ` iqQθ

ˆ
u `

i

2

˙
F pu ` iq


du ,

(5.18)

Next we see that we can shift the integration contour for the second term down by i to

cancel precisely the first term. Shifting the contour we have to be careful at u “ θj ´ i
2

where µjpuq has a simple pole. However, the factor Qθpu` i
2
q vanishes exactly at u “ θj ´ i

2

ensuring that there are no extra contributions. There are no other poles to worry about

because Q1puqF puq is pole-free due to the Bethe ansatz equations, which can be seen via

the same argument as for W itself before. This ends the proof of (4.11) for general slpNq.

5.3 Orthogonality relations

Now having (4.11) proven in the general case, we can simply repeat the same steps as in

section 4. Namely, instead of (4.17) for two different Bethe states |ΨAy and |ΨBy we have

xQA
1 p ŝOA ´ ŝOBq ˝ QB

ā yi “ 0 , a “ 1, . . . , N ´ 1 , i “ 1, . . . , L . (5.19)

19This transformation is consistent with the main algebraic identity for the shifts operators Df “ f`D,

which transforms under : to fD´1 “ D´1f` which is equivalent to the initial one.
20With an exception for the boundary cases e.g. φc “ 0, which can be obtained by taking the corresponding

limits.
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Next we use again that the first and the last terms in ŝO do not depend on the state by

definition (4.9) and we get

´
ŝOA ´ ŝOB

¯
˝ QB

ā “
Lÿ

j“1

N´1ÿ

b“1

p´1qbpIAb,j´1 ´ IBb,j´1quj´1 Dr2b´Ns ˝ QB
ā . (5.20)

So it is clear that the generalization of (4.20) reads

xΨA|ΨBy ” det
pa,iq,pb,jq

mpa,iq,pb,jq “ 0 , mpa,iq,pb,jq ”
A
QA

1 uj´1 D2b´N ˝ QB
ā

E
i
. (5.21)

for the case when the two states are different. We claim that this should give the or-

thogonality relation of two Bethe states written in SoV representation. Above we again

use pN ´ 1q ˆ L dimensional multi-indexes pa, iq and pb, jq to indicate the determinant of

the rectangular matrix of the dimension pN ´ 1q ˆ L. Another form of this orthogonality

relation is given in the introduction in (1.8), (1.10).

5.4 Form factors

In this section we generalise the considerations of section 3.2, where we introduced a par-

ticular type of form factors of the operators which can be obtained as a derivative of the

integrals of motion w.r.t. some parameter p, which can be a twist angle φa, a “ 1, . . . , N´1

or one of inhomogeneities θi, i “ 1, . . . , L. In section 3.2, we considered p “ φa. In general

for both p “ φa and p “ θi we create quite a broad class of operators acting on the spin

chain states, in total one can estimate that p “ θi creates „ pN ´1qˆL2 operators Bθi Îa,j´1

and for p “ φa we get „ pN ´ 1q2 ˆL operators Bφb
Îa,j´1. It is not immediately clear if all

of them are independent and if they form a complete enough algebra of operators, so that

the general spin chain operator can be obtained as a multiple action of those. We postpone

these interesting questions to future studies.

In analogy with (3.19) we have

xQ1 Bp ŝO ˝ Qāyi “ 0 , a “ 1, . . . , N ´ 1 , i “ 1, . . . , L . (5.22)

Note that the right way to generalize (3.19) is to use Bp ŝO, rather than BpÔ, for exactly the

same reason as in the previous section since (4.11) discriminates between the two. We have

Bp ŝO “
ÿ

pb,jq

BpIb,j´1u
j´1

D
2b´N `

“
BpQ

´
θ D

´N ` p´1qNBpQ
`
θ D

N
‰

`
ÿ

b

BpIb,Lu
L
D

2b´N

loooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooon
”´Ŷp

,

(5.23)

where we denoted by Ŷp the inhomogeneous part of the linear system for BpIn,j´1. Plugging

into (5.19) we get

ÿ

pb,jq

mpa,iq,pb,jqBpIb,j´1 “ ypa,iq , ypa,iq ” xQ1 Ŷp ˝ Qā , yi , (5.24)

where mpa,iq,pb,jq is the same matrix as defined in the previous section in (5.21) with two

states taken to be the same.
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Solving this system with Cramer’s method we obtain the following structure

BpIc,k´1 “
detpa,iq,pb,jq m̃pa,iq,pb,jq

detpa,iq,pb,jq mpa,iq,pb,jq
, (5.25)

where m̃pa,iq,pb,jq is the matrix mpa,iq,pb,jq with the column pc, kq replaced with ypa,iq defined

in (5.24). Notice that the denominator has the meaning of the norm square ||Ψ||2 when

comparing with (5.21). Furthermore, both numerator and denominator can be written in

the SoV-like form

BpIc,k´1 “

ş
dx Ψ:pxq

xĂMpxq ˝ Ψpxq
ş
dx Ψ:pxq xMpxq ˝ Ψpxq

, (5.26)

where we denote Ψpxq “
ś

pa,iq

Qāpxa,iq and Ψ:pxq “
ś

pa,iq

Q1pxa,iq .

6 Conclusions

In this paper we have proposed the way to compute scalar products and form factors in

SoV basis. Our method bypasses successfully the explicit construction of the separated

variables and is valid for higher rank slpNq spin chains. Nevertheless, we hope that our

result gives very strong hints of how to proceed with the first principle SoV construction

too. We believe our construction should open the way to various new applications of the

SoV methods beyond rank one systems. Let us discuss several of the promising future

directions.

One of the important hints our result gives is that there should exist a “dual” SoV basis,

potentially associated with some kind of Ĉgood operator, in analogy with the sup2q case. In

this dual basis the wave function should factorise into the product of dual Q-functions, or

Baxter polynomials at the last nesting level Qā. This observation of our paper could also

resolve the problems outlined at the classical level in [18]. Another question is to build an

explicit map from the natural spin chain variables to the separated variables like it was

done for slp2q in [37]. Having some explicit matrix elements, like those computed in this

paper, could help to find an explicit integral transformation between these two bases.

We derived an expression for the SoV type of scalar product of two Bethe states. It

would be interesting to see if this expression remains the same when one of the states

is taken off-shell (even though this may not be always well defined). A more well-posed

problem is to relate our result with the Gaudin norm. We expect that they coincide up to

a simple prefactor, and we expect the proof to go the same way as in appendix of [17] for

the case of sup2q. In regards to our results for the form-factors, it would be interesting to

see if they could be generalised to the case with two different Bethe states.

As a natural extension, it would be interesting to generalize our results to other types

of spin chains based on Bn, Cn, Dn Lie algebras, and especially to the supersymmetric case

(particularly relevant for AdS/CFT applications), and also to various deformations, includ-

ing trigonometric or even elliptic models, Gaudin models and boundary problems. It would

be interesting to explore the implications of this construction for various classical/quantum

and spectral dualities between integrable models [62–65].
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While we have considered spin chains in a simple infinite-dimensional highest-weight

representation, we expect the results should generalize to other representations since we

only use the Baxter equations which are quite universal. We have already explored several

examples [51] where the same approach works for more involved principal series represen-

tations appearing in integrable fishnet CFTs, where it is important to also add a spacetime

twist serving as a regulator [66]. One of the methods one could try to use here is the

fusion [55], which should allow one to directly generalise any construction from the funda-

mental to any representation obtained as a tensor product of fundamentals.

Our results should also play a role in developing the SoV solution of the integrable

fishnet CFT [48] and of the fishchain model that serves as its dual [54] and is reminiscent

of Toda chains. The advantage of the fishchain model is that we can also analyse the SoV

construction in the simplified settings of the classical regime.

In this paper we also considered a particular type of form factors of the operators

which can be obtained as a variation of the integrals of motions w.r.t. some parameters.

These form factors are analogous to the 3-point correlators of the type xOOLy in the

fishnet theory or N “ 4 super Yang-Mills, where L is a marginal operator such as the

Lagrangian insertion21 and O is a non-trivial single trace operator. SoV-type expressions

for such structure constants, and even more general ones, have already been found in

different parameter limits of N “ 4 SYM in a growing number of cases [50, 51, 68–70],22

giving strong indications of the viability of a SoV strategy for correlators. Generalization of

our construction should give a closed totally non-perturbative expression for such 3-point

correlator in terms of Q-functions, which are known from the Quantum Spectral Curve

method developed in [72, 73], see [34, 35] for reviews. The simpler fishnet model should

serve as an ideal playground to work out the details of the construction before uplifting it to

the parent N “ 4 SYM theory. For the full N “ 4 SYM our results already suggest what

structures to anticipate, for example we can expect to have the Qi and Qi Q-functions

coupled in the scalar product.
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A Explicit result for the slp3q scalar product at length 1

For the simplest higher rank example, namely the slp3q inhomogenous spin chain with 1

site and twisted boundary conditions, our scalar product (1.8) can be written in a compact

determinant form

xΨA|ΨBy 9

∣

∣

∣

∣

∣

xQA
1 Q

B`
12 y xQA

1 Q
B´
12 y

xQA
1 Q

B`
13 y xQA

1 Q
B´
13 y

∣

∣

∣

∣

∣

, (A.1)

where

xfy “

`8ż

´8

dx
1

1 ` e2πpx´θ1q
fpxq . (A.2)
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