
A new Direct Connected Component Labeling
and Analysis Algorithm for GPUs

Arthur Hennequin1,2, Lionel Lacassagne1

LIP6, Sorbonne University, CNRS, France 1

LHCb experiment, CERN, Switzerland 2

GTC 2019 March 21st

1 / 33

What are Connected Component Labeling and Analysis ?

Connected Components Labeling (CCL) consists in assigning a unique number
(label) to each connected component of a binary image to cluster pixels

Connected Components Analysis (CCA) consists in computing some features
associated to each connected component like the bounding box [xmin,xmax] x
[ymin,ymax], the sum of pixels S , the sums of x and y coordinates Sx , Sy

gray level image binary level image
(segmentation by
(motion detection)

connected component
labeling

1 2

connected component
analysis

• seems easy for a human being who has a global view of the image

• ill-posed problem: the computer has only a local view around a pixel
(neighborhood)

• important in computer vision for pattern recognition, motion detection ...

2 / 33

Two classes of CCL algorithms

• multi-pass iterative algorithms

I compute the local positive min over a 3× 3 neighborhood
I until stabilization : the number of iterations depends on the data
I not predictable, nor suited for embedded systems

• two-pass direct algorithms

I first pass = temporary label creation and equivalence building
I need an equivalence table to memorize the connectivity between labels
I then compute transitive closure of the tree associated to the equivalence table
I second pass = image relabeling (apply table T to the image)

• what are the existing algorithms on CPU and GPU ?

I on CPU, scalar algorithms are all direct and can be parallelized
I on SIMD CPU, until 2019, all SIMD algorithms are iterative, except 1
I on GPU, until 2018, all algorithms are iterative, except 3

• Why so few direct algorithms on GPU and SIMD ?
⇒ because extremely complex to design (not suited for SIMD nor GPU)

3 / 33

Direct algorithms are based on Union-Find structure

Algorithm 1: Rosenfeld labeling algorithm
for i = 0 : h − 1 do

for j = 0 : w − 1 do
if I [i][j] 6= 0 then

e1 ← E [i − 1][j]
e2 ← E [i][j − 1]
if (e1 = e2 = 0) then

ne ← ne + 1
ex ← ne

else
r1 ← Find(e1,T)
r2 ← Find(e2,T)

ex ← min+(r1, r2)
if (r1 6= 0 and r1 6= ex) then T [r1]← ex
if (r2 6= 0 and r2 6= ex) then T [r2]← ex

else
ex ← 0

E [i][j]← ex

Algorithm 2: Find(e,T)

while T [e] 6= e do
e ← T [e]

return e // the root of the tree

Algorithm 3: Union(e1,e2,T)
r1 ← Find(e1, T)
r2 ← Find(e2, T)
if (r1 < r2) then

T [r2]← r1

else
T [r1]← r2

Algorithm 4: Transitive Closure
for i = 0 : ne do

T [e]← T [T [e]]

Parallel algorithms have to do:

• sparse addressing ⇒ scatter/gather SIMD instructions (AVX512/SVE)

• concurrent min computation ⇒ recursive atomic min (CUDA)

4 / 33

Classic direct algorithm: Rosenfeld

Rosenfeld algorithm is the first 2-pass algorithm with an equivalence table
• when two labels belong to the same component, an equivalence is created and

stored into the equivalence table T

• for example, there is an equivalence between 2 and 3 (stair pattern) and between 4
and 2 (concavity pattern)

• stair and concavity are the only two two patterns generating equivalence

• here, background in gray and foreground in white, 4-connectivity algorithm

e1
e2 ex

p1
p2 px

predecessor
pixels

image of pixels image of labels
current pixel

equivalence table

0 1 2 3 4
0 2 2

e
T[e] 21

1
0

0

0

1 1 0 0 11
0 0

0

1
1
1

01
1 1

1
1
1

1
1
1

1
1
1

1
1
1

41

1
0

0

0

1 1 0 0 22
1 0 0 3 3 2

0 22 2 2
1 0 4 24

2

22 2
21

1
0

0

0

1 1 0 0 22
1 0 0 2 2 2

0 22 2 2
1 0 2 22

2

22 2

2
3

4
1

predecessor
labels

current label

equivalence trees

image of labels after relabeling

binary image of pixels

image of labels

2
1
ex

21
1 1 ex

stair concavity
patterns generator

of equivalence

5 / 33

Back to iterative Labeling algorithms

The number of iterations depends on data structure:

2 3 4 5
6 7 8 10
12 13 14 15

16
11

9

17 18 19 20
21 22 23 24 25

2 3 4
4

7 8 9 10
11
6

3

12 13 14 15
16 17 18 19

32 2

6

1 1 1 1 1
1 1 1 1
1
1
1

1 1 1 1
1 1 1
1
1

1 1 1
1 1
1

1 1
1

1
2 5

20

4
7 8 9

3

12 13 14
17 18 19

2

11
6

1611
6

7 8
3

12 13
17 18

2
1
11
6

1611
6

7
12
17

2

6

1
1

1
11
6

1611
6

1 1 1 1 1
1 1 1 1
1
1
1

1
1

1

1

1 1 1
1
1

1
7
2

6

1 1 1 1 1
1 1 1 1
1
1
1

1
1

1

1

1 1 1
1
1

1
21
1

1 1 1 1 1
1 1 1 1
1
1
1

1
1

1

1

1 1 1
1
1

1
1

1
1

1 1 1 1
11 1 1 1

1
1
1

7
12

21
1

1

11
6

61
1

1

1

9 iterations for a 5×5 square

0 1 2 3 4

7910
11
12

6
5

8

0 1 2 3 4

9

6
5

7
810

13
14

1112

2 3 4
3
4

4

5

0 1 2 3 4
1
2

4
3 5

5
5

6
6

6

7
7
8 5

0 1 2 3 4
1
2

4
3

5

6

6

7
7
8 13 14 15 16

15 16

but 16 iterations for a 5×5 zig-zag or a spirale

the number of iterations is equal to the longest path
aka the max geodesic distance

... and the max geodesic distance for a n × n image is ' n2/2
6 / 33

Parallel State-of-the-art

• Parallel Light Speed Labeling[1](L. Cabaret, L. Lacassagne, D. Etiemble) (2018)

I parallel algorithm for CPU
I based on RLE (Run Length Encoding) to speed up processing and save

memory accesses
I current fastest CCA algorithm on CPU

• Distanceless Label Propagation[2](L. Cabaret, L. Lacassagne, D. Etiemble) (2018)

I direct CCL algorithm for GPU

• Playne-Equivalence[3](D. P. Playne, K.A. Hawick) (2018)

I direct CCL algorithm for GPU (2D and 3D versions)
I based on the analysis of local pixels configuration to avoid unnecessary and

costly atomic operations to save memory accesses.

⇒ no CCA for GPU, right now ...

7 / 33

Equivalence merge function & concurrency issue

The direct CCL algorithms rely on Union-Find to manage equivalences
A parallel merge operation can lead to concurrency issues:

1

43

43 43

4 4
1

4 4

1

1

2

2

2

43

1

1

4

21

4

1 4 4 1 4 4

1 4 44 4

• 1st example (top-left): no concurrency, T[3]←1, T[4]←1

• 2nd example (top-right): no concurrency, T[3]←1, T[4]←2

• 3rd example (bottom-left): non-problematic concurrency, T[4]←1, T[4]←1

• 4th example (bottom-right): concurrency issue, T[4]←1, T[4]←2

I 4 can’t be equal to 1 and 2
I ⇒ 4 has to point to 1 and 2 has to point to 1 too...

8 / 33

Equivalence merge function (aka recursive Union)

The merge function, introduced by Playne and Hawick, solves the concurrency
issues by iteratively merging labels using atomic operations

Algorithm 5: merge(L, e1, e2)

while e1 6= e2 and e1 6= L[e1] do
e1 ← L[e1] // root of e1

while e1 6= e2 and e2 6= L[e2] do
e2 ← L[e2] // root of e2

while e1 6= e2 do
if e1 < e2 then swap(e1, e2)
e3 ← atomicMin(L[e1], e2) // recursive min
if e3 = e1 then e1 ← e2

else e1 ← e3

By definition, e3 ≤ L[e1], so:

• if e3 = e1: no concurrent write, update of L is successful, terminates the loop

• if e3 < e1: concurrent write, L was updated by another thread, need to
merge e3 and e2

9 / 33

Hardware Accelerated algorithm : HA4

Analysis of state-of-the-art weaknesses:

• vertical borders (non-coalescent memory accesses)

• expensive atomic operations

Analysis of state-of-the-art strengths:

• equivalence table embedded in the image (Cabaret, Playne)

• merge function (Komura [4] + Playne)

• segments labeling (Light Speed Labeling)

• necessary condition to merge two equivalence trees (Playne)

Figure 1: All possible 4 pixels configurations. Only (f) needs to merge labels. (Playne)

10 / 33

Hardware Accelerated: HA4

The algorithm is divided into 3 kernels:

• strip labeling: the image is split into
horizontal strips of 4 rows. Each strip is
processed by a block of 32× 4 threads
(one warp per row). Only the head of
segment is labeled

• border merging: to merge the labels on
the horizontal borders between strips

• relabeling / features computation: to
propagate the label of each segment to
the pixels or to compute the features
associated to the connected components

11 / 33

Example – Strip labeling initialization (Step #0)

The 8×8 image is divided into 2 strips of 8×4 pixels, warp size = 8

Initial strip labeling:

• only the head of each segment (start node)
is labeled with an unique label

• equal to its linear address: L[k] = k

with k
∆
= y × width + x

• warning: label numbering starts at 0, not 1

7654310 2

0 6

8 12

0261 81

42 62

23 43

40 43 47

48 54

56 62

0

1

2

3

0

1

2

3

(a) Initialization

12 / 33

Example – Strip labeling (Step #1)

After initialization:

• detection of merging nodes using necessary conditions in each thread

• update of start nodes only

Strips’ segments are now labeled

7654310 2

0 6

8 12

0261 81

42 62

23 43

40 43 47

48 54

56 62

0

1

2

3

0

1

2

3

(b) Strip labeling

7654310 2

0 6

0 6

218 21

61 81

23 23

32 34 34

40 47

48 54

0

1

2

3

0

1

2

3

(c) Strip labeled

0

8

16

6

12

20 18

26

32

40

48

34

43 47

5456

62

Here, a CC spanning over several strips is represented by 3 disjoint trees of labels

13 / 33

Example – Border merging (Step #2)

Same merging operations on border nodes only All the segments are correctly
labeled. A CC spanning to several strips is represented by 1 tree.

7654310 2

0 6

0 6

218 21

61 81

23 23

32 34 34

40 47

48 54

0

1

2

3

0

1

2

3

(d) Border merging

7654310 2

0 0

0 6

218 21

61 81

0 23

32 34 34

40 47

48 54

0

1

2

3

0

1

2

3

(e) Border merged

0

8

16

6

12

20 18

26

32

40

48

34

43 47

5456

62

0

8

16

6

12

20 18

26

32

40

48

34

43 47

5456

62

14 / 33

Example – Re-Labeling / Analysis (Step #3)

In the final step only, each start node (blue) flattens its equivalence tree

• to Label the image: broadcast the label to the whole segment

• to Analyse the image: accumulate features into global memory using atomics

example of features associated to segment [x0, x1[at line y :

I S = x1 − x0, Sy = S × y0, Sx = 1
2

[x1(x1 − 1)− (x0(x0 − 1)]

7654310 2

0

0

0

0

0

0

0

0

0

1

2

3

0

1

2

3

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

FindRoot

7654310 2

0

0

0

0

0

0

0

0

0

1

2

3

0

1

2

3

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Relabeling

0

3240

48

34
43

47

54
56

62 8

16

6
12

20

18

26

15 / 33

Implementation details: Grid-stride loop

• first weakness of previous GPU algorithms is the vertical border merging: the
non-coalescent memory accesses are slower

• we used the grid-stride loop [5] design pattern to divide the image in strips
instead of tiles

kernel Classic(width)
x ← blockDim.x × blockIdx .x + threadIdx .x
if x < width then

// do stuff..

kernel Grid stride loop(width)
for x ← threadIdx .x to width by blockDim.x do

// do stuff..

Benefits:

• thread reuse: less thread creation. Helps to amortize the cost of thread
creation/destruction

• thread context is preserved: the loop ensures that pixels are processed in a
specific order and allows to reuse previously computed values

16 / 33

Implementation details: horizontal data exchange

All threads working on the same row are from the same warp, CUDA Warp-Level
Primitives [6] can be used to directly exchange data from threads registers

• ballot sync primitive returns a 32-bit bitmask based on the value of a
boolean within each thread (1 bit per thread)

• shfl sync primitive exchanges a 32-bit value between any pair of threads in
a warp. Each thread specifies a thread ID to read and a value to share

17 / 33

Implementation details: segments

• each thread needs to find its distance to the segment’s start node

• distance to the end is also needed for features computation

• bitwise operations can accelerate the computation of these distances (tx =
thread number)

0100110 1

7654310 2

020 1

1113 2

pixels

start_distance

end_distance

operator start distance(pixels, tx)
return clz(∼(pixels << (32−tx))) // clz = Count Leading Zeros

operator end distance(pixels, tx)
return ffs(∼(pixels >> (tx+1))) // ffs = Find First Set

18 / 33

Implementation details: vertical data exchange

• classic way of optimizing memory accesses: copying data from global to
shared memory

• shared memory is divided in 32 banks: same bank memory accesses at
different addresses get serialized [7]

20 1 3 4 5 6 7tx
pixelsy

shared
memory

pixelsy-1

19 / 33

Implementation details: vertical data exchange

• for each row, we store the bitmasks of the 32 neighbor pixels in different
banks

• store: no serialization, load: broadcast

20 1 3 4 5 6 720 1 3 4 5 6 7tx
pixelsy

shared
memory

pixelsy-1

20 / 33

One final optimization...

• two pixels directly next to each other either belong to the same segment or
have a different color

• we can assign a thread two pixels instead of one.

• 32-bit → 64-bit bitmask: modified distance operators.

• new version: HA464

00 1 1 0 1 0 1 01

1 2 3 40tx

operator start distance64(pixels, tx)
b ← get bit tx of ∼pixels
txb ← tx + b
return clzll(∼(pixels << (64−txb)))

operator end distance64(pixels, tx)
b ← get bit tx of ∼pixels
txb ← tx + b
return ffsll(∼(pixels >> (txb+1)))

21 / 33

Benchmark of CCL and CCA algorithms

• random 2048x2048 (2k) images of varying density (0% - 100%), granularity
(1 - 16, granularity = 4 close to natural image complexity)

• percolation threshold: transition from many smalls CCs to few larges CCs
I 8C: density = 45%
I 4C: density = 64%

22 / 33

Comparison of CCL algorithms on Jetson TX2

Comparison with 2 state-of-the-art algorithms [Playne, Cabaret]

• Cabaret and Playne lose
time updating all the
temporary labels

• thanks to the use of
segments, HA4’s processing
time decreases after the
percolation threshold
d=64%

• HA464 is 2× faster in
average than Playne and
Cabaret

• CCL throughput: 1.2 Gpx/s
(HA464, 2k, g=4)

(a) Playne (b) Cabaret

(c) HA432(ccl) (d) HA464(ccl)

23 / 33

Comparison of CCA algorithms on Jetson TX2

• HA464 CCA: labeling kernel is replaced by on-the-fly analysis kernel
• other algorithms: features computation kernel after relabeling kernel
• 7 features: S, Sx, Sy, xmin, ymin, xmax , ymax → 1.1 Gpx/s (HA464, 2k, g=4)

(a) Playne (b) Cabaret

(a) HA432 (b) HA464 24 / 33

Performance of CCL on Jetson AGX & V100

Latest results on Volta architecture:
• AGX: 4.6 Gpx/s (HA464, 2k, g=4)
• V100: 27.0 Gpx/s (HA464, 2k, g=4)

(a) HA432 Jetson AGX (b) HA464 Jetson AGX

(c) HA432 V100 (d) HA464 V100
25 / 33

Performance of CCA on Jetson AGX & V100

Latest results on Volta architecture:
• AGX: 3.4 Gpx/s (HA464, 2k, (S, Sx, Sy, xmin, ymin, xmax , ymax), g=4)
• V100: 14.9 Gpx/s (HA464, 2k, (S, Sx, Sy, Sx2, Sy2), g=4)

(a) HA432 Jetson AGX (b) HA464 Jetson AGX

(c) HA432 V100 (d) HA464 V100
26 / 33

Observations for Jetson AGX & V100

• strong scalability for CCL

• weak scalability for CCA (concurrent accesses in atomic operations)

• some features are faster to compute than others: the first statistical
moments, computed with atomic addition, are faster than the bounding
boxes computed with atomic min and max

(a) HA464(cca) V100 (S, Sx, Sy, xmin, ymin, xmax , ymax) (b) HA464(cca) V100 (S, Sx, Sy, Sx2, Sy2)

27 / 33

Conclusion

• two new algorithms for 4-connectivity connected component processing on
GPU:

I CCL 2× faster than State-of-the-Art
I CCA new on GPU

• introduced a new way to efficiently reduce the number of global memory
accesses using segments, combined with low-level intrinsics

• HA464 ready for realtime embedded processing.
I CCL throughput: 4.6 Gpix/s on AGX (1920x1080: 2208 fps) or
I CCA throughput: 3.4 Gpix/s on AGX (1920x1080: 1615 fps)

• future works:
I Design 8-connectivity versions on GPUs
I Improve CCA by implementing different merging strategies

• algorithm and benchmarks were published at DASIP 2018 [8]

28 / 33

Thank you!

29 / 33

References I

L. Cabaret, L. Lacassagne, and D. Etiemble, “Parallel Light Speed Labeling for connected component

analysis on multi-core processors,” Journal of Real Time Image Processing, no. 15,1, pp. 173–196, 2018.

L. Cabaret, L. Lacassagne, and D. Etiemble, “Distanceless label propagation: an efficient direct

connected component labeling algorithm for GPUs,” in IEEE International Conference on Image
Processing Theory, Tools and Applications (IPTA), pp. 1–8, 2017.

D. P. Playne and K. Hawick, “A new algorithm for parallel connected-component labelling on GPUs,”

IEEE Transactions on Parallel and Distributed Systems, 2018.

Y. Komura, “Gpu-based cluster-labeling algorithm without the use of conventional iteration: application

to swendsen-wang multi-cluster spin flip algorithm,” Computer Physics Communications, pp. 54–58,
2015.

M. Harris,

“https://devblogs.nvidia.com/cuda-pro-tip-write-flexible-kernels-grid-stride-loops/,”
2013.

Y. Lin and V. Grover, “https://devblogs.nvidia.com/using-cuda-warp-level-primitives/,”

2018.

M. Harris, “https://devblogs.nvidia.com/using-shared-memory-cuda-cc/,” 2013.

A. Hennequin, L. Lacassagne, L. Cabaret, and Q. Meunier, “A new Direct Connected Component

Labeling and Analysis Algorithms for GPUs,” in DASIP, (Porto, Portugal), Oct. 2018.

30 / 33

https://devblogs.nvidia.com/cuda-pro-tip-write-flexible-kernels-grid-stride-loops/
https://devblogs.nvidia.com/using-cuda-warp-level-primitives/
https://devblogs.nvidia.com/using-shared-memory-cuda-cc/

Backup: average throughput with g=16

• TX2 2k:
I CCL: 1.37 Gpx/s
I CCA: 1.36 Gpx/s

• AGX 2k:
I CCL: 5.75 Gpx/s
I CCA: 5.61 Gpx/s

• V100 2k:
I CCL: 32.02 Gpx/s
I CCA: 24.42 Gpx/s

• V100 4k:
I CCL: 42.92 Gpx/s
I CCA: 30.35 Gpx/s

31 / 33

Backup: full post-features analysis (TX2)

(a) Playne (b) Cabaret

(a) HA432 (b) HA464

32 / 33

Direct algorithms are based on Union-Find structure

What are the issues (for parallel architectures) ?

Algorithm 6: Find(e,T)

while T [e] 6= e do
e ← T [e]

return e // the root of the tree

Algorithm 7: Union(e1,e2,T)

r1 ← Find(e1, T)
r2 ← Find(e2, T)
if r1 < r2 then T [r2]← r1

else T [r1]← r2

• SIMD CPU & sparse addressing
I requires scatter/gather instructions

(AVX512/SVE)

• CPU pyramidal/parallel merge:
I pyramidal merge requires disjoint-sets
I parallel merge requires recursive atomic

instructions
I SIMD pyramidal merge needs emulated atomic

instructions within registers (conflict detection)

• GPU parallel merge
I requires recursive atomic instructions

but capability is *not* efficiency

33 / 33

	Introduction
	What is CCA?
	Pioneer direct algorithm: Rosenfeld
	Parallel State-of-the-art

	Hardware Accelerated Algorithm: HA4
	Example
	Grid-stride loop
	Horizontal data exchange
	Segments
	Vertical data exchange
	One final optimization...

	Results
	Benchmark of CCL and CCA algorithms
	Comparison of CCL algorithms
	Comparison of CCA algorithms

	Conclusion

