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What are Connected Component Labeling and Analysis ?

Connected Components Labeling (CCL) consists in assigning a unique number
(label) to each connected component of a binary image to cluster pixels

Connected Components Analysis (CCA) consists in computing some features
associated to each connected component like the bounding box [xmin,xmax ] x
[ymin,ymax ], the sum of pixels S , the sums of x and y coordinates Sx , Sy

gray level image binary level image
(segmentation by 
(motion detection)

connected component
labeling

1 2

connected component
analysis

• seems easy for a human being who has a global view of the image

• ill-posed problem: the computer has only a local view around a pixel
(neighborhood)

• important in computer vision for pattern recognition, motion detection ...
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Two classes of CCL algorithms

• multi-pass iterative algorithms

I compute the local positive min over a 3× 3 neighborhood
I until stabilization : the number of iterations depends on the data
I not predictable, nor suited for embedded systems

• two-pass direct algorithms

I first pass = temporary label creation and equivalence building
I need an equivalence table to memorize the connectivity between labels
I then compute transitive closure of the tree associated to the equivalence table
I second pass = image relabeling (apply table T to the image)

• what are the existing algorithms on CPU and GPU ?

I on CPU, scalar algorithms are all direct and can be parallelized
I on SIMD CPU, until 2019, all SIMD algorithms are iterative, except 1
I on GPU, until 2018, all algorithms are iterative, except 3

• Why so few direct algorithms on GPU and SIMD ?
⇒ because extremely complex to design (not suited for SIMD nor GPU)
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Direct algorithms are based on Union-Find structure

Algorithm 1: Rosenfeld labeling algorithm
for i = 0 : h − 1 do

for j = 0 : w − 1 do
if I [i ][j] 6= 0 then

e1 ← E [i − 1][j]
e2 ← E [i ][j − 1]
if (e1 = e2 = 0) then

ne ← ne + 1
ex ← ne

else
r1 ← Find(e1,T )
r2 ← Find(e2,T )

ex ← min+(r1, r2)
if (r1 6= 0 and r1 6= ex ) then T [r1]← ex
if (r2 6= 0 and r2 6= ex ) then T [r2]← ex

else
ex ← 0

E [i ][j]← ex

Algorithm 2: Find(e,T )

while T [e] 6= e do
e ← T [e]

return e // the root of the tree

Algorithm 3: Union(e1,e2,T )
r1 ← Find(e1, T )
r2 ← Find(e2, T )
if (r1 < r2) then

T [r2]← r1

else
T [r1]← r2

Algorithm 4: Transitive Closure
for i = 0 : ne do

T [e]← T [T [e]]

Parallel algorithms have to do:

• sparse addressing ⇒ scatter/gather SIMD instructions (AVX512/SVE)

• concurrent min computation ⇒ recursive atomic min (CUDA)
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Classic direct algorithm: Rosenfeld

Rosenfeld algorithm is the first 2-pass algorithm with an equivalence table
• when two labels belong to the same component, an equivalence is created and

stored into the equivalence table T

• for example, there is an equivalence between 2 and 3 (stair pattern) and between 4
and 2 (concavity pattern)

• stair and concavity are the only two two patterns generating equivalence

• here, background in gray and foreground in white, 4-connectivity algorithm
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Back to iterative Labeling algorithms

The number of iterations depends on data structure:
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but 16 iterations for a 5×5 zig-zag or a spirale

the number of iterations is equal to the longest path
aka the max geodesic distance

... and the max geodesic distance for a n × n image is ' n2/2
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Parallel State-of-the-art

• Parallel Light Speed Labeling[1](L. Cabaret, L. Lacassagne, D. Etiemble) (2018)

I parallel algorithm for CPU
I based on RLE (Run Length Encoding) to speed up processing and save

memory accesses
I current fastest CCA algorithm on CPU

• Distanceless Label Propagation[2](L. Cabaret, L. Lacassagne, D. Etiemble) (2018)

I direct CCL algorithm for GPU

• Playne-Equivalence[3](D. P. Playne, K.A. Hawick) (2018)

I direct CCL algorithm for GPU (2D and 3D versions)
I based on the analysis of local pixels configuration to avoid unnecessary and

costly atomic operations to save memory accesses.

⇒ no CCA for GPU, right now ...
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Equivalence merge function & concurrency issue

The direct CCL algorithms rely on Union-Find to manage equivalences
A parallel merge operation can lead to concurrency issues:
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• 1st example (top-left): no concurrency, T[3]←1, T[4]←1

• 2nd example (top-right): no concurrency, T[3]←1, T[4]←2

• 3rd example (bottom-left): non-problematic concurrency, T[4]←1, T[4]←1

• 4th example (bottom-right): concurrency issue, T[4]←1, T[4]←2

I 4 can’t be equal to 1 and 2
I ⇒ 4 has to point to 1 and 2 has to point to 1 too...
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Equivalence merge function (aka recursive Union)

The merge function, introduced by Playne and Hawick, solves the concurrency
issues by iteratively merging labels using atomic operations

Algorithm 5: merge(L, e1, e2)

while e1 6= e2 and e1 6= L[e1] do
e1 ← L[e1] // root of e1

while e1 6= e2 and e2 6= L[e2] do
e2 ← L[e2] // root of e2

while e1 6= e2 do
if e1 < e2 then swap(e1, e2)
e3 ← atomicMin(L[e1], e2) // recursive min
if e3 = e1 then e1 ← e2

else e1 ← e3

By definition, e3 ≤ L[e1], so:

• if e3 = e1: no concurrent write, update of L is successful, terminates the loop

• if e3 < e1: concurrent write, L was updated by another thread, need to
merge e3 and e2
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Hardware Accelerated algorithm : HA4

Analysis of state-of-the-art weaknesses:

• vertical borders (non-coalescent memory accesses)

• expensive atomic operations

Analysis of state-of-the-art strengths:

• equivalence table embedded in the image (Cabaret, Playne)

• merge function (Komura [4] + Playne)

• segments labeling (Light Speed Labeling)

• necessary condition to merge two equivalence trees (Playne)

Figure 1: All possible 4 pixels configurations. Only (f) needs to merge labels. (Playne)
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Hardware Accelerated: HA4

The algorithm is divided into 3 kernels:

• strip labeling: the image is split into
horizontal strips of 4 rows. Each strip is
processed by a block of 32× 4 threads
(one warp per row). Only the head of
segment is labeled

• border merging: to merge the labels on
the horizontal borders between strips

• relabeling / features computation: to
propagate the label of each segment to
the pixels or to compute the features
associated to the connected components
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Example – Strip labeling initialization (Step #0)

The 8×8 image is divided into 2 strips of 8×4 pixels, warp size = 8

Initial strip labeling:

• only the head of each segment (start node)
is labeled with an unique label

• equal to its linear address: L[k] = k

with k
∆
= y × width + x

• warning: label numbering starts at 0, not 1
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(a) Initialization
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Example – Strip labeling (Step #1)

After initialization:

• detection of merging nodes using necessary conditions in each thread

• update of start nodes only

Strips’ segments are now labeled
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Here, a CC spanning over several strips is represented by 3 disjoint trees of labels
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Example – Border merging (Step #2)

Same merging operations on border nodes only All the segments are correctly
labeled. A CC spanning to several strips is represented by 1 tree.
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Example – Re-Labeling / Analysis (Step #3)

In the final step only, each start node (blue) flattens its equivalence tree

• to Label the image: broadcast the label to the whole segment

• to Analyse the image: accumulate features into global memory using atomics

example of features associated to segment [x0, x1[ at line y :

I S = x1 − x0, Sy = S × y0, Sx = 1
2

[x1(x1 − 1)− (x0(x0 − 1)]
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Implementation details: Grid-stride loop

• first weakness of previous GPU algorithms is the vertical border merging: the
non-coalescent memory accesses are slower

• we used the grid-stride loop [5] design pattern to divide the image in strips
instead of tiles

kernel Classic(width)
x ← blockDim.x × blockIdx .x + threadIdx .x
if x < width then

// do stuff..

kernel Grid stride loop(width)
for x ← threadIdx .x to width by blockDim.x do

// do stuff..

Benefits:

• thread reuse: less thread creation. Helps to amortize the cost of thread
creation/destruction

• thread context is preserved: the loop ensures that pixels are processed in a
specific order and allows to reuse previously computed values
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Implementation details: horizontal data exchange

All threads working on the same row are from the same warp, CUDA Warp-Level
Primitives [6] can be used to directly exchange data from threads registers

• ballot sync primitive returns a 32-bit bitmask based on the value of a
boolean within each thread (1 bit per thread)

• shfl sync primitive exchanges a 32-bit value between any pair of threads in
a warp. Each thread specifies a thread ID to read and a value to share
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Implementation details: segments

• each thread needs to find its distance to the segment’s start node

• distance to the end is also needed for features computation

• bitwise operations can accelerate the computation of these distances (tx =
thread number)

0100110 1

7654310 2

020 1

1113 2

pixels

start_distance

end_distance

operator start distance(pixels, tx)
return clz(∼(pixels << (32−tx))) // clz = Count Leading Zeros

operator end distance(pixels, tx)
return ffs(∼(pixels >> (tx+1))) // ffs = Find First Set
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Implementation details: vertical data exchange

• classic way of optimizing memory accesses: copying data from global to
shared memory

• shared memory is divided in 32 banks: same bank memory accesses at
different addresses get serialized [7]

20 1 3 4 5 6 7tx
pixelsy

shared
memory

pixelsy-1
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Implementation details: vertical data exchange

• for each row, we store the bitmasks of the 32 neighbor pixels in different
banks

• store: no serialization, load: broadcast

20 1 3 4 5 6 720 1 3 4 5 6 7tx
pixelsy

shared
memory

pixelsy-1
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One final optimization...

• two pixels directly next to each other either belong to the same segment or
have a different color

• we can assign a thread two pixels instead of one.

• 32-bit → 64-bit bitmask: modified distance operators.

• new version: HA464

00 1 1 0 1 0 1 01

1 2 3 40tx

operator start distance64(pixels, tx)
b ← get bit tx of ∼pixels
txb ← tx + b
return clzll(∼(pixels << (64−txb)))

operator end distance64(pixels, tx)
b ← get bit tx of ∼pixels
txb ← tx + b
return ffsll(∼(pixels >> (txb+1)))
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Benchmark of CCL and CCA algorithms

• random 2048x2048 (2k) images of varying density (0% - 100%), granularity
(1 - 16, granularity = 4 close to natural image complexity)

• percolation threshold: transition from many smalls CCs to few larges CCs
I 8C: density = 45%
I 4C: density = 64%
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Comparison of CCL algorithms on Jetson TX2

Comparison with 2 state-of-the-art algorithms [Playne, Cabaret]

• Cabaret and Playne lose
time updating all the
temporary labels

• thanks to the use of
segments, HA4’s processing
time decreases after the
percolation threshold
d=64%

• HA464 is 2× faster in
average than Playne and
Cabaret

• CCL throughput: 1.2 Gpx/s
(HA464, 2k, g=4)

(a) Playne (b) Cabaret

(c) HA432(ccl) (d) HA464(ccl)
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Comparison of CCA algorithms on Jetson TX2

• HA464 CCA: labeling kernel is replaced by on-the-fly analysis kernel
• other algorithms: features computation kernel after relabeling kernel
• 7 features: S, Sx, Sy, xmin, ymin, xmax , ymax → 1.1 Gpx/s (HA464, 2k, g=4)

(a) Playne (b) Cabaret

(a) HA432 (b) HA464 24 / 33



Performance of CCL on Jetson AGX & V100

Latest results on Volta architecture:
• AGX: 4.6 Gpx/s (HA464, 2k, g=4)
• V100: 27.0 Gpx/s (HA464, 2k, g=4)

(a) HA432 Jetson AGX (b) HA464 Jetson AGX

(c) HA432 V100 (d) HA464 V100
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Performance of CCA on Jetson AGX & V100

Latest results on Volta architecture:
• AGX: 3.4 Gpx/s (HA464, 2k, (S, Sx, Sy, xmin, ymin, xmax , ymax), g=4)
• V100: 14.9 Gpx/s (HA464, 2k, (S, Sx, Sy, Sx2, Sy2), g=4)

(a) HA432 Jetson AGX (b) HA464 Jetson AGX

(c) HA432 V100 (d) HA464 V100
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Observations for Jetson AGX & V100

• strong scalability for CCL

• weak scalability for CCA (concurrent accesses in atomic operations)

• some features are faster to compute than others: the first statistical
moments, computed with atomic addition, are faster than the bounding
boxes computed with atomic min and max

(a) HA464(cca) V100 (S, Sx, Sy, xmin, ymin, xmax , ymax ) (b) HA464(cca) V100 (S, Sx, Sy, Sx2, Sy2)
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Conclusion

• two new algorithms for 4-connectivity connected component processing on
GPU:

I CCL 2× faster than State-of-the-Art
I CCA new on GPU

• introduced a new way to efficiently reduce the number of global memory
accesses using segments, combined with low-level intrinsics

• HA464 ready for realtime embedded processing.
I CCL throughput: 4.6 Gpix/s on AGX (1920x1080: 2208 fps) or
I CCA throughput: 3.4 Gpix/s on AGX (1920x1080: 1615 fps)

• future works:
I Design 8-connectivity versions on GPUs
I Improve CCA by implementing different merging strategies

• algorithm and benchmarks were published at DASIP 2018 [8]
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Thank you!
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Backup: average throughput with g=16

• TX2 2k:
I CCL: 1.37 Gpx/s
I CCA: 1.36 Gpx/s

• AGX 2k:
I CCL: 5.75 Gpx/s
I CCA: 5.61 Gpx/s

• V100 2k:
I CCL: 32.02 Gpx/s
I CCA: 24.42 Gpx/s

• V100 4k:
I CCL: 42.92 Gpx/s
I CCA: 30.35 Gpx/s
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Backup: full post-features analysis (TX2)

(a) Playne (b) Cabaret

(a) HA432 (b) HA464
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Direct algorithms are based on Union-Find structure

What are the issues (for parallel architectures) ?

Algorithm 6: Find(e,T )

while T [e] 6= e do
e ← T [e]

return e // the root of the tree

Algorithm 7: Union(e1,e2,T )

r1 ← Find(e1, T )
r2 ← Find(e2, T )
if r1 < r2 then T [r2]← r1

else T [r1]← r2

• SIMD CPU & sparse addressing
I requires scatter/gather instructions

(AVX512/SVE)

• CPU pyramidal/parallel merge:
I pyramidal merge requires disjoint-sets
I parallel merge requires recursive atomic

instructions
I SIMD pyramidal merge needs emulated atomic

instructions within registers (conflict detection)

• GPU parallel merge
I requires recursive atomic instructions

but capability is *not* efficiency
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