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Abstract

Manipulation actions transform objects from an initial
State into a final state. In this paper, we report on the use
of object state transitions as a mean for recognizing ma-
nipulation actions. Our method is inspired by the intuition
that object states are visually more apparent than actions
thus provide information that is complementary to spatio-
temporal action recognition. We start by defining a state
transition matrix that maps action verbs into a pre-state and
a post-state. We extract keyframes at regular intervals from
the video sequence and use these to recognize objects and
object states. Change in object state are then used to predict
action verbs. We report results on the EPIC kitchen action
recognition challenge.

1. Introduction

Most current approaches to action recognition interpret
a frame sequence as a spatio-temporal signal. However, ex-
tending a 2D convolutional network by adding a 3rd tempo-
ral dimension to the receptive field results in a substantial
increase in the number of parameters that must be learned,
greatly increasing the computational cost and the require-
ments for training data. An alternative approach is to de-
compose recognition into a static recognition phase using a
2D kernel followed by wither a 1D temporal kernel [19], or
a Recurrent Neural network [7]. Researchers have also ex-
plored the use of two-stream networks in which one stream
is used to analyze image appearance from RGB images
and the other represents motion from optical flow maps
[18, 14, 11]. such approaches provide spatio-temporal anal-
ysis while avoiding the very large increase in learned pa-
rameters.

An alternative to learning spatio-temporal models for
action recognition from video is to recognize changes in
properties of objects from a sequence of frames [13, 3].
Baradel et al. [3] proposed a convolutional model that is
trained to predict both object classes and action classes in
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Figure 1. Changes in object states over time for action recognition.
Two sample sequences from the EPIC kitchen dataset.

two branches. This model is followed by an object relation
network that learns to reason over object interactions.

Our approach is inspired by the human ability to recog-
nize changes in situation using a limited number of static
observations. Human associate observations with back-
ground knowledge in a form of previously seen episodes
or past experience [9, 4]. Thus a change in an object’s state
allows a human to form hypotheses about how the object
was changed. This ability allows a human subject to inter-
pret a complex scene from static images and make hypothe-
ses about unseen actions that may have occurred and could
explain changes to the scene. For example, we can under-
stand which action is shown in Figure 1 with 5 keyframes or
less from the video clip. Inferring the associated actions in
frame sequences is a relatively effortless task for a human,
while it remains challenging for machines [16]. We have
investigated whether such an approach can be used to infer
unseen actions from a set of frames which are chronologi-
cally ordered and contains semantic relations between ob-
jects. Such inference would complement hypotheses from
spatio-temporal action recognition.

A manipulation action transforms an object from a pre-
existing state (pre-state) into a new state (post-state). Thus
we can say that the action causes a change in the state of the
corresponding object. Alayrac et al. [2] have investigated
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Figure 2. Proposed architecture of learning action recognition as state transformations.

automatic discovery of both object states and actions from
videos. They treat this problem as a discriminative cluster-
ing problem by exploiting the ordering of the frames. Their
work is promising, even though it has been evaluated on
only a small number of action classes.A related work [8],
studies visual changes of objects state between first and last
frames.

In this paper, we investigate the feasibility of recogniz-
ing object types and object states from a small number of
frames and then use changes in object states to predict ac-
tions. Our intuition is that 2D object types and states are are
easier to recogninze than spatio-temporal action verb.

2. Manipulation action as state transformation

An action, as defined in the Cambridge dictionaryl ,1s the
effect something has on another thing. Many manipulation
actions can be expressed as triple in which a subject imparts
a change to an object. That is, a manipulation action a; € A
can be expressed as: the subject that performs the action, the
verb v; € V which describes the effect of the action, and the
object n; € N the effect is applied to. For egocentric data
such as EPIC kitchen the subject assumed to be the person.

The action recognition problem can be formulated with
one class for each possible combination of these elements.
For example, person cuts tomato and person cuts cucumber
can be considered as two different classes as in [17]. Some
recent datasets have provided a decomposition of an action
into a verb and one or more objects a = (v, (ny,..,ny,))
[10, 5, 12]. This makes it possible to study the task of ac-
tion recognition as a composition of several sub-tasks (e.g.
object detection and action verb recognition).

Cambridge University Press. (2019). Cambridge online dictionary,
Cambridge Dictionary online. Retrieved at April 3, 2019

2.1. State-changing actions

We are concerned with recognizing manipulation actions
that change the state of objects s; € S. The state change can
appear in the object’s shape, its appearance (color), or its
location. Examples of object states include: closed, opened,
full, empty, whole, and cut.

We define a state transition function F' that transforms
the corresponding object from a pre-state s; into a post-
state s;. In some cases, this state transition can be defined
directly from the type of action verb v;. We observe that
sometimes a single verb is not enough to distinguish an ac-
tion. For example, the verb remove can mean open in re-
move lid and can mean peel in remove the skin of the garlic.
Therefore, the state transition must take into account both
action verbs and nouns.

Since the state changes happen as we move through time,
the transition function F' returns a real value of each state
depending on the frame position in the video segment. As
in Figure 1 the object starts in its initial state that gradually
fades out and the post-state starts to appear as we advance in
the video. In our initial experiments we have assumed that
the state changing frame is the mid-frame of the video se-
quence. Therefore, we define the action transition mapping
function F'(v, n), which takes the action’s verb v and a set
of objects (nouns) n and returns a continuous value of ob-
jects’ states for each frame depending on the frame position
in the video. For example, the action open fridge changes
the fridge state from opened to closed.

2.2. Architecture

In previous work [1], we investigated detection and lo-
cation of object types as well as object states from im-
ages. In this paper, we extend this work to learn changes
in object state from keyframes. The architecture of our
model is shown in Figure 2. Given a video segment, we



Seen kitchens subset (S1) Unseen kitchens subset (S2)
AccTl AccTS5 Precision Recall | AccTl AccT5 Precision Recall
Action
Our model(RGB) 19.76 36.98 9.83 10.23 9.08 19.46 3.68 4.77
2SCNNJ[14]1(RGB) 13.67 33.25 6.66 547 6.79 20.42 3.39 3.01
TSN[18](RGB) 19.86 41.89 9.96 8.81 10.11 25.33 4.77 5.67
Verb
Our model(RGB) 47.41 81.33 31.20 20.43 34.35 69.24 15.09 11.00
2SCNN[14](RGB) 40.44 83.04 33.74 15.9 33.12 73.23 16.06 9.44
TSN[I8](RGB) 45.68 85.56 61.64 23.81 34.89 74.56 19.48 11.22
Noun
Our model(RGB)  28.31 53.77 21.21 22.48 17.48 37.56 10.71 12.55
2SCNN[14](RGB)  30.46 57.05 28.23 23.23 17.58 40.46 11.97 12.53
TSN[18](RGB) 36.8 64.19 34.32 31.62 21.82 45.34 14.67 17.24

Table 1. Results on the EPIC kitchen dataset (Seen and Unseen subsets). Highest values are in bold. Results of baseline methods (2SCNN

and TSN) are reported by [5].

first split it into k£ sub-segments of equal length and sam-
ple a random keyframe from each sub-segment. For each
keyframe, we learn two concept classes (object types and
object states) separately. Then, from the selected sequence
of k keyframes, we extract two channels using a point-wise
convolution from which we construct the state transition
matrix (pre-state, post-state). For object types (nouns), we
use a point-wise convolution to extract a vector of nouns
that appear in the video segment. Action verbs are then
learned from the state transition matrix. In the end, the ac-
tion classes are learned directly from the set of object types
and action verbs.

3. Experiment

EPIC Kitchen dataset. We jave investigated state trans-
formations using action labels using the egocentric videos
of people cooking and cleaning in the EPIC Kitchen dataset.
In this dataset, an action label is composed of a tuple of a; =
(verb v;, noun n;) extracted from a narrated text given for
each video action segment.

The EPIC verb represents the action verb while the EPIC
noun is the action object. As the EPIC Kitchen dataset
is an egocentric dataset which suggests one subject in the
scene, the action subject is always the cook’s hands. We
group each action verb depending on the type of effect they
cause into 3 different groups: those that change the object’s
shape, color appearance, or location. This study leaves
some non-state-changing verbs (like the verb check) out of
those groups as it does not change any object states. As a
result we define 49 state transitions and 31 different states.

Network Architecture. As shown in Figure 2, we use a
similar setting as in [1] for each keyframe. We start by ex-
tracting features using a VGG16 network with batch nor-
malization [15] pre-trained on the ImageNet dataset [6].
VGG features provide the input to a shared” 3 x 3 convo-
lutional layer. We separate the learning of object attributes
into two branches: one for object types and the other for
object states. Each attribute is learned with an independent
loss. VGG features are frozen during the training process
for object types and states.

For each keyframe, one noun vector and one state vec-
tor are extracted using Global Average Pooling over cor-
responding Class Activation Maps. Afterwards, we per-
form a point-wise convolution to extract one noun vec-
tor and the states transition matrix over keyframes. Verbs
are learned directly from the state transition matrix using
a fully-connected (FC) layer. Both action attributes (verb,
nouns) are fused using at a late stage a FC layer for action
classification. All hidden layers use the ReLU (rectified lin-
ear unit) activation function. A frame can have one or more
states and/or nouns. Therefore, we treat nouns and states
as multi-label classification problems that are learned with
a Mean Square Error (MSE). On the other hand, verbs and
actions are learned with a Cross Entropy (CE) function.

Training. We use EPIC Kitchen video segments for train-
ing our model. A clip is a collection of £ randomly sampled
keyframes from k equal length sub-segments, and it repre-
sents the corresponding action video segment. This strat-
egy has been used in multiple works with similar problems
[18, 3]. We divide the EPIC videos in 80% for training and

2shared over both attributes (object types and states)



o S $ S A & >
Precision (%) 56.7 59.3 588 39.8 80.1 747 689

Recall (%) 482 450 629 57.1

39.1 37.7 | 57.23
67.7 60.7 502 403 535

Table 2. Model performance on validation set on state-changing verbs.

20% for validation. Our validation set has only samples
from many-shot actions and all samples of few-shot actions
are in the our training split.

EPIC challenge evaluation. For evaluation, we aggre-
gate the results of 10 clips as in [3]. We report the same
evaluation metrics provided by the EPIC challenge [5]. Pro-
vided metrics include class-agnostic and class-aware met-
rics; Top-1 and Top-5 micro-accuracy in addition to preci-
sion and recall over only many shot classes (i.e. classes with
more that 100 samples).

Implementation details. For learning, we used MSE loss
to learn nouns and states during per-frame learning. Object
nouns in the Actions of EPIC dataset are used to define our
object classes. Each action of EPIC dataset is a tuple of a
verb and a noun. The noun is chosen to be the first noun
occurring in the narration sentence. Because sentences and
frames can contain multiple objects, we train to detect all
nouns in the sentence and treat this training step as a multi-
label recognition problem for each frame. Because object
state changes gradually, the state is represented as a contin-
uous number estimated using MSE.

In training, we used the Adam optimizer with a learning
rate of 1e—3 that decreases following the Reduce on Plateau
scheduling method. The implementation code is available’
and was written using Pytorch.

4. Discussion

Comparison with baselines. We report the results of our
model in Table 1 on EPIC Kitchen dataset for action recog-
nition task. As the test sets are not publicly available yet, we
compared our results to two baseline techniques, 2SCNN
model [14] and TSN model [ 18], as reported in [5].

In our model, we only use RGB channels. Our model has
20M parameters and only SM trainable parameters which is
significantly lower than both baseline techniques i.e. for
each input modality: 2SCNN model [14] uses 170M train-
able parameters and TSN model [18] has 11M trainable pa-
rameters. Our model outperforms 2SCNN model [14] in
most of reported metrics and provides recognition of verbs
and actions that is comparable to TSN reported results[ | 8].

3Code is available at ht tps: //github.com/Nachwa/object_
states

State-changing Actions. In order to evaluate our model
on state-changing actions, we report results of our valida-
tion set in Table 2. The model is trained to learn state
changes and shows better performance on state-changing
verbs than on verbs that are not state changes.

Our results show some confusion between semantically
similar verbs like (e.g. insert and put, or put and move to)
and verbs that have visually similar states (e.g. wash and fill
- where fill examples refers to filling water from a tap). Our
model is not designed to detect actions that do not result in
a change in object state (e.g. move and walk).

5. Conclusion

In this paper, we investigated a method for recogni-
tion of manipulation actions as changes of state of objects
in keyframes. We demonstrate that this can provide rea-
sonably accurate recognition of manipulation actions. We
reported results of our model on the challenge of EPIC
kitchen dataset and compare these to two baseline tech-
niques. For the action recognition task, our model outper-
forms one of the baseline techniques using 34 times less
training parameters, and achieved comparable results with
the other.
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