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Gâteaux type path-dependent PDEs and

BSDEs with Gaussian forward processes

Adrien BARRASSO ∗ Francesco RUSSO†

June 26th 2019

Abstract. We are interested in path-dependent semilinear PDEs, where the
derivatives are of Gâteaux type in specific directions k and b, being the kernel
functions of a Volterra Gaussian process X . Under some conditions on k, b and
the coefficients of the PDE, we prove existence and uniqueness of a decoupled
mild solution, a notion introduced in a previous paper by the authors. We also
show that the solution of the PDE can be represented through BSDEs where
the forward (underlying) process is X .
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1 Introduction

Backward SDEs (in short BSDEs) are naturally linked to non-linear determinis-
tic evolution equations. In one of their pioneering work [22], Pardoux and Peng
showed that Markovian BSDEs for which the randomness comes from an under-
lying which is the solution of a classical SDE, are linked to classical semilinear
PDEs. In this framework an impressive amount of papers has been produced.

In the recent times, particular attention was devoted to the case when the
driver and terminal condition of the BSDE depend on the whole path of the
forward underlying process which can be a Brownian motion. Those are of type

Y s,η = ξ
(

(Bs,η
t )t∈[0,T ]

)

+

∫ T

·

f
(

r, (Bs,η
t )t∈[0,r], Y

s,η
r , Zs,η

r

)

dr −

∫ T

·

Zs,η
r dBs,η

r ,

(1.1)
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where B is a Brownian motion and for any s ∈ [0, T ], η ∈ D([0, T ],Rd), Bs,η =
η(· ∧ s) + (B·∨s − Bs). If in the Markovian case those were related to usual
PDEs, in the present path-dependent framework, those were linked to the so
called path-dependent PDEs (see for instance [23, 13]) of the form
{

DΦ+ 1
2Tr(∇

2Φ) + f(·, ·,Φ,∇Φ) = 0 on [0, T ]×D([0, T ],Rd)
ΦT = ξ.

(1.2)

There, D (resp. ∇) is the horizontal (resp. vertical) derivative introduced in
[12]. For (1.2) the authors discussed classical or viscosity (probabilistic) type
solution. Variants of it, replacing the Brownian motion with the solution of
path-dependent SDEs were considered for instance by [8, 7] with a different for-
malism. [7] for instance introduced the notion of stong-viscosity solution (based
on approximation techniques), which constitutes a purely analytic concept.

Indeed such path-dependent PDEs have been investigated by several meth-
ods. For instance strict (classical, regular) solutions have been studied in
[11, 15, 8] under the point of view of Banach space valued stochastic processes.
Another interesting approach (probabilistic) but still based on approximation
(discretizations) was given by [21]. More recently, [5] produced a viscosity solu-
tion to a more general path-dependent (possibly integro)-PDE through dynamic
risk measures. In all those cases the solution Φ of (1.2) was associated to the
component Y s,η of the solution couple (Y s,η, Zs,η) of (1.1) with initial time s

and initial condition η. A challenging link to be explored was the link between
Zs,η and the solution of the path-dependent PDE Φ. For instance in the case of
Fréchet C0,1 solutions Φ defined on C([0, T ]), then Zs,η is equal to the ”vertical”
derivative ∇Φ, see for instance [16].

An important step forward concerning path-dependent PDEs associated with
BSDEs involving a solution of a path-dependent SDEs including the possibility
of jumps and coefficients which were not necessarily continuous was done in [2].
The concept of solution was there the decoupled mild solution which is based
on semigroup type techniques. That notion, is competitive with the notion of
viscosity solution, especially when such viscosity solutions do not necessarily
exist. Moreover, that notion of solution also provides a solution to the so called
identification problem, meaning that it links the second component Z of the
BSDE, to the PDE.

The natural question raised by this paper is the following. What about the
case when the Brownian motion B is replaced with a (non-Markovian, non-
semimartingale) process such as fractional Brownian motion? The idea is to
extend the consideration of [2] to this framework. The basic reference paper for
this work is [26], that considered for the first time a BSDE which forward process
was the solution of a Volterra SDE. This includes the kind of Gaussian processes
which we consider. They related this BSDE to a Gâteaux type PDE close to
(1.6) by showing that if the PDE admits a classical solution, that solution
provides a solution of the BSDE. Our work provides the converse implication.
We start from the well-posedness of a class of BSDEs, and show that they
produce, under very mild regularity assumptions on the coefficients, a decoupled
mild solution to the path-dependent PDE.
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Let (Ω,F) be the canonical space where Ω is the set C0([0, T ],Rd), d ≥ 1,
of Rd-valued continuous functions on [0, T ] vanishing at 0, equipped with its
uniform norm and F its Borel σ-field.

We fix b : [0, T ] × [0, T ] → R

d and k : [0, T ] × [0, T ] → Md(R) some two
parameters functions such that for all t ∈ [0, T ], b(·, t), k(·, t) vanish on [0, t[ and
are continuous, admitting a right-derivative on [t, T ].

On the canonical space, we consider a Gaussian measureQ under which there
exists a d-dimensional Brownian motion B such that the canonical process X

admits the representation

Xt =

∫ t

0

b(t, r)dr +

∫ t

0

k(t, r)dBr , t ∈ [0, T ]. (1.3)

For every ”initial time and path” (s, η) we introduce the law Qs,η of X condi-
tioned by the fact that, on [0, s], X coincides with the path η. For every (s, η),
Q

s,η is a Gaussian measure of mean function ms[η], where ms is a continuous
linear operator on Ω. The reader can refer to [6] concerning Gaussian measures
and related notions, see also Definition 3.2.

We will show that (Qs,η)(s,η)∈[0,T ]×Ω defines what we call a path-dependent

canonical class, see Definition 2.4, notion which was introduced by the authors
in [4]. This concept extends the well-known historical notion of Markov canon-
ical class to the path-dependent (therefore non-Markovian) setting.

Given this set of probability measures, under every Qs,η, we consider the
BSDE (indexed by (s, η))

Y s,η
· = ξ(X) +

∫ T

·

f

(

r,X, Y s,η
r ,

d〈M s,η,mT,s,η〉r
dr

)

dr − (M s,η
T −M s,η

· ), (1.4)

where mT,s,η : t 7−→ E

s,η[XT |Ft] is the driving martingale of the BSDE. In
the case when k(t, ·) ≡ 1[0,t] and b ≡ 0 then this driving martingale mT,s,η is
P

s,η-a.s. equal to X and is the conditioned Brownian motion Bs,η appearing
in (1.1). This case was already considered in a more general framework, in [2].
The main aim of this paper is to study the path-dependent PDE which replaces
(1.2) when one considers the previous BSDE (1.4) instead of (1.1).

Thanks to the theory which we have developed in [4], we can associate to
the family of probability measures (Qs,η)(s,η)∈[0,T ]×Ω what we call a path-

dependent system of projectors (Ps)s∈[0,T ], a notion which replaces the one
of Markovian semigroup. We define the linear operator Ã, acting on a domain
D(Ã) of functions Φ̃ defined on D([0, T ],Rd)) by

Ã(Φ̃)t := DΦ̃t +∇b(·,t)Φ̃t +
1

2

∑

i≤d

∇2
ki(·,t)

Φ̃t, t ∈ [0, T ]. (1.5)

In (1.5), ∇h (resp. ∇2
h,ℓ) is the first (resp. second) order Gâteaux type

derivatives in the direction h (resp. h, ℓ) and D is a time derivative. Those
operators act on functionals defined on a set of cadlag functions. Again when
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k(t, ·) ≡ 1[0,t] and b ≡ 0 and if Φt(ω) = Φ̃t(ω
t), then ∇k(·,t)Φ̃t(ω

t) = ∇Φt(ω),
where ∇ is now the vertical derivative introduced in [12].

We introduce the mean random field m = (ms)s∈[0,T ], where ms[η](t) is the
conditional expectation of Xt knowing that X coincides with η on [0, s], see
Proposition 3.7. In particular mT : (s, η) 7−→ ms[η](T ) = E

s,η[XT ] is called
prediction martingale in the literature, see for instance Remark 3.2 in [24].

Then we introduce the operator A on a certain domain D(A) which to each
Φ = Φ̃ ◦ m associates (Ã(Φ̃)) ◦ m. We also introduce in Definition 4.15, the
bilinear operator Γ which to any Φ,Ψ ∈ D(A) maps A(ΦΨ)−ΦA(Ψ)−ΨA(Φ).
This operator was already introduced in another context in [2] and extends the
carré du champ operator appearing in the Markov processes literature, see [10]
for instance.

We show in Proposition 4.12 that A is a weak generator of (Ps)s∈[0,T ], see
Definition 2.15. That operator A is therefore linked to the probability measures
(Qs,η)(s,η)∈[0,T ]×Ω mentioned above, and this will lead us to show that the BSDE
(1.4) permits to solve the following semilinear path-dependent PDE which we
denote PDPDE(f, ξ):

{

A(Φ) + f(·, ·,Φ,Γ(mT ,Φ)) = 0 on [0, T ]× Ω
ΦT = ξ, on [0, T ]× Ω.

(1.6)

A process Y will be called a decoupled mild solution of PDPDE(f, ξ) if
there exists an Rd-valued auxiliary process Z such that for all (s, η) ∈ [0, T ]×Ω

{

Ys(η) = Ps[ξ](η) +
∫ T

s
Ps [f (r, ·, Yr, Zr)] (η)dr

(Y mT )s(η) = Ps[ξXT ](η) −
∫ T

s
Ps

[(

Zr −mT
r f (r, ·, Yr, Zr)

)]

(η)dr.

(1.7)
We emphasize that decoupled mild solutions were introduced in the framework
of classical parabolic PDEs in [3], and in the path-dependent framework in [2].
Those extend the notion of classical solution i.e. a functional Φ in the domain
D(A) fulfilling (1.6).

The main result of this paper is Theorem 4.28 which shows that when ξ

is measurable with polynomial growth and f is measurable with polynomial
growth in ω and uniformly Lipschitz in the last two variables, then PDPDE(f, ξ)
admits a unique decoupled mild solution Y .

As anticipated, another feature of the paper is that the solution admits
a probabilistic representation. Indeed, the unique decoupled mild solution of
PDPDE(f, ξ) is given by

Y : (s, η) 7−→ Y s,η
s , (1.8)

where Y s,η is the solution of BSDE (1.4).
When b ≡ 0 and k(t, ·) ≡ 1[0,t] for all t, then for every (s, η), Qs,η is the

law of the "conditioned" Brownian motion Bs,η introduced after (1.1). In this
case, our BSDE (1.4) is simply (1.1) and (1.6) becomes (1.2). Existence and
uniqueness of a decoupled mild solution in this case was already shown in our
previous paper [2]. That paper includes the case of (semimartingale-)solutions
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to path-dependent SDEs with jumps; in that case the driving martingale of the
BSDE is the martingale component of the semimartingale X .

The paper is organized as follows. Section 2 recalls some notions and results
related to path-dependent canonical classes and systems of projectors, which
were introduced by the authors in [4]. Section 3 is mainly devoted to show-
ing that, under some conditions, a Gaussian measure induces a path-dependent
canonical class when considering its regular conditional probability distribu-
tions, see Proposition 3.10 for the centered case and Proposition 3.22 for the
case with a drift. Section 4 is the main section of the paper. It introduces the
path-dependent PDE for which we will show well-posedness, and the associated
BSDE. First, Section 4.1 introduces the assumptions on k, b, see Hypothesis 4.1.
Then in Section 4.2 we define the linear operators Ã and A appearing in (1.5)
and (1.6) with the corresponding domains, see Definition 4.8. Theorem 4.11
provides an Itô formula for elements of D(A). In Section 4.3 we introduce the
driving martingale of the BSDE (see Notation 4.19) and study its properties,
see Proposition 4.20. Finally, in Section 4.4, we consider the path-dependent
PDE (4.10) and show in Theorem 4.28 that, under Hypothesis 4.22, it admits a
unique decoupled mild solution and a probabilistic representation through the
BSDE (4.13). Proposition 4.29 shows that any classical solution of (4.10) is also
a decoupled mild solution, and conversely that if the unique decoupled mild so-
lution belongs to D(A) then it is quasi surely (see Definition 4.18) a classical
solution.

2 Preliminaries, path-dependent canonical classes

and systems of projectors

In this paper, we will make use of notions and results concerning path-dependent
canonical classes, which were introduced in Section 3 of[4]. We give here the
main definitions and results related to that concept.

We start by fixing some basic vocabulary and notations.

Notation 2.1. A topological space E will always be considered as a measurable
space equipped with its Borel σ-field which shall be denoted B(E).

Let (Ω,F), (E, E) be two measurable spaces. A measurable mapping from
(Ω,F) to (E, E) shall often be called a random variable (with values in E),
or in short r.v.

Given a measurable space (Ω,F), for any p ≥ 1, the set of real valued random
variables with finite p-th moment under probability P will be denoted Lp(P) or
Lp if there can be no ambiguity concerning the underlying probability.

Given a stochastic basis, for any cadlag locally square integrable martingales
M,N , we denote 〈M,N〉 (or simply 〈M〉 if M = N) their (predictable) angular

bracket.

Notation 2.2. We fix T ∈ R∗
+ and d ∈ N∗. Ω := C0([0, T ],Rd) will denote the

space of continuous functions from [0, T ] to Rd vanishing at 0.
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For every t ∈ [0, T ] we denote the coordinate mapping Xt : ω 7→ ω(t) and
we define on Ω the σ-field F := σ(Xr|r ∈ [0, T ]). The coordinates of X are
denoted X1, · · · , Xd. On the measurable space (Ω,F), we introduce the initial

filtration Fo := (Fo
t )t∈[0,T ], where Fo

t := σ(Xr|r ∈ [0, t]), and the (right-
continuous) canonical filtration F := (Ft)t∈[0,T ], where Ft :=

⋂

s∈]t,T ]

Fo
s if

t < T and FT := Fo
T = F . (Ω,F ,F) will be called the canonical space, and

X the canonical process. On [0, T ]×Ω, we will denote by Proo (resp. Preo)
the Fo-progressive (resp. Fo-predictable) σ-field. Ω will be equipped with the sup
norm ‖ · ‖∞ which makes it a Banach space, and for which the Borel σ-field is
F .

P(Ω) will denote the set of probability measures on Ω and will be equipped
with the topology of weak convergence of measures which also makes it a Polish
space being Ω itself Polish, see Theorems 1.7 and 3.1 in Chapter 3 of [14]. It
will also be equipped with the associated Borel σ-field.

Notation 2.3. For any ω ∈ Ω and t ∈ [0, T ], the path ω stopped at time t

r 7→ ω(r ∧ t) will be denoted ωt.

Definition 2.4. A path-dependent canonical class will be a set of proba-
bility measures (Ps,η)(s,η)∈[0,T ]×Ω defined on the canonical space (Ω,F). It will
verify the three following items.

1. For every (s, η) ∈ [0, T ]× Ω, Ps,η(ωs = ηs) = 1;

2. for every s ∈ [0, T ] and F ∈ F , the mapping
η 7−→ P

s,η(F )
Ω −→ [0, 1]

is Fo
s -measurable;

3. for every (s, η) ∈ [0, T ]× Ω, t ≥ s and F ∈ F ,

P

s,η(F |Fo
t )(ω) = P

t,ω(F ) for Ps,η almost all ω. (2.1)

This implies in particular that for every (s, η) ∈ [0, T ] × Ω and t ≥ s, then
(Pt,ω)ω∈Ω is a regular conditional expectation of Ps,η by Fo

t , see the definition
above Theorem 1.1.6 in [25] for instance.

A path-dependent canonical class (Ps,η)(s,η)∈[0,T ]×Ω will be said to be progres-

sive if for every F ∈ F , the mapping (t, ω) 7−→ P

t,ω(F ) is Fo-progressively
measurable.

Remark 2.5. Given a path-dependent canonical class, one can easily show by
approximation through simple functions the following. Let Z be any random
variable.

• For any s ∈ [0, T ] then η 7−→ E

s,η[Z] is Fo
s -measurable and for every

(s, η) ∈ [0, T ]×Ω, t ≥ s, Es,η(Z|Fo
t )(ω) = E

t,ω(Z) for Ps,η almost all ω,
provided previous expectations are finite;
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• if the path-dependent canonical class is progressive, (t, ω) 7−→ E

t,ω[Z] is
F

o-progressively measurable, provided previous expectations are finite.

Very often path-dependent canonical classes will verify the following impor-
tant hypothesis which is a reinforcement of (2.1).

Hypothesis 2.6. For every (s, η) ∈ [0, T ]× Ω, t ≥ s and F ∈ F ,

P

s,η(F |Ft)(ω) = P
t,ω(F ) for Ps,η almost all ω. (2.2)

Notation 2.7. Bb(Ω) stands for the set of real bounded measurable functions
on Ω. Let s ∈ [0, T ], Bs

b(Ω) will denote the set of real bounded Fo
s -measurable

functions on Ω. We also denote by B+
b (Ω) the subset of r.v. φ ∈ Bb(Ω) such

that φ(ω) ≥ 0 for all ω ∈ Ω.

Definition 2.8.

1. A linear map Q : Bb(Ω) → Bb(Ω) is said positivity preserving mono-

tone if for every φ ∈ B+
b (Ω) then Q[φ] ∈ B+

b (Ω) and for every increasing
converging (in the pointwise sense) sequence fn −→

n
f then Q[fn] −→

n
Q[f ]

pointwise.

2. A family (Ps)s∈[0,T ] of positivity preserving monotone linear operators on
Bb(Ω) will be called a path-dependent system of projectors if it verifies
the three following items.

• For all s ∈ [0, T ], the restriction of Ps on Bs
b(Ω) coincides with the

identity;

• for all s ∈ [0, T ], Ps maps Bb(Ω) into Bs
b(Ω);

• for all s, t ∈ [0, T ] with t ≥ s, Ps ◦ Pt = Ps.

The proposition below states a correspondence between path-dependent canon-
ical classes and path-dependent systems of projectors. It was the object of
Corollary 3.1 of [4].

Proposition 2.9. The mapping

(Ps,η)(s,η)∈[0,T ]×Ω 7−→

(

Z 7−→ (η 7→ E

s,η[Z])
Bb(Ω) −→ Bb(Ω)

)

s∈[0,T ]

, (2.3)

is a bijection between the set of path-dependent system of probability measures
and the set of path-dependent system of projectors.

Definition 2.10. Two elements in correspondence through the previous bijec-
tion will be said to be associated.

Notation 2.11. Let (Ps)s∈[0,T ] be a path-dependent system of projectors, and
(Ps,η)(s,η)∈[0,T ]×Ω the associated path-dependent system of probability measures.
Then for any r.v. Z ∈ L1(Ps,η), Ps[Z](η) will still denote the expectation of

7



Z under Ps,η. In other words we extend the linear form Z 7−→ Ps[Z](η) from
Bb(Ω) to L1(Ps,η).

If Z := (Z1, · · · , Zd) is an Rd-valued r.v., then for all s, Ps[Z] (if well-
defined) will denote the Rd-valued r.v. (Ps[Z

1], · · · , Ps[Z
d]).

For the results of this section, we are given a progressive path-dependent
canonical class (Ps,η)(s,η)∈[0,T ]×Ω satisfying Hypothesis 2.6 and the correspond-
ing path-dependent system of projectors (Ps)s∈[0,T ].

The statement below comes from Corollary 3.3 of [4].

Proposition 2.12. For every (s, η) ∈ R+ × Ω and F ∈ Fs, P
s,η(F ) ∈ {0, 1}.

In particular, an Fs,η
s -measurable r.v. will be Ps,η-a.s. equal to a constant.

The last notions and results of this subsection are taken from Section 5.2 of
[4].

We consider a couple (D(A), A) verifying the following.

Hypothesis 2.13.

1. D(A) is a linear subspace of the space of Fo-progressively measurable pro-
cesses;

2. A is a linear mapping from D(A) into the space of Fo-progressively mea-
surable processes;

3. for all Φ ∈ D(A), ω ∈ Ω,
∫ T

0
|AΦr(ω)|dr < +∞;

4. for all Φ ∈ D(A), (s, η) ∈ [0, T ]× Ω and t ∈ [s, T ], we have

E

s,η
[

∫ t

s
|A(Φ)r |dr

]

< +∞ and Es,η[|Φt|] < +∞.

Definition 2.14.

1. (Ps,η)(s,η)∈[0,T ]×Ω will be said to solve the martingale problem associ-

ated to (D(A), A) if for every (s, η) ∈ [0, T ]× Ω,

• Ps,η(ωs = ηs) = 1;

• Φ−
∫ ·

0
A(Φ)rdr, is on [s, T ] a (Ps,η,Fo)-martingale for all Φ ∈ D(A).

2. The martingale problem associated to (D(A), A) will be said to be well-

posed if for every (s, η) ∈ [0, T ]× Ω there exists a unique Ps,η verifying
both items above.

Inspired from the classical literature (see 13.28 in [18]) we have introduced
in [4] the following notion of a weak generator.

Definition 2.15. We say that (D(A), A) is a weak generator of a path-
dependent system of projectors (Ps)s∈[0,T ] if for all Φ ∈ D(A), (s, η) ∈ [0, T ]×Ω
and t ∈ [s, T ], we have

Ps[Φt](η) = Φs(η) +

∫ t

s

Ps[A(Φ)r ](η)dr. (2.4)
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The proposition below was the object of Proposition 5.6 in [4].

Proposition 2.16. (D(A), A) is a weak generator of (Ps)s∈[0,T ] if and only if
(Ps,η)(s,η)∈[0,T ]×Ω solves the martingale problem associated to (D(A), A).

In particular, if (Ps,η)(s,η)∈[0,T ]×Ω solves the well-posed martingale problem
associated to (D(A), A) then (Ps)s∈[0,T ] is the unique path-dependent system of
projectors for which (D(A), A) is a weak generator.

In the setup of the last statement, one can therefore associate analytically
to (D(A), A) a unique path-dependent system of projectors (Ps)s∈[0,T ] through
Definition 2.15.

3 Path-dependent canonical classes induced by

Gaussian measures

Notation 3.1. Let (E, ‖ · ‖) be a Banach space and F be a linear subspace of

E then its closure will be denoted F
‖·‖

or F
E

when there can be no ambiguity
concerning the chosen norm.

In this section we will also adopt the conventions of Section 2. Most of the
following definitions are taken from [6] Chapter 2.2.

Definition 3.2. Let P be a Gaussian measure on (Ω,F), i.e. a probability
measure such that for any n ∈ N∗ and l1, · · · , ln ∈ Ω∗, (l1, · · · , ln) has under
P the law of a Gaussian vector. Let L2(P) denote the corresponding space of
square integrable random variables and assume that sup

t∈[0,T ]

‖Xt‖ ∈ Lp(P) for all

p ∈ N.

• We define the covariance operator of P K : Ω∗ 7−→ Ω by Kl : t 7→
E[ω(t)l(ω)] for all l ∈ Ω∗.

• We denominate covariance function of P the (symmetric matrix valued)
function c : (s, t) 7−→ E[XsXt], and mean function of P the function
m : t 7−→ E[Xt]. The (i, j)-th coordinate of c will be denoted ci,j.

• We say that P is of full support if the smallest closed subset of Ω of
measure 1 is Ω.

• We say that X admits a representation under P if the following holds.
There exists a function k : [0, T ]2 −→ Md(R) such that for all t ∈ [0, T ],
k(t, ·) ∈ L2([0, t]) and taking value 0 on ]t, T ]; and an Fo-adapted Rd-
valued Brownian motion B := (B1, · · · , Bd) defined on (Ω,F) such that

Xt =

∫ t

0

k(t, r)dBr , P a.s. (3.1)

In this case, k is called the kernel function of P.
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• We call Reproducing Kernel Hilbert Space (RKHS) the Hilbert space

of centered elements of Span({X i
r|i ≤ d; r ∈ [0, T ]})

L2(P)
which we denote

H(P), we also denote for all t ∈ [0, T ] the Hilbert subspace Ht(P) of

centered elements of Span({X i
r|i ≤ d; r ∈ [0, t]})

L2(P)
.

• We call Cameron-Martin space which we denote H(P), the space of
functions cY : t 7−→ E[Y Xt] for Y ∈ H(P), we equip it with the scalar
product defined by (cY , cZ)H(P) := E[Y Z] for all Y, Z ∈ H(P), which
makes it a Hilbert space. We also denote for all t ∈ [0, T ] the Hilbert
subspace Ht(P) of functions cY : t 7−→ E[Y Xt] for Y ∈ Ht(P).

• We say that (H(P),Ω,P) is an abstract Wiener space if H(P) is a
dense (for ‖ · ‖∞) subspace of Ω.

Remark 3.3. About Definition 3.2 we mention the following.

• If P is a Gaussian measure on (Ω,F) (see Definition 2.2.1 in [6]), then
the canonical process X (is under P) a Gaussian process;

• K indeed maps Ω∗ into Ω because of Theorem 3.2.3 in [6];

• our definition of H(P) is not the one of [6] Chapter 2.2, but is equivalent
again by Theorem 3.2.3 ibidem, which also ensures that elements of H(P)
belong to Ω;

• P is of full support if and only if H(P) is dense in Ω for ‖ ‖∞ (i.e.
(H(P),Ω,P) is an abstract Wiener space), see Theorem 3.6.1 in [6].

We consider a Gaussian probability measure P on (Ω,F) verifying the fol-
lowing.

Hypothesis 3.4.

1. sup
t∈[0,T ]

‖Xt‖ ∈ Lp(P) for every p ≥ 1;

2. P is of full support;

3. X admits a representation under P with respect to some Brownian motion
B, with a kernel k, see (3.1).

4. for all t ∈ [0, T ] and h ∈ L2([0, T ]) we have that
∫ ·

0
k(·, r)h(r)dr ≡ 0 on

[0, t] implies that h is Lebesgue a.e. equal to zero on [0, t];

5.

Mop := max
i≤d

sup
s∈[0,T ]

sup
r∈[0,s]

max
j≤d

sup
t∈[0,T ]

|ci,j(r, t)|

max
j′≤d

sup
r′∈[0,s]

|ci,j′ (r, r′)|
< +∞. (3.2)

Remark 3.5.

10



1. Item 5. of Hypothesis 3.4 is verified for example by the following processes.

• Stationary processes, see Corollary 5 in [20];

• the fractional Brownian motion of Hurst index H ∈]0, 1[, see the proof
of Theorem 3.1 in [24].

2. If items 3. and 4. in Hypothesis 3.4 hold, then by Theorem 1.7 in [17],

we know that for all t ∈ [0, T ], Ht(P) = Span({Bi
r|i ≤ d; r ∈ [0, t]})

L2(P)
.

Notation 3.6.

• For all s ∈ [0, T ], we denote by Ωs the Banach subspace of Ω constituted
of paths ω constant after time s, i.e. such that ω = ωs and we denote by

πs the continuous mapping
Ω −→ Ωs

ω 7−→ ωs.

• By a slight abuse of notation, we denote by Ω⊥
s the Banach subspace Ω

constituted of paths ω taking value 0 on [0, s], and by π⊥
s the continuous

mapping
Ω −→ Ω⊥

s

ω 7−→ ω − ωs.

• K : Ω∗ −→ Ω denotes the covariance operator of P, see Definition 3.2.

• Let k be the function appearing in (3.1), then for all i ≤ d, ki : [0, T ] ×
[0, T ] → R

d will denote its i-th column, and for all i, j ≤ d, ki,j : [0, T ]×
[0, T ] → R will denote its (i, j)-th coefficient.

In the proposition below for every s ∈ [0, T ], η ∈ Ωs we introduce a Gaussian
probability measure P s,η which represents the conditional law of (3.1) given
ωs = ηs.

Proposition 3.7.

1. KΩ∗ is dense in Ω.

2. For every s ∈ [0, T ], there exists a set of Gaussian probability measures
(Ps,η)η∈Ωs

(with related expectations (Es,η)η∈Ωs
) and a continuous oper-

ator ms : Ωs −→ Ω such that the following holds.

(a) For all η ∈ Ωs, P
s,η(ωs = η) = 1;

(b) η 7−→ P

s,η is continuous;

(c) for every t ≥ s and F ∈ F ,

P(F |Fo
s )(η) = P

s,η(F ) for P almost all η; (3.3)

(d) for all t ∈ [0, T ], Es,η[Xt] = ms[η](t);

(e) for all s, ms has an operator norm inferior to Mop;
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(f) πsKπ∗
sΩ

∗
s is dense in Ωs and that on Kπ∗

sΩ
∗
s, ms ◦ πscoincides with

the identity.

Proof. The statement 1. follows from Theorem 2.1 in [20] and the fact that by
Hypothesis 3.4 item 2., the support of P is Ω.

The statement 2. follows from Theorem 2.1 and Theorem 2 and the state-
ment and proof of Lemma 2.2 in [20] applied for fixed s to the continuous linear
operator πs between the Banach spaces Ω and Ωs.

Definition 3.8. 1. For every s ∈ [0, T ], we extend η 7→ ms[η] and η 7→ P

s,η

from Ωs to Ω by setting for all η ∈ Ω, ms[η] := ms[η
s] and Ps,η := Ps,ηs

.

2. (s, η) 7→ ms[η] will be called the mean random field.

By continuity of πs, we remark that for all s, η 7→ ms[η], η 7−→ P

s,η remain
continuous.

Remark 3.9. The family of linear operators (ms)s∈[0,T ] constituting the mean
random field is crucial in this paper.

1. First, that consitutes a very useful analytical tool, since it has permit to
[20] to prove that the regular conditional expectation of P is continuous,
see Proposition 3.7 item 2.b.

2. Second, it is also central at the probabilistic level of this paper. In partic-
ular ms[η] is the mean function of Ps,η, the mean random field will also
allow us to construct driving martingales for our BSDEs, as we will see
in item 3. of Proposition 4.20.

The proof of Propositions 3.10 and 3.11 below is postponed to the Appendix.

Proposition 3.10. (Ps,η)(s,η)∈[0,T ]×Ω is a path-dependent canonical class.

Proposition 3.11. For all η ∈ Ω, s 7−→ ms[η] is right-continuous in (Ω, ‖·‖∞),
in particular, for all t ∈ [0, T ] s 7−→ ms[η](t) is right-continuous.

Corollary 3.12. m :
(s, η) 7−→ ms[η]

[0, T ]× Ω −→ Ω
is (Proo,F)-measurable.

Moreover, for all t ∈ [0, T ],
(s, η) 7−→ ms[η](t)

[0, T ]× Ω −→ R

d is Fo-progressively

measurable.

Proof. Let T0 ∈ [0, T ]. m : [0, T0]×ΩT0
7→ Ω is right-continuous in s ∈ [0, T0] at

fixed η ∈ ΩT0
by Proposition 3.11 and continuous in η at fixed s hence jointly

measurable, see Theorem 15 in [9] Chapter IV.
For all t ≤ T0 and ω ∈ Ω, we have mt(ω) = mt ◦πt(ω) = mt ◦πT0

(ω), taking
into account Definition 3.8.
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So m : [0, T0] × Ω 7→ Ω can be expressed composing m : [0, T0] × ΩT0
7→ Ω

with
(t, ω) 7→ (t, πT0

(ω))
[0, T0]× Ω → [0, T0]× ΩT0

,

which is clearly
(

B([0, T0])⊗Fo
T0
,B([0, T0])⊗ B(ΩT0

)
)

-measurable. By compo-
sition, m : [0, T0] × Ω 7→ Ω is B([0, T0]) ⊗ Fo

T0
-measurable. Since this holds for

all T0, the first statement is shown.
The second part of the statement follows composing ms(η) and Xt which is

continuous hence measurable for all t.

Remark 3.13. For every (s, η), X−ms[η] is under Ps,η a mean-zero continuous
Gaussian process whose covariance function does not depend on η, see Theorem
2 in [20].

In particular, if s is fixed and if we consider two paths η, η′ in Ω, then Ps,η′

is the translation of Ps,η by the vector ms[η]−ms[η
′] = ms[η − η′].

Notation 3.14. For every (s, η), we denote by cs the covariance function of
X −ms[η] under Ps,η. We denote by Ps the law of that process, which does not
depend on η. The expectation under Ps will be denoted by Es.

Proposition 3.15. For every (s, η) ∈ [0, T ] × Ω and p ∈ N∗, sup
r∈[0,T ]

‖Xr‖ ∈

Lp(Ps,η).

Proof. We fix s ∈ [0, T ] and p ∈ N∗. We start by noticing that for every η ∈ Ω,

E

s,η[‖ω‖p∞] = Es[‖ω +ms[η]‖
p
∞]. (3.4)

Then by triangle inequality for ‖ · ‖∞ and convexity of x 7→ xp, we can write

‖ω +ms[η]‖
p
∞ ≤ 2p−1‖ω‖p∞ + 2p−1‖ms[η]‖

p
∞. (3.5)

Since ‖ω‖p∞ = ‖−ms[η] + (ω+ms[η])‖
p
∞ ≤ 2p−1‖ms[η]‖

p
∞ +2p−1‖ω+ms[η]‖

p
∞

then
1

2p−1
‖ω‖p∞ − ‖ms[η]‖

p
∞ ≤ ‖ω +ms[η]‖

p
∞. (3.6)

Taking the expectation Es in (3.5), (3.6) and taking (3.4) into account yields

1

2p−1
E

s[‖ω‖p∞]− ‖ms[η]‖
p
∞ ≤ Es,η[‖ω‖p∞] ≤ 2p−1

E

s[‖ω‖p∞] + 2p−1 ‖ms[η]‖
p
∞ .

(3.7)
So either Es[‖ω‖p∞] is finite and therefore Es,η[‖ω‖p∞] is finite for all η, or
E

s[‖ω‖p∞] is infinite and therefore Es,η[‖ω‖p∞] is infinite for all η. We now show
that the second option is not possible in order to conclude. Indeed, by Remark
2.5 we have

E [‖ω‖p∞] = E [E [‖ω‖p∞|Fo
s ] (η)]

= E [Es,η [‖ω‖p∞]] ,
(3.8)

where we recall in particular that E [‖ω‖p∞] < +∞ by Hypothesis 3.4, so
E

s,η[‖ω‖p∞ is finite for P almost all η hence is not infinite for all η.
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The proposition below is proved in the Appendix.

Proposition 3.16. For every (s, η) ∈ [0, T ]×Ω, the topological support of Ps,η

is equal to ηs +Ω⊥
s i.e. the set of paths coinciding with η on [0, s].

We recall that the covariance functions cs have been defined at Notation
3.14.

Lemma 3.17. For every s, t, u ∈ [0, T ],

cs(t, u) =

{
∫ t∧u

s
k(t, r)k(u, r)dr if s ≤ t, u

0 otherwise.
(3.9)

Proof. We fix t, u. For every η ∈ Ω, we have

cs(t, u) = Es,η[Xt ⊗Xu]−E
s,η[Xt]⊗E

s,η[Xu]. (3.10)

Clearly if t (resp. u) is inferior to s then Xt (resp. Xu) is for all η Ps,η a.s.
deterministic, see Proposition 3.7 2. (a). This implies cs(t, u) = 0. Assume now
that s ≤ t, u. By Proposition 3.7 2. (c) and (3.10) we have P a.s. that,

cs(t, u) = E[Xt ⊗Xu|Fo
s ]−E[Xt|Fo

s ]⊗E[Xu|Fo
s ]

= E

[(

∫ t

0
k(t, r)dBr

)

⊗
(∫ u

0
k(u, r)dBr

)

|Fo
s

]

−E[
∫ t

0
k(t, r)dBr |Fo

s ]⊗E[
∫ t

0
k(t, r)dBr |Fo

s ]

=
(∫ s

0
k(t, r)dBr

)

⊗
(∫ s

0
k(t, r)dBr

)

+
∫ t∧u

s
k(t, r)k(u, r)dr

−
(∫ s

0 k(t, r)dBr

)

⊗
(∫ s

0 k(t, r)dBr

)

=
∫ t∧u

s
k(t, r)k(u, r)dr,

(3.11)

and the proof is complete.

The proof of the proposition below is also located in the Appendix.

Proposition 3.18. (Ps,η)(s,η)∈[0,T ]×Ω is progressive, see Definition 2.4.

Notation 3.19. For any (s, η) ∈ [0, T ]×Ω we will consider the stochastic basis
(

Ω,Fs,η,Fs,η := (Fs,η
t )t∈[0,T ],P

s,η
)

where Fs,η (resp. Fs,η
t for all t) is F (resp.

Ft) augmented with the Ps,η negligible sets. Ps,η is extended to Fs,η.

We remark that, for any (s, η) ∈ [0, T ]×Ω, (Ω,Fs,η,Fs,η,Ps,η) is a stochastic
basis fulfilling the usual conditions, see 1.4 in [18] Chapter I.

Proposition 3.20. Let Xs,η denote the process X −ms[η]. Then there exists
an Rd-valued (Ps,η,Fs,η)-Brownian motion Bs,η starting in s such that for all

t ≥ s, X
s,η
t =

∫ t

s
k(t, r)dBs,η

r P

s,η a.s. Moreover, for all t ≥ s, then Fs,η
t ,

coincides with Fo
t augmented with Ps,η-null sets.

Corollary 3.21. (Ps,η)(s,η)∈[0,T ]×Ω verifies Hypothesis 2.6.

Proof. By Proposition 3.10 (Ps,η) is a path-dependent canonical class, in par-
ticular (2.1) holds. Taking into account Notation 3.19 the result follows by
Proposition 3.20.
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We now conclude this section by extending previous results to the case with
drift. In Proposition 3.22 below, Qs,η will model the conditional law of β +
∫ ·

0
k(·, r)dBr given ωs = ηs where β is a given path in Ω.

Proposition 3.22. Let β ∈ Ω and define for all (s, η), and F ∈ F : Qs,η(F ) :=
P

s,η−βs

(F − β).
Then, the following holds.

1. (Qs,η)(s,η)∈[0,T ]×Ω is a progressive path-dependent canonical class satisfy-
ing Hypothesis 2.6.

2. For all (s, η), Qs,η is a Gaussian measure with mean function β+ms[η−β]
and covariance function cs, see Definition 3.2.

3. For all (s, η), under Qs,η, there exists a Brownian motion B̃s,η such that
on [s, T ], X is indistinguishable from ms[η − β] + β +

∫ ·

s
k(·, r)dB̃s,η

r .

Proof. We start with the first statement. The progressivity property follows by
the one of (Ps,η)s,η. Since (Ps,η)s,η is a path-dependent canonical class items
1. and 2. of Definition 2.4 are clearly verified, so we only have to show that
(2.2) holds. We fix (s, η), t ≥ s, F ∈ F and we show that

Q

s,η(F |Ft) = Q
t,ω(F ), Q

s,η, a.s. (3.12)

Let G ∈ Ft. We have

E

Q

s,η

[1F (ω)1G(ω)] = E

s,η−βs

[1F−β(ω)1G−β(ω)]
= E

s,η−βs

[Es,η−βs

[1F−β |Ft](ω)1G−β(ω)]
= E

s,η−βs

[Pt,ω(F − β)1G−β(ω)]

= E

s,η−βs

[Qt,ω+βt

(F )1G−β(ω)]
= E

Q

s,η

[Qt,ω(F )1G(ω)],

(3.13)

where the second equality holds because G− β ∈ Ft; the third equality because
(Ps,η)(s,η)∈[0,T ]×Ω verifies Hypothesis 2.6 (see Corollary 3.21) and the last two
equalities by definition of the Qs,η.

By definition of conditional expectation, the fact that (3.13) holds for all
G ∈ Ft implies (3.12).

Concerning the second statement, we fix (s, η). Qs,η is the translation of
P

s,η−βs

in the direction β, so it is a Gaussian measure with same covariance
function cs and with mean function the mean function (see Definition 3.2) of
P

s,η−βs

, translated of β, meaning ms[η − β] + β.
Finally the third statement is a consequence of Proposition 3.20 and of item

2.
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4 BSDEs with Gaussian forward process and de-

coupled mild solutions of path-dependent PDEs

4.1 General considerations.

This section is the main part of the paper. Its aim is to introduce formally equa-
tion PDPDE(f, ξ) introduced in the introduction (see (1.6)), its coefficients,
the operators that it involves, and to prove existence and uniqueness of what we
call a decoupled mild solution. We will make use of the probabilistic framework
and results obtained in the previous section.

We are now given a Gaussian measure P satisfying Hypothesis 3.4 and the
corresponding path-dependent canonical class (Ps,η)(s,η)∈[0,T ]×Ω, see Proposi-
tion 3.10.

We fix a function b : [0, T ]× [0, T ] → R

d and we assume for the remainder
of the paper that b, k verify the following.

Hypothesis 4.1.

• b, k are bounded Borel;

• for all s ∈ [0, T ], b(s, ·) and k(s, ·) are equal to 0 on [0, s[ and continuous
on [s, T ] where they admit a bounded right-derivative;

• t 7→
∫ t

0
b(t, r)dr is continuous.

Definition 4.2. We set β : t 7→
∫ t

0
b(t, r)dr and define (Qs,η)(s,η)∈[0,T ]×Ω as in

Proposition 3.22 with this specific choice of β.

Notation 4.3. In this section, the continuous operator ms[·−β] will be denoted
ms and Es,η will denote the expectation with respect to Qs,η and not Ps,η any
more.

We recall that by Proposition 3.22, we have the following.

Remark 4.4.

• (Qs,η)(s,η)∈[0,T ]×Ω defines a progressive path-dependent canonical class ver-
ifying Hypothesis 2.6;

• for every (s, η), Qs,η is the Gaussian measure on (Ω,F) of covariance
function cs and mean function ms[η] + β, see Definition 3.2;

• for every (s, η), there exists a Qs,η-Brownian motion Bs,η such that under
Q

s,η we have

X = ms[η] +

∫ ·

0

b(·, r)dr +

∫ ·

s

k(·, r)dBs,η
r , (4.1)

on [s, T ].
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4.2 Differential operators involved in the path-dependent

PDE

Notation 4.5. From now on, (Ps)s∈[0,T ] denotes the path-dependent system of
projectors associated (in the sense of Definition 2.10) to (Qs,η)(s,η)∈[0,T ]×Ω.

Our aim now is to provide a weak generator (D(A), A) of (Ps)s∈[0,T ], see
Definition 2.15.

The following definitions are adapted from [26] Section 3.1.

Definition 4.6. We denote by Ω̄ := D([0, T ],R) the Skorohod space of cadlag
functions from [0, T ] to R. F̄ (resp. F̄o) will denote the corresponding Borel
σ-field (resp. initial filtration, see Notation 2.2).

Let t ∈ [0, T ]. Ω̄t will denote the set of elements of Ω̄ equal to 0 on [0, t[ and
continuous on [t, T ]. For ω, η ∈ Ω̄. η ⊗t ω will denote η1[0,t[ + ω1[t,T [.

Λ̄ will denote the set of (t, ω) ∈ [0, T ]×Ω̄ such that ω is continuous after time
t. We equip Λ̄ with the distance defined by d((s, η), (t, ω)) = |t− s|+ ‖ω− η‖∞.
C0(Λ̄) will denote the set of real-valued functions on Λ̄, continuous with respect
to d.

We fix Φ ∈ C0(Λ̄). For (t, ω) ∈ Λ̄, DΦt(ω) will denote lim
ǫ→0+

1
ǫ
(Φt+ǫ(ω)− Φt(ω))

if this limit exists.

Let η ∈ Ω̄t, ∇ηΦt(ω) will denote lim
ǫ→0

1
ǫ
(Φt(ω + ǫη)− Φt(ω)) if this limit

exists. We define ∇2
ηΦt(ω) similarly for η ∈ Ω̄t.

We say that Φ has polynomial growth if there exists C > 0, p ≥ 1 such
that |Φt(ω)| ≤ C(1 + ‖ω‖p∞) for all (t, ω) ∈ Λ̄.

Concerning gradient processes, we will say that ∇Φ has polynomial growth if
there exists C > 0, p ≥ 1 such that |∇ηΦt(ω)| ≤ C(1 + ‖ω‖p∞) for all (t, ω) ∈ Λ̄
and η ∈ Ω̄t.

We say that ∇Φ is continuous if for all η ∈ Ω̄t, (t, ω) 7→ ∇ηΦt(ω) ∈ C0(Λ̄).

Finally we define C1,2
+ (Λ̄) the set of elements Φ ∈ C0(Λ̄) verifying the follow-

ing hypothesis.

• DΦ,∇Φ,∇2Φ exist and are continuous;

• Φ, DΦ,∇Φ,∇2Φ have polynomial growth;

• there exists p ≥ 1 and a bounded modulus of continuity ρ such that for all
(t, ω), (t, ω′) ∈ Λ̄ and η ∈ Ω̄t,

|∇2
ηΦt(ω)−∇2

ηΦt(ω
′)| ≤ (1 + ‖ω‖p∞ + ‖ω′‖p∞)ρ(‖ω − ω′‖∞).

In the sequel, given Φ̃ ∈ C0(Λ̄), we will denote

Φ : (t, ω) 7−→ Φ̃t(mt[ω]). (4.2)

Lemma 4.7. Let Φ̃ ∈ C0(Λ̄). Then the following holds.
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1. Φ is Fo-progressively measurable.

2. If moreover Φ̃ ∈ C1,2
+ (Λ̄), (t, ω) 7→ DΦ̃t(mt[ω]), (t, ω) 7→ ∇b(·,t)Φ̃t(mt[ω]);

(t, ω) 7→ ∇2
ki(·,t)

Φ̃t(mt[ω]), i ≤ d are also Fo-progressively measurable.

Proof. 1. We fix Φ̃ ∈ C0(Λ̄). By Corollary 3.12, (t, ω) 7→ mt[ω] is Fo-

progressively measurable, so that Ψ :
(t, ω) 7−→ (t,mt[ω])

[0, T ]× Ω −→ [0, T ]× Ω
is

(Proo,B([0, T ])⊗F)-measurable. We remark that [0, T ]×Ω is a subset of
Λ̄. The restriction of Φ̃ to [0, T ]×Ω of Λ̄ is continuous for the usual topol-
ogy hence (B([0, T ])⊗ F ,B(R))-measurable. By composition, Φ = Φ̃ ◦Ψ
is (Proo,B(R))-measurable.

2. We now discuss the statement 2. Since DΦ̃ ∈ C0(Λ̄), by the statement
1. of the lemma that (t, ω) 7→ DΦ̃t(mt[ω]) is progressively measurable.
We will now show that the same holds for the first order space derivative
(t, ω) 7→ ∇b(·,t)Φ̃t(mt[ω]).

Since Φ̃ is in C1,2
+ (Λ̄), then by definition, for all η, (t, ω) 7→ ∇ηΦ̃t(ω) is

continuous. On the other hand, it is clear that for all (t, ω), η 7→ ∇ηΦ̃t(ω)

is measurable as the limit of measurable mappings. So (η, t, ω) 7→ ∇ηΦ̃t(ω)
is jointly measurable, see Lemma 4.51 in [1]. Since b is Borel, then t 7→ bt

is Borel from ([0, T ],B([0, T ])) into (Ω̄, F̄). By composition, we get that
(t, ω) 7→ ∇b(·,t)Φ̃t(ω) is measurable. We can now conclude as for the first
statement by composing with (t, ω) 7→ (t,mt(ω)).

Finally, similar arguments allow to show the progressive measurability of
the second order space derivatives (t, ω) 7→ ∇2

ki(·,t)
Φ̃t(mt[ω]), i ≤ d .

Definition 4.8. We denote D(Ã) to be the set of mappings Φ̃ ∈ C1,2
+ (Λ̄) such

that (t, ω) 7→ DΦ̃t(mt[ω]), (t, ω) 7→ ∇b(·,t)Φ̃t(mt[ω]); (t, ω) 7→ ∇ki(·,t)Φ̃t(mt[ω]), i ≤

d, (t, ω) 7→ ∇2
ki(·,t)

Φ̃t(mt[ω]), i ≤ d have polynomial growth. On that space we

define the linear operator Ã by setting, for all Φ̃ ∈ D(Ã) and t ∈ [0, T ],

ÃΦ̃t := DΦ̃t +∇b(·,t)Φ̃t +
1

2

∑

i≤d

∇2
ki(·,t)

Φ̃t.

We then denote D(A) to be the set of processes Φ : (t, ω) 7−→ Φ̃t(mt[ω])
where Φ̃ ∈ D(Ã), and A to be the linear operator defined for all Φ : (t, ω) 7−→
Φ̃t(mt[ω]) ∈ D(A) by

AΦt(ω) := ÃΦ̃t(mt(ω)), ∀(t, ω). (4.3)

Remark 4.9. C1,2
+ (Λ̄), D(Ã) and D(A) are linear algebras.

Proposition 4.10. (D(A), A) introduced in previous Definition 4.8 fulfills Hy-
pothesis 2.13.
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Proof. Items 1. and 2. of Hypothesis 2.13 are fulfilled thanks to Lemma 4.7;
items 3. and 4. follow from polynomial growth of Φ, AΦ for all Φ ∈ D(A) and
the fact that for all s, η, p ≥ 1, sup

t∈[0,T ]

|Xt| ∈ Lp(Qs,η), see Proposition 3.15 and

the fact that Qs,η is a translation of Ps.

The next step consists in proving that (Qs,η)(s,η)∈[0,T ]×Ω solves the martin-
gale problem associated to (D(A), A), see Definition 2.14. Indeed by Remark
4.4, for all (s, η), under Qs,η, the process X̃s,η := X −ms[η] solves the Volterra
SDE

X̃
s,η
t =

∫ t

s

b(t, r)dr +

∫ t

s

k(t, r)dBs,η
r , t ∈ [s, T ]. (4.4)

In this framework Theorem 3.9 in [26] implies the following chain rule formula.

Theorem 4.11. For every (s, η) ∈ [0, T ] × Ω and Φ̃ ∈ C1,2
+ (Λ̄) we have the

following. For all t ≥ s

Φ̃t(mt[ω]−ms[η]) = Φ̃s(0) +
∫ t

s
DΦ̃r(mr[ω]−ms[η])dr

+
∫ t

s
∇b(·,r)Φ̃r(mr[ω]−ms[η])dr

+ 1
2

∑

i≤d

∫ t

s
∇2

ki(·,r)
Φ̃r(mr[ω]−ms[η])dr

+
∑

i≤d

∫ t

s
∇ki(·,r)Φ̃r(mr[ω]−ms[η])dB

i,s,η
r , Q

s,η a.s.

(4.5)

Proposition 4.12. We suppose the validity of Hypotheses 3.4 and 4.1. Then
(Qs,η)(s,η)∈[0,T ]×Ω solves the martingale problem associated to (D(A), A), see
Definition 2.14. Moreover, (D(A), A) is a weak generator of (Ps)s∈[0,T ], see
Definition 2.15.

Proof. We fix (s, η). The first item of Definition 2.14 holds by construction of
(Qs,η)(s,η)∈[0,T ]×Ω, see Proposition 3.7 2.

We now fix Φ : (t, ω) 7−→ Φ̃t(mt[ω]) ∈ D(A) with Φ̃ ∈ C1,2
+ (Λ̄). It is not hard

to see that Φ̃s,η : (t, ω) 7→ Φ̃t(ω +ms[η]) also belongs to C1,2
+ (Λ̄) with

• DΦ̃s,η
t (ω) = DΦ̃t(ω +ms[η]),

• ∇b(·,t)Φ̃
s,η
t (ω) = ∇b(·,t)Φ̃t(ω +ms[η]),

• ∇2
ki(·,t)

Φ̃s,η
t (ω) = ∇2

ki(·,t)
Φ̃t(ω +ms[η]), i ≤ d,

for all (t, ω). Applying Theorem 4.11 to Φ̃s,η, we obtain

Φ̃t(mt[·]) = Φ̃s(ms[η]) +
∫ t

s

(

DΦ̃r +∇b(·,r)Φ̃r +
1
2

∑

i≤d

∇2
ki(·,r)

Φ̃r

)

(mr)dr

+
∑

i≤d

∫ t

s
∇ki(·,r)Φ̃r(mr)dB

i,s,η
r , t ∈ [s, T ],

(4.6)
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in the sense of Qs,η-indistinguishability. Therefore, by definition of Φ and A in
Definition 4.8, Φ −

∫ ·

0 AΦrdr is on [s, T ] a (Qs,η,Fo)-local martingale, since it
is indistinguishable, from Φs(η) +

∑

i≤d

∫ ·

s
∇ki(·,r)Φ̃r(mr)dB

i,s,η
r .

Since for all i, (t, ω) 7→ ∇ki(·,r)Φ̃r(mr[ω]) is assumed to have polynomial
growth and sup

t∈[s,T ]

Xt ∈ L2(Qs,η) then, for all i, sup
t∈[s,T ]

|∇ki(·,r)Φ̃r(mr)| ∈ L2(Qs,η),

therefore finally
∑

i≤d

∫ ·

s
∇ki(·,r)Φ̃r(mr)dB

i,s,η
r is a martingale. So Φ−

∫ ·

0
AΦrdr is

on [s, T ] a (Qs,η,Fo)-martingale. Since this holds for any (s, η) and Φ ∈ D(A)
then (Qs,η)(s,η)∈[0,T ]×Ω solves the martingale problem associated to (D(A), A).

The second part of statement follows by Proposition 2.16.

Notation 4.13. For every Φ̃ ∈ D(Ã) and (s, η) ∈ [0, T ]×Ω, we denote M [Φ]s,η

the continuous Qs,η-martingale Φ− Φs(η) −
∫ ·

s
AΦrdr, indexed by [s, T ].

A direct consequence of Lemma 3.14 in [2], taking into account Notation
4.13, is the following.

Corollary 4.14. Let Φ̃, Ψ̃ ∈ D(A). Then for all (s, η)

〈M [Φ]s,η,M [Ψ]s,η〉 =
∑

i≤d

∫ ·

s

∇ki(·,r)Φ̃r(mr)∇ki(·,r)Ψ̃r(mr)dr, (4.7)

with respect to Qs,η.

The following bilinear operator was introduced in [2] in a general path-
dependent framework.

Notation 4.15. Let Φ,Ψ ∈ D(A). We denote by Γ(Φ,Ψ) the process A(ΦΨ)−
ΦA(Ψ) − ΨA(Φ). If Φ or Ψ is multidimensional, then we define Γ(Φ,Ψ) as a
vector or matrix, coordinate by coordinate. Γ(Φ,Φ) will be denoted Γ(Φ).

Γ can be interpreted as a path-dependent extension of the concept of carré
du champ operator in the theory of Markov processes.

Proposition 4.16. For every Φ̃, Ψ̃ ∈ D(Ã), we have

Γ(Φ,Ψ)t(ω) =
∑

i≤d

∇ki(·,t)Φ̃t∇ki(·,t)Φ̃t(mt[ω]), ∀t, ω.

Proof. This directly follows from the fact that D and for ζ, ∇ζ verify the usual
product rules.

4.3 Construction of the driving martingale for the BSDE

Notation 4.17. We will indicate by dt ⊗ dQs,η the measure on B([0, T ])⊗ F

defined by dt⊗dQs,η(C) = Es,η
[

∫ T

s
1C(r, ω)dr

]

, and by L2(dt⊗dQs,η) the space

of Fs,η-progressively measurable processes Y such that Es,η
[

∫ T

s
|Yr|2dr

]

< ∞.
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H2
0(Q

s,η) will denote the space of (Qs,η,Fs,η)-square integrable martingales
vanishing at time s, hence on the interval [0, s] since it is Qs,η a.s. deterministic
on [0, s[, see Proposition 2.12. The elements of that space will be identified up
to indistinguishability with respect to Qs,η.

We define L2
uni as the linear space of Fo-progressively measurable processes

belonging to L2(dt ⊗ dQs,η) for all (s, η) ∈ [0, T ] × Ω. Let N be the linear
subspace of L2

uni constituted of elements which are equal to 0 dt⊗dQs,η a.e. for
all (s, η) ∈ [0, T ]× Ω. We denote L2

uni := L2
uni\N .

Definition 4.18. A property will be said to hold quasi surely, abbreviated by

q.s. if it holds everywhere but in some C ∈ Proo such that Es,η
[

∫ T

s
1C(t, ω)dt

]

=

0 for all (s, η).

Notation 4.19. From now on, mT := (mT,1, · · · ,mT,d) will denote what we
call prediction process (t, ω) 7→ mt[ω](T ) = E

t,ω[XT ]−βT , in agreement with
the last statement of Remark 4.4 and Definition 4.2. For all (s, η) we introduce
the Rd-valued Qs,η-martingale

mT,s,η := (mT,1,s,η, · · · ,mT,d,s,η) :=

∫ ·

s

k(T, r)dBs,η
r ,

indexed by [s, T ] (extended by convention on [0, s] with the value 0), where we
recall that Bs,η is the Brownian motion introduced in Remark 4.4.

Proposition 4.20. For all i ≤ d, we have the following.

1. mT,i and (mT,i)2 belong to D(A) with A(mT,i) ≡ 0 and

Γ(mT,i) =
∑

j≤d

k2i,j(T, ·) = (kk⊺)i,i(T, ·),

which is bounded;

2. for every Φ̃ ∈ D̃(Ã) we have Γ(Φ,mT,i)t(ω) =
∑

j≤d

ki,j(T, t)∇kj(·,t)Φ̃t(mt[ω]),

for all t, ω;

3. for every (s, η), on [s, T ], mT,i,s,η is Qs,η-indistinguishable from

mT,i − mT,i
s (η); it belongs to H2

0(Q
s,η) and d〈mT,i,s,η〉t

dt
=
∑

j≤d

k2i,j(T, t) is

bounded dt⊗ dQs,η a.e.;

4. mT,i ∈ L2
uni.

Remark 4.21. Let 1 ≤ i ≤ d. For all (t, ω), by definition of canonical process,

we get m
T,i
t (ω) = X i

T (mt[ω]). So (t, ω) 7→ X i
T (ω) is the Φ̃ corresponding to

Φ = mT,i.
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Proof. We fix i ≤ d.
By Example 3.5 1. in [26] both (t, ω) 7→ X i

T (ω), (X
i
T )

2(ω) belong to C1,2
+ (Λ̄);

also DX i
T ≡ 0, ∇b(·,t)X

i
T (ω) = bi(T, t), ∇kj(·,t)X

i
T (ω) = ki,j(T, t) for all j ≤

d; (t, ω) and that ∇2
kj(·,t)

(X i
T )t(ω) = 0 for all j ≤ d, (t, ω). Therefore, according

to Definition 4.8, mT,i belongs to D(A) and A(mT,i) ≡ 0. Since (X i
T )

2 ∈ C1,2
+ (Λ̄),

then by Proposition 4.16, Γ(mT,i) is equal to
∑

j≤d

k2i,j(T, ·) which is bounded by

Hypothesis 4.1. This shows item 1.
The second statement also holds by Proposition 4.16, and the fact that

∇kj(·,t)X
i
T (ω) = ki,j(T, t) for all i, j ≤ d and (t, ω).

Concerning the third statement, we have X i
T = mT,i

s (η)+βi
T+
∫ T

s
ki(T, r)dB

s,η
r

Q

s,η a.s. (see Remark 4.4) so that for all t ≥ s, taking into account Notation
4.19

m
T,i
t (ω) = E

t,ω[X i
T ]− βi

T

= E

s,η[X i
T |F

o
t ](ω)− βi

T Q

s,ηa.s.

= mT,i
s (η) + βi

T − βi
T +Es,η[

∫ T

s
ki(T, r)dB

s,η
r |Fo

t ](ω) Q

s,ηa.s.
= mT,i

s (η) +
∫ t

s
ki(T, r)dB

s,η
r Q

s,ηa.s.,
(4.8)

where the second equality holds because (Qs,η) is a path-dependent canonical
class, taking into account Remark 2.5. So, according to Notation 4.19 mT,i,s,η

is a Qs,η-modification of mT,i −mT,i
s (η). Since mT,i,s,η is Qs,η-a.s. continuous

and t 7→ m
T,i
t (ω) −mT,i

s (η) is right-continuous for all ω (see Proposition 3.11),
then those processes are indistinguishable. The quadratic variation of mT,i,s,η is
∑

j≤d

∫ ·

s
k2i,j(T, r)dr so d〈mT,i,s,η〉t

dt
=
∑

j≤d

k2i,j(T, t) dt⊗dQs,η a.e. is indeed bounded

a.e. since k is bounded. mT,i,s,η is a square integrable martingale, because its
quadratic variation is bounded.

We now discuss the last statement. For all (s, η), mT,i,s,η is on [s, T ] Qs,η-
indistinguishable from mT,i − mT,i

s (η) therefore mT,i ∈ L2
uni if and only if

for every (s, η), mT,i,s,η ∈ L2(dt ⊗ dQs,η). This indeed holds, since for ev-
ery (s, η), by statement 3., mT,i,s,η is a square integrable martingale, hence
sup

r∈[s,T ]

|mT,i,s,η
r | ∈ L2(Qs,η) by Doob inequality.

4.4 The semilinear path-dependent PDE and associated

BSDE

We now introduce the path-dependent PDE that interests us. We consider some
ξ, f verifying the following hypothesis.

Hypothesis 4.22.

1. ξ is a r.v. with polynomial growth;

2. f : ([0, T ]×Ω)×R×R 7−→ R is measurable with respect to Proo⊗B(R)⊗
B(R) and such that
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(a) f(·, ·, 0, 0) has polynomial growth;

(b) there exists K > 0 such that for all (t, ω, y, y′, z, z′) ∈ [0, T ] × Ω ×
R×R×R×R

|f(t, ω, y′, z′)− f(t, ω, y, z)| ≤ K(|y′ − y|+ |z′ − z|). (4.9)

We recall that the notion of polynomial growth has been introduced in Def-
inition 4.6.

Remark 4.23. A direct consequence of Proposition 3.15 and the fact that Qs,η

is a translation of Ps,η, is that since ξ, f verify Hypothesis 4.22, then ξ belongs
to L2(Qs,η) for all (s, η) and f(·, ·, 0, 0) ∈ L2

uni. We remark that Qs,η is just
a translation of Ps,η, under which ‖ω‖∞ admits finite moments of every order,
see Proposition 3.15.

We now consider the following abstract path-dependent non linear equation.
{

AΦ + f(·, ·,Φ,Γ(mT ,Φ)) = 0 on [0, T ]× Ω
ΦT = ξ on Ω.

(4.10)

Remark 4.24. In previous equation (4.10), if Φ̃ ∈ D(Ã) then the equation can
also be written


















(

DΦ̃t +∇b(·,t)Φ̃t +
1
2

∑

i≤d

∇2
ki(·,t)

Φ̃t + f
(

t, ·, Φ̃t, k(T, t)∇k(·,t)Φ̃t

)

)

(mt[ω]) = 0,

on [0, T ]× Ω

Φ̃T (ω) = ξ(ω) on Ω,
(4.11)

see Definition 4.8 and Proposition 4.20, observing that mT (ω) = ω, hence
Φ̃T = ΦT .

Notation 4.25. Equation (4.10) will be denoted PDPDE(f, ξ).

Definition 4.26. A process Y will be called a classical solution of PDPDE(f, ξ)
if it belongs to D(A) and if Y verifies (4.10). A process Y ∈ L2

uni will be called
decoupled mild solution of PDPDE(f, ξ) if there exist auxiliary processes
Z1, · · · , Zd ∈ L2

uni such that for all (s, η) ∈ [0, T ]× Ω:

{

Ys(η) = Ps[ξ](η) +
∫ T

s
Ps [f (r, ·, Yr, Zr)] (η)dr

(Y mT )s(η) = Ps[ξm
T
T ](η)−

∫ T

s
Ps

[(

Zr −mT
r f (r, ·, Yr, Zr)

)]

(η)dr,

(4.12)
where Z := (Z1, · · · , Zd).

The couple (Y, Z) will be said to solve the identification problem IP (f, ξ).

Decoupled mild solutions were introduced in path-dependent framework in
[2] and in the framework of classical parabolic PDEs in [3].
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To PDPDE(f, ξ) we associate the following family of BSDEs indexed by
(s, η) and defined on the time interval [s, T ]:

Y s,η
· = ξ +

∫ T

·

f

(

r, ·, Y s,η
r ,

d〈M s,η,mT,s,η〉r
dr

)

dr − (M s,η
T −M s,η

· ), (4.13)

in the stochastic basis (Ω,Fs,η,Fs,η,Qs,η), where mT,s,η, which was introduced
in Notation 4.19, is the driving martingale.

Remark 4.27. Taking into account Hypothesis 4.22, Remark 4.23 and the fact

that d〈mT,s,η〉t
dt

is bounded dt ⊗ dQs,η a.e. (see Proposition 4.20), Theorem 3.3

and Remark 3.4 in [3] applied with M̂ := mT,s,η; Vt ≡ t imply that for every
(s, η), there exists a unique couple (Y s,η,M s,η) ∈ L2(dt ⊗ dQs,η) × H2

0(Q
s,η)

verifying (4.13) on [s, T ].

We state now the main results of this paper.

Theorem 4.28. Assume the validity of Hypotheses 3.4 for P, 4.1 for b, k and
4.22 for ξ, f .

1. PDPDE(f, ξ) has a unique decoupled mild solution;

2. IP (f, ξ) admits a unique solution (Y, Z) ∈ L2
uni × (L2

uni)
d. By unique-

ness we mean more precisely the following: if (Y, Z) and (Ȳ , Z̄) are two
solutions then Y and Ȳ are identical and Z = Z̄ q.s.

3. For every (s, η), let (Y s,η,M s,η) be the solution of (4.13). Then, for
every (s, η), we have that, Y s,η is on [s, T ] a Qs,η modification of Y , and

Zt =
d〈Ms,η,mT,s,η〉t

dt
dt⊗ dQs,η a.e. In particular, Ys(η) = Y s,η

s .

Proof. We make use of Theorem 3.19 in [2] applied with the operator (D(A), A)
introduced in Definition 4.8 and with Ψ := mT .

(Qs,η)(s,η)∈[0,T ]×Ω is a progressive path-dependent canonical class verifying
Hypothesis 2.6 (see Propositions 3.10, 3.18 and Corollary 3.21) and (D(A), A)
is weak generator of (Ps)s∈[0,T ] (see Proposition 4.12) as required in Section 3.6
of [2]. Ψ := mT verifies Hypothesis 3.16 in [2] thanks to Proposition 4.20, and
ξ, f verify Hypothesis 3.6 in [2] thanks to Hypothesis 4.22 and Remark 4.23. So
Theorem 3.19 in [2] applies.

The link between decoupled mild solutions and classical solutions is the
following.

Proposition 4.29.

1. Let Φ be a classical solution of PDPDE(f, ξ), see Definition 4.26. Then
(Φ,Γ(mT ,Φ)) is a solution of the identification problem IP (f, ξ) (see Defi-
nition 4.26) and in particular, Φ is a decoupled mild solution of PDPDE(f, ξ);
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2. there is at most one classical solution of PDPDE(f, ξ);

3. assume that the unique decoupled mild solution Y of PDPDE(f, ξ) verifies
Y ∈ D(A); then Y is a classical solution q.s., in the sense that YT = ξ

(for all ω) and that A(Y ) = −f(·, ·, Y,Γ(mT , Y )) q.s., see Definition 4.18.

Proof.

1. Let Φ : (t, ω) 7−→ Φ̃t(mt[ω]) be a classical solution. First, since Φ belongs
to D(A) then Φ and

Γ(mT,i,Φ) : (t, ω) 7−→
∑

j≤d

ki,j(T, t)∇kj(·,t)Φ̃t(mt[ω]), i ≤ d,

have polynomial growth, see Definition 4.8. Hence thanks to Proposition
3.15 and since Qs,η is a translation of Ps,η , those processes belong to
L2
uni.

On the other hand, let (s, η) ∈ [0, T ]× Ω. By Proposition 4.12,

M [Φ]s,η = Φ− Φs(η) −

∫ ·

s

AΦrdr, (4.14)

M [ΦmT ]s,η = ΦmT − Φs(η)m
T
s (η)−

∫ ·

s

A(ΦmT )rdr, (4.15)

are Qs,η-martingales on [s, T ] vanishing at time s. By Definition 4.26 we
have AΦ = −f(·, ·,Φ,Γ(mT ,Φ)) and by Propositions 4.16, 4.20, taking
into account Notation 4.15, we have

A(ΦmT ) = Γ(Φ,mT )+ΦAmT+mTAΦ = Γ(Φ,mT )−mT f(·, ·,Φ,Γ(mT ,Φ)),

so the martingales (4.14), indexed by [s, T ], can be rewritten as
{

M [Φ]s,η = Φ− Φs(η) +
∫ ·

s
f(r, ·,Φr,Γ(m

T ,Φ)r)dr
M [ΦmT ]s,η = ΦmT

− Φs(η)m
T
s (η)−

∫ ·

s
(Γ(mT ,Φ)r −mT

r f(r, ·,Φ,Γ(m
T ,Φ)r)dr.

(4.16)
Finally, again by Definition 4.26 we have ΦT = ξ, so, for any (s, η), taking
the expectations in (4.16) at s = T , we get






E

s,η
[

ξ − Φs(η) +
∫ T

s
f(r, ·,Φr,Γ(m

T ,Φ)r)dr
]

= 0;

E

s,η
[

ξmT
T − (ΦmT )s(η)−

∫ T

s
(Γ(mT ,Φ)r −mT

r f(r, ·,Φ,Γ(m
T ,Φ)r))dr

]

= 0,

(4.17)
which by Fubini’s theorem and Definition 2.10 yields
{

Φs(η) = Ps[ξ](η) +
∫ T

s
Ps

[

f
(

r, ·,Φr,Γ(m
T ,Φ)r

)]

(η)dr

(ΦmT )s(η) = Ps[ξm
T
T ](η)−

∫ T

s
Ps

[

Γ(mT ,Φ)r −mT
r f

(

r, ·,Φr,Γ(m
T ,Φ)r

)]

(η)dr

(4.18)

and the first item is proved.

2. The second item follows from item 1. and by the uniqueness of a decoupled
mild solution of PDPDE(f, ξ), see Theorem 4.28 1.
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3. Concerning item 3. let (Y, Z) be the unique solution of IP (f, ξ). We first
note again that the first line of (4.12) taken with s = T yields YT = ξ.

Let us now fix some (s, η) ∈ [0, T ] × Ω. The fact that Y ∈ D(A),
Proposition 4.12 implies that M s,η[Y ] = Y − Ys −

∫ ·

s
AYrdr is on [s, T ]

a continuous Qs,η-martingale. Hence Y is under Qs,η a continuous semi-
martingale. Let us keep in mind the unique solution (Y s,η,M s,η) of (4.13).
A consequence of item 3. of Theorem 4.28 is that Y admits on [s, T ],
Y s,η as Qs,η cadlag version which is a special semi-martingale verify-
ing Y

s,η
t = Y s,η

s −
∫ t

s
f(r, Yr, Zr)dr + M

s,η
t , t ∈ [s, T ]. Since Y is Qs,η

a.s. continuous, then Y and Y s,η are actually Qs,η-indistinguishable on
[s, T ]; so the uniqueness of the decomposition of the semi-martingale Y ,
yields that (

∫ ·

s
AYrdr,M

s,η[Y ]) and (−
∫ ·

s
f(r, Yr, Zr)dr,M

s,η) are Qs,η-
indistinguishable on [s, T ]. Since this holds for all (s, η), by Definition 4.18
we have AY = −f(·, ·, Y, Z) q.s. so we are left to show that Z = Γ(mT , Y )
q.s.

For this we fix again (s, η). By item 3. of Theorem 4.28, 〈M s,η,mT,s,η〉 =
∫ ·

s
Zrdr. By Corollary 4.14 and Propositions 4.16, 4.20, we have

〈M s,η[Y ],mT,s,η〉 =

∫ ·

s

Γ(mT ,Φ)rdr.

As we have remarked above, M s,η = M s,η[Y ] so
∫ ·

s
Zrdr = 〈M s,η,mT,s,η〉 =

〈M s,η[Y ],mT,s,η〉 =
∫ ·

s
Γ(mT ,Φ)rdr under Qs,η on [s, T ]. Since this holds

for all (s, η), we indeed have by Definition 4.18 that Z = Γ(mT ,Φ) q.s.,
and the proof is complete.

A Technical proofs of Section 3

Proof of Proposition 3.10.
The fact that item 1. of Definition 2.4 holds comes from item 1. of Propo-

sition 3.7. We now show that item 2. of Definition 2.4 holds. We fix s ∈ [0, T ].

By item 2. (b) of Proposition 3.7,
η 7−→ P

s,η

Ωs −→ P(Ω)
is continuous hence Borel,

and by Proposition 5.3 in [4], B(Ωs) = Ωs ∩ Fo
s . Since πs : Ω → Ωs is trivially

(Fo
s ,Ωs ∩ Fo

s )-measurable, taking Definition 3.8 into account, it follows that
η 7−→ P

s,η

Ω −→ P(Ω)
is Fo

s -measurable; so item 2. of Definition 2.4 holds.

We are left to show that its item 3. also holds. We fix 0 ≤ s ≤ t ≤ T . We
recall that there exists a countable π-system ΠT (resp. Πt) generating F (resp.
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Fo
t ), see Notation 5.3 in [4] for instance. We fix F ∈ ΠT and G ∈ Πt and we get

E

s,η[Pt,ζ(F )1G(ζ)]
= E

s,η[Et,ζ [1F (ω)]1G(ζ)]
= E

s,η[Et,ζ [1F (ω)1G(ζ)]]
= E

s,η[Et,ζ [1F (ω)1G(ω)]]
= E[E[1F1G|Fo

t ]|F
o
s ](η), P a.s.

= E[1F1G|Fo
s ](η), P a.s.

= E

s,η[1F1G], P a.s.,

(A.1)

where the third equality holds because G ∈ Fo
t and Pt,ζ(ωt = ζt) = 1 therefore

1G = 1G(ζ) P
t,ζ-a.s.; the fourth and sixth equalities hold by (3.3). Since Πt

and ΠT are countable, there is a set N c of P-full measure, such that for all η in
a set N c

E

s,η[Pt,ω(F )1G(ω)] = E
s,η[1F1G], (A.2)

for all F ∈ ΠT , G ∈ Πt. By a monotone class argument, for all η ∈ N c, (A.2)
holds for all F ∈ F , G ∈ Fo

t . Therefore for every η ∈ N c, (Pt,ω)ω∈Ω verifies
(2.1).

We will now show that (Pt,ω)ω∈Ω verifies (2.1) for all η ∈ Ω and not just
for η ∈ N c. Since N c is of full measure, then its closure is a closed set of
full measure hence is equal to Ω by Hypothesis 3.4 item 2., so N c is dense in
Ω. We fix η ∈ Ω, a sequence (ηn)n of elements of N c converging to η, some
Φ ∈ Cb(Ω,R) and some Fo

t -measurable Ψt ∈ Cb(Ω,R). For every n, since
ηn ∈ N c, then (Pt,ω)ω∈Ω verifies (2.1) with (s, η) replaced by (s, ηn), so

E

s,ηn [ΦΨt] = Es,ηn [Et,ω[Φ]Ψt(ω)]. (A.3)

Φ,Ψt are bounded continuous. By Proposition 3.7 item 2.(b), ω 7→ P

t,ω is
continuous; by definition of the topology on P(Ω), ω 7→ E

t,ω[Φ] is (bounded)
continuous, therefore Et,·[Φ]Ψt is bounded continuous; moreover ΦΨt is also
bounded and continuous. Since η 7→ P

s,η is continuous, we can pass to the limit
in n in (A.3) and we get

E

s,η[ΦΨt] = Es,η[Et,ω[Φ]Ψt(ω)]. (A.4)

(A.4) holds for all bounded continuous Φ and bounded continuous Fo
t -measurable

Ψt so by the functional monotone class theorem (see Theorem 21 in [9] Chap-
ter I), it holds for all bounded measurable Φ and bounded Fo

t -measurable Ψt.
Since this is true for any η we have shown in particular that for all η, (Pt,ω)ω∈Ω

verifies (2.1), i.e. item 3. of Definition 2.4.

Remark A.1. For given s ∈]0, T ], Ω∗
s can be characterized as the set of bounded

positive measures on [0, s] not charging 0.
The action of π∗

s : Ω∗
s −→ Ω∗ is given by π∗

s (µ) : ω 7−→ µ(ω|[0,s]) for all
µ ∈ Ω∗

s.
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Proof of Proposition 3.11.
We fix η ∈ Ω and s ∈ [0, T [ and we show that m·[η] is right-continuous in s.
We recall that πsKπ∗

sΩ
∗
s is dense in Ωs and that on Kπ∗

sΩ
∗
s, ms◦πs coincides

with the identity, see Proposition 3.7 item 2.(f). Therefore since for all δ ≥ 0,
we clearly have π∗

sΩ
∗
s ⊂ π∗

s+δΩ
∗
s+δ, so Kπ∗

sΩ
∗
s ⊂ Kπ∗

s+δΩ
∗
s+δ then for all ǫ ≥ 0

there exists ηǫ ∈ Kπ∗
sΩ

∗
s such that

‖πs(η) − πs(ηǫ)‖∞ ≤
ǫ

4Mop

;

msπs(ηǫ) = ηǫ; (A.5)

for all δ ≥ 0,ms+δπs+δ(ηǫ) = ηǫ.

For all δ ≥ 0, by Definition 3.8 we write

ms+δ(η)−ms(η)
= ms+δπs+δ(η)−msπs(η)
= (ms+δπs+δ(η)−ms+δπs(η)) + (ms+δπs(η)−ms+δπs(ηǫ))

+(ms+δπs(ηǫ)−ms+δπs+δ(ηǫ)) + (ms+δπs+δ(ηǫ)−msπs(ηǫ))
+(msπs(ηǫ)−msπs(η)),

(A.6)

where the fourth term of the sum is equal to zero since by (A.5), msπs(ηǫ) =
ηǫ = ms+δπs+δ(ηǫ). So we obtain

‖ms+δ(η)−ms(η)‖∞
≤ ‖ms+δπs+δ(η)−ms+δπs(η)‖∞ + ‖ms+δπs(η)−ms+δπs(ηǫ)‖∞

+‖ms+δπs(ηǫ)−ms+δπs+δ(ηǫ)‖∞ + ‖msπs(ηǫ)−msπs(η)‖∞
≤ Mop(‖πs+δ(η) − πs(η)‖∞ + 2‖πs(η) − πs(ηǫ)‖∞ + ‖πs(ηǫ)− πs+δ(ηǫ)‖∞)
≤ ǫ

2 +Mop(‖πs+δ(η)− πs(η)‖∞ + ‖πs(ηǫ)− πs+δ(ηǫ)‖∞,

(A.7)
where the second inequality holds by Proposition 3.7 item 2. (e), and the third
inequality by the first line of (A.5). Since clearly, for all ω ∈ Ω, πs+δ(ω) tends
uniformly to πs(ω), then there exists δ small enough such that ‖πs+δ(η) −
πs(η)‖∞ ≤ ǫ

4Mop
and ‖πs+δ(η)−πs(η)‖∞+ ‖πs(ηǫ)−πs+δ(ηǫ)‖∞ ≤ ǫ

4Mop
which

combined with (A.7) gives

‖ms+δ(η)−ms(η)‖∞ ≤ ǫ; (A.8)

the right-continuity of m·(η) at time s is now proved.

Proof of Proposition 3.16.
We fix some η0 ∈ Ω. It is obvious that supp(Ps,η0) ⊂ ηs0 + Ω⊥

s . We assume
that there exists an open set of ηs0 +Ω⊥

s which has Ps,η0 zero measure. We will
find a contradiction, and this will imply that supp(Ps,η0) = ηs0 +Ω⊥

s . ηs0 + Ω⊥
s

is a closed subset of Ω. Suppose that there is an open subset (with respect to
the induced topology) of ηs0 + Ω⊥

s having zero (Ps,η0)-measure. It necessarily
contains a set of type ηs0 +B(ζ, δ) ∩Ω⊥

s where B(ζ, δ) is the open ball (in Ω) of
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center ζ ∈ Ω and radius δ > 0. Then we have

P

s,η0(ηs0 +B(ζ, δ) ∩ Ω⊥
s ) = 0

⇐⇒ P

s,η0(ωs = ηs0 and π⊥
s (ω) ∈ B(ζ, δ)) = 0

⇐⇒ P

s,η0(π⊥
s (ω) ∈ B(ζ, δ)) = 0

⇐⇒ P

s,η0((π⊥
s )−1 (B(ζ, δ))) = 0,

(A.9)

where we remark that, being π⊥
s continuous, (π⊥

s )
−1 (B(ζ, δ)) is an open set of

Ω. By continuity of ms, m−1
s (B(ms[η0],

δ
2 )) is also an open set of Ω.

Let η ∈ m−1
s (B(ms[η0],

δ
2 )). Then

P

s,η((π⊥
s )−1

(

B(ζ, δ
2 )
)

)
= P

s,η(ω − ωs ∈ B(ζ, δ
2 ))

= P

s,η(ω − ηs ∈ B(ζ, δ
2 ))

= P

s,η0(ω − ηs +ms[η]−ms[η0] ∈ B(ζ, δ
2 ))

= P

s,η0(ω − ηs + (ηs + π⊥
s (ms[η]))− (ηs0 + π⊥

s (ms[η0])) ∈ B(ζ, δ
2 ))

= P

s,η0(ω − ηs0 + π⊥
s (ms[η]−ms[η0])) ∈ B(ζ, δ

2 ))
= P

s,η0(ω − ωs + π⊥
s (ms[η]−ms[η0])) ∈ B(ζ, δ

2 ))
= P

s,η0(π⊥
s (ω) ∈ B(ζ, δ

2 )− (ms[η]−ms[η0]))
≤ P

s,η0(π⊥
s (ω) ∈ B(ζ, δ))

= 0,
(A.10)

where the third equality holds by Remark 3.13. The fourth is due to the fact
that any ω can be decomposed in ω = πs(ω) + π⊥

s (ω) (see Notation 3.6) and
that for all ω, ms[ω] and ω coincide on [0, s] hence πs[ms[ω]] = πs[ω] = ωs. The
inequality holds because B(ζ, δ

2 ) − (ms[η] −ms[η0])) ⊂ B(ζ, δ) since ‖ms[η] −

ms[η0]‖ < δ
2 , and the last equality by (A.9).

We can now consider the set m−1
s (B(ms[η0],

δ
2 )) ∩ (π⊥

s )−1 (B(ζ, δ)) which is
open as intersection of open sets, and we compute

P

(

m−1
s (B(ms[η0],

δ
2 )) ∩ (π⊥

s )
−1 (B(ζ, δ))

)

= E

[

E

[

1m
−1

s (B(ms[η0],
δ
2
))1(π⊥

s )−1(B(ζ,δ))|F
o
s

]]

= E

[

E

[

1(π⊥
s )−1(B(ζ,δ))

∣

∣Fo
s

]

1m
−1

s (B(ms[η0],
δ
2
))

]

= E

[

P

s,·
(

(π⊥
s )−1 (B(ζ, δ))

)

1m−1

s (B(ms[η0],
δ
2
))

]

= 0,

(A.11)

where the second equality holds (taking into account Definition 3.8), because
ms is Fs

0 -measurable, and the last equality holds by (A.10).
So the non-empty open set m−1

s (B(ms[η0],
δ
2 )) ∩ π⊥

s )−1 (B(ζ, δ)) is of 0 P-
measure, which is in contradiction with the fact that P is of full support as
assumed in Hypothesis 3.4.

Proof of Proposition 3.18.
We will proceed showing that for every bounded r.v. Z,

(s, η) 7−→ E

s,η[Z] is Fo-progressively measurable. (A.12)
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We will make use of the functional monotone class Theorem. Let C be the

set of r.v. of the type e
i
∑

j

λjX
ij
tj
, where λj , j ≤ n are real numbers and ij , j ≤ n

belong to {1, · · · , d}, then C is stable by product and generates the σ-algebra
F . Since the set of bounded r.v. Z verifying (A.12) contains all constants and
is closed by uniform convergence and by monotone pointwise convergence, then
by the functional monotone class Theorem (see Theorem 21 in [9] which easily
extends to complex valued r.v.) it is enough to show that (A.12) holds for all
Z ∈ C.

We fix n ∈ N, i1, · · · , in ∈ {1, · · · , d} and t1, · · · , tn ∈ [0, T ]. For any (s, η),
(X i1

t1
, · · · , X in

tn
) is under Ps,η a Gaussian vector whose mean is

µs,η := (ms[η]
i1(t1), · · · ,ms[η]

in(tn))

and its covariance matrix Σs, where its coefficient Σs(k, j) is equal to the (ik, ij)-
th coefficient of cs(ti, tj). Therefore for all λ ∈ Rn we have

E

s,η

[

e
i
∑

j

λjX
ij
tj

]

= ei(λ,µs,η)−
1

2
(λ,Σsλ). (A.13)

By Corollary 3.12, m·[·](t) is Fo-progressively measurable for all t, and by
Lemma 3.17, s 7→ Σs is a (deterministic) continuous function. Therefore tak-

ing (A.13) into account, for all λ ∈ R

n, (s, η) 7−→ E

s,η

[

e
i
∑

j

λjX
ij
tj

]

is Fo-

progressively measurable, meaning that (A.12) holds with Z ∈ C and the proof
is complete.

Before the proof of Proposition 3.20, we need a few technical lemmas.

Lemma A.2. Let s ∈ [0, T ]. For any n ∈ N∗ and t1, · · · , tn ∈ [s, T ], the joint

law of (
∫ tj

s
ki(tj , r)dBr)j≤n;i≤d under P is equal to the joint law of (X i

tj
)j≤n;i≤d

under Ps.

Proof. Since both laws relate to mean-zero Gaussian vectors, it is enough to
check that the covariance matrices are the same. We pick some i1, i2 ≤ d and
j1, j2 ≤ n and through Definition 3.2, Lemma 3.17, the following calculations
hold:

E

s[X i1
tj1

X i2
tj2

] = csi1,i2(tj1 , tj2)

=
∫ tj1∧tj2
s

k(tj1 , r)k(tj2 , r)dr

= E

[

∫ tj1
s

k(tj1 , r)dBr

∫ tj2
s

k(tj2 , r)dBr

]

,

(A.14)

which concludes the proof.

Corollary A.3. For all s ∈ [0, T ], 1 ≤ i ≤ d, every finite subfamily of
{

∫ t

s
ki(t, r)dBr |i ≤ d; t ∈ [0, T ]

}

is linearly independent in L2(P), where for all

i ≤ d, ki denotes the i-th raw of k.
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Proof. We assume that
∑

j≤n,i≤d

λj,i

∫ tj

s
ki(tj , r)dBr = 0P a.s. where n ∈ N∗;λi,j ∈

R , j ≤ n, i ≤ d; t1 < · · · < tn ∈ [s, T ].
By previous Lemma A.2, this is equivalent to having

l :=
∑

j≤n,i≤d

λj,iX
i
tj
= 0 P

s a.s. (A.15)

We denote by ls the restriction of l in (A.15) to Ω⊥
s . By (A.15), the non-

empty open set ls
−1(R∗) is of zero Ps-measure, which is in contradiction with

the fact that supp(Ps) = Ω⊥
s thanks to Proposition 3.16.

Lemma A.4. For s ∈ [0, T ] we recall that the spaces Hs(P) and H(P) were
introduced in Definition 3.2. Let Hs(P)⊥ us denote the orthogonal of Hs(P) in
H(P). There is an isometry Φs mapping Hs(P)⊥ onto H(Ps) such that, for
any s, we have the following.

1. For t ≥ s, Φs(Hs(P)⊥ ∩Ht(P)) = Ht(Ps).

2. Let B be the Brownian motion whose existence is assumed in item 3. of
Hypothesis 3.4. We have

Φs

(
∫ t

s

ki(t, r)dBr

)

= X i
t , t ≥ s, i ≤ d. (A.16)

3. Φs is the unique isometry fulfilling (A.16).

Proof. We fix s and denote by p⊥s the orthogonal projection on Hs(P)⊥ from
the space H(P).

For all t ≥ s, 1 ≤ i ≤ d, under P we have X i
t =

∫ s

0 ki(t, r)dBr+
∫ t

s
ki(t, r)dBr ,

where
∫ s

0
ki(t, r)dBr ∈ Hs(P) and

∫ t

s
ki(t, r)dBr is orthogonal to

Span({Bi
r|1 ≤ i ≤ d; r ∈ [0, s]})

L2(P)
(which by Remark 3.5 is equal to Hs(P)),

hence belongs to Hs(P)⊥. So p⊥s (X
i
t) =

∫ t

s
ki(t, r)dBr .

Since H(P) = Span({X i
r|i ≤ d; r ∈ [0, T ]})

L2(P)
and Hs(P)⊥ = p⊥s (H(P))

then by continuity of p⊥s ,

Hs(P)⊥ = Span({p⊥s (X
i
r)|i ≤ d; r ∈ [0, T ]})

L2(P)
= V

L2(P)
,

where

V = Span

{
∫ t

s

ki(t, r)dBr |i ≤ d; t ∈ [0, T ]

}

.

We start by defining Φs on V . First we fix Φs(
∫ t

s
ki(t, r)dBr) conformally to

(A.16). Since by Corollary A.3,
{

∫ t

s
ki(t, r)dBr |i ≤ d; t ∈ [0, T ]

}

is linearly inde-

pendent, then we can extend Φs by linearity to the rest of V without ambiguity.
For all t, u ≥ s, i, j ≤ d, a consequence of Lemma A.2 is that
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E

[
∫ t

s

ki(t, r)dBr

∫ u

s

kj(u, r)dBr

]

= Es[X i
tX

j
u].

This implies that Φs preserves the scalar product, and therefore that it is an
isometry from V onto Span({X i

r|i ≤ d; t ∈ [s, T ]}), as a subset of H(Ps).
By the extension theorem we can (uniquely) extend Φs to a continuous

mapping from Hs(P)⊥ = Span({
∫ t

s
ki(t, r)dBr |i ≤ d; t ∈ [s, T ]})

L2(P)

to

H(Ps) = Span({X i
r|i ≤ d; t ∈ [s, T ]})

L2(P)
.

By continuity of the scalar product, Φs still preserves the scalar product, there-
fore the norm, and therefore is still injective. The surjectivity follows by density
of Span({X i

t |i ≤ d; t ∈ [s, T ]}) in H(Ps) and (A.16).
The proof of items 2. are 3. is contained in previous constructing con-

siderations. It remains to show item 1. We fix t ∈ [s, T ]. We can argue as

above and say that Ht(P) = Span({X i
u|i ≤ d;u ∈ [0, t]})

L2(P)
and therefore

that Hs(P)⊥ ∩ Ht(P) is the closure of Span({p⊥s (X
i
u)|i ≤ d;u ∈ [0, t]}) =

Span({
∫ t

s
ki(u, r)dBr |i ≤ d;u ∈ [s, t]}) whose elements are mapped in Ht(Ps)

by Φs since Φs(
∫ t

s
ki(u, r)dBr) = X i

u ∈ Ht(Ps) for all u ∈ [s, t], i ≤ d. Ht(Ps)
is closed and Φs is continuous, so Φs also maps

Span({

∫ t

s

ki(u, r)dBr |i ≤ d;u ∈ [s, t]})

L2(P)

= Hs(P)⊥ ∩Ht(P),

into Ht(Ps). Conversely, (Φs)−1 maps X i
u to

∫ t

s
ki(u, r)dBr ∈ Hs(P)⊥ ∩Ht(P)

for all u ∈ [s, t], i ≤ d. By continuity of (Φs)−1 (the inverse of an isometry
being an isometry) and since Hs(P)⊥ ∩ Ht(P) is closed, (Φs)−1 also maps

Span({X i
u|i ≤ d;u ∈ [s, t]})

L2(P)
= Ht(Ps) into Hs(P)⊥ ∩Ht(P). This proves

item 1.

In the proof of Proposition 3.20, we will denote by Fo,s,η
t , the σ-field Fo

t

augmented with Ps,η-null sets.

Proof of Proposition 3.20.
By Notation 3.14 we recall that under Ps,η, the law of Xs,η = X − ms[η]

is Ps, where ms[η] is the deterministic function, introduced in Proposition 3.7
and Notation 3.8. Consequently H(Ps,η) = H(Ps). By Lemma A.4 that space
is isometric to Hs(P)⊥. We define

T s,η :
H(Ps) −→ H(Ps,η)

Y 7−→ Y −Es,η[Y ],
(A.17)

which is clearly an isometry and maps X i
t to X

i,s,η
t for all t ≥ s, i ≤ d, hence it

is easy to show
T s,η(Ht(Ps)) = Ht(Ps,η) for all t. (A.18)
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We also define
Φs,η := T s,η ◦ Φs : H

s(P)⊥ −→ H(Ps,η), (A.19)

which is an isometry mapping
∫ t

s
ki(u, r)dBr to X

i,s,η
t for all t ≥ s, i ≤ d.

Combining item 1. of Lemma A.4 and (A.18), it is clear that

Φs,η(Hs(P)⊥ ∩Ht(P)) = Ht(Ps,η) for all t ≥ s. (A.20)

By Remark 3.5 item 2., H(P) contains all the r.v. related to B. Moreover

B
j
t −Bj

s is for all j ≤ d and t ≥ s orthogonal to Span({Bi
r|i ≤ d; r ∈ [0, s]})

L2(P)

which is equal to Hs(P) again by Remark 3.5 2.
So for all t ≥ s, i ≤ d,

Bi
t −Bi

s ∈ Hs(P)⊥ ∩Ht(P) (A.21)

and we denote B
i,s,η
t := Φs,η(Bi

t −Bi
s) which by (A.20) verifies

B
i,s,η
t ∈ Ht(Ps,η). (A.22)

We also denote Bs,η := (B1,s,η, · · · , Bd,s,η). H(Ps,η) is a Gaussian space of
mean-zero r.v. so clearly, (Bs,η

t )t∈[s,T ] is a mean-zero Gaussian process. Taking
into account the isometry (Φs,η)−1, see considerations after (A.21), for all s ≤
r, t, u, v ≤ T , i, j ≤ d, we have

E

s,η[(Bi,s,η
v −Bi,s,η

u )(Bj,s,η
r −B

j,s,η
t )] = 〈Bi,s,η

v −Bi,s,η
u , Bj,s,η

r −B
j,s,η
t 〉H(Ps,η)

= 〈Bi
v −Bi

u, B
j
r −B

j
t 〉H(P)

= E[(Bi
v −Bi

u)(B
j
r −B

j
t )].

(A.23)
In particular, under Ps,η, (Bs,η

t )t∈[s,T ] has independent increments, and for all
s ≤ t ≤ u, Bs,η

u −B
s,η
t has variance u− t.

By Kolmogorov’s Theorem (see Theorem 2.8 and Problem 2.10 in [19])
(Bs,η

t )t∈[s,T ] admits a Ps,η continuous version which is a Brownian motion start-
ing in s and which we still denote (Bs,η

t )t∈[s,T ]. We prove below that this Brow-
nian motion is adapted to (Fo,s,η

t )t∈[s,T ], that filtration being introduced just
after the statement of the present Proposition 3.20. Indeed, for all t, i ≤ d, we
have by (A.22) that B

i,s,η
t ∈ Ht(Ps,η). So B

i,s,η
t is the L2(Ps,η) limit of linear

combinations of values of X at times prior to t, hence it is Fo,s,η
t -measurable as

the L2(Ps,η) limit of Fo,s,η
t -measurable r.v.

For all i ≤ d, t ≥ s,
∫ t

s
ki(t, r)dB

s,η
r is, by linearity and continuity of Φs,η

and by construction of the Wiener integral, equal to Φs,η(
∫ t

s
ki(t, r)dBr). More-

over we also have Φs,η(
∫ t

s
ki(t, r)dBr) = X

i,s,η
t , see the lines after (A.19). In

particular
∫ t

s
ki(t, r)dB

s,η
r = X

i,s,η
t holds in L2(Ps,η) and the first statement of

Proposition 3.20 is proved.
In particular, (Xt)t≥s is adapted to the filtration generated by (Bs,η

t )t∈[s,T ]

augmented with Ps,η-null sets. Since (Bs,η
t )t∈[s,T ] has been shown to be

(Fo,s,η
t )t∈[s,T ]-adapted, then (Fo,s,η

t )t∈[s,T ] is equal to the filtration generated
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by (Bs,η
t )t∈[s,T ] augmented with Ps,η-null sets, which is right-continuous since

(Bs,η
t )t∈[s,T ] is a Brownian Motion, see Proposition 7.7 in [19].
(Fo,s,η

t )t∈[s,T ] is therefore right-continuous. In particular, for all t ≥ s,

Fs,η
t =

⋂

ǫ>0

Fo,s,η
t+ǫ = Fo,s,η

t .

This concludes the ”moreover” statement of Proposition 3.20.
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