
HAL Id: hal-02197277
https://hal.science/hal-02197277

Submitted on 30 Jul 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Identification and Characterization of Memory
Allocation Anomalies in High-Performance Computing

Applications
Antônio Tadeu Azevedo Gomes, Enzo Molion, Roberto Pinto Souto,

Jean-François Méhaut

To cite this version:
Antônio Tadeu Azevedo Gomes, Enzo Molion, Roberto Pinto Souto, Jean-François Méhaut. Identi-
fication and Characterization of Memory Allocation Anomalies in High-Performance Computing Ap-
plications. Simpósio de Sistemas Computacionais de Alto Desempenho (WSCAD), Oct 2019, Campo
Grande, Brazil. �hal-02197277�

https://hal.science/hal-02197277
https://hal.archives-ouvertes.fr

Identification and Characterization of Memory Allocation
Anomalies in High-Performance Computing Applications *

Antônio Tadeu A. Gomes1, Enzo Molion2, Roberto Pinto Souto1 Jean-François Méhaut3,1

1 Laboratório Nacional de Computação Cientı́fica (LNCC), Petrópolis-RJ, Brazil

2École Polytechnique (Polytech Grenoble)
Université Grenoble Alpes, 38000 Grenoble, France

3Université Grenoble Alpes, CNRS, Grenoble INP
LIG, 38000 Grenoble, France

enzo.molion.0@gmail.com

{atagomes,rpsouto}@lncc.br

jean-francois.mehaut@univ-grenoble-alpes.fr

Abstract. A memory allocation anomaly occurs when the allocation of a set of
heap blocks imposes an unnecessary overhead on the execution of an applica-
tion. In this paper, we propose a method for identifying, locating, characterizing
and fixing allocation anomalies, and a tool for developers to apply the method.
We experiment our method and tool with a numerical simulator aimed at ap-
proximating the solutions to partial differential equations using a finite element
method. We show that taming allocation anomalies in this simulator reduces the
memory footprint of its processes by 37.27% and the execution time by 16.52%.
We conclude that the developer of high-performance computing applications
can benefit from the method and tool during the software development cycle.

1. Introduction
Researchers and practitioners have long worked on the performance analysis and op-
timization of high-performance computing applications [Appelbe and Bergmark 1996,
Gropp and Lumsdaine 2006, Servat et al. 2013, Supalov et al. 2014]. These specialists,
however, have marginally considered the subject of memory allocation anomalies. An
allocation anomaly occurs when the allocation of a set of heap blocks imposes an unnec-
essary overhead on the execution of an application. This overhead may be: (i) time-wise,
increasing the number of CPU cycles the application uses because of the heap manage-
ment; or (ii) space-wise, increasing the memory space the heap blocks actually occupy.

In this paper we focus on memory allocation anomalies in the context of numeri-
cal simulators aimed at approximating solutions to partial differential equations (PDEs).
The use of higher-level compiled languages like C++ [Kirk et al. 2006,Arndt et al. 2019]
or dynamic languages such as Python [Logg et al. 2012,Rathgeber et al. 2016] is increas-
ingly common in software libraries that support the development of these simulators.

*This work has been partially funded by CNPq, LNCC/MCTIC and Petrobras (the Brazilian oil com-
pany). The authors acknowledge LNCC for providing HPC resources of the SDumont supercomputer,
which have contributed to the research results reported within this paper. URL: http://sdumont.lncc.br

Different numerical methods may be available in these libraries, and of different cate-
gories (finite elements, finite differences, finite volumes). Moreover, as mathematicians
create innovative numerical methods, new libraries are made available for these methods.
These libraries build on a set of fundamental linear algebra operations and data struc-
tures: matrices, vectors, matrix-matrix and matrix-vector operations, solvers of systems
of linear equations, to name the most important ones. In many cases, these structures and
the algorithms running atop them are irregular (polytopal meshes, heterogeneous degrees
of polynomials) and of unknown a-priori sizes; therefore, dynamic memory allocation on
the heap is a pre-requisite for this type of software. Support libraries such as Eigen,1 Boost
uBlas,2 and NumPy3 offer these operations and data structures in higher-level languages,
but allocation anomalies may arise if the developer does not properly use them.

As a first contribution of this paper, we present a method for identifying, locat-
ing, characterizing and fixing memory allocation anomalies. The method is iterative: at
each iteration, the developer chooses and tackles a region of the application code and a
specific allocation size, and then measures the impact of this iteration on the performance
of the target application. To experiment with the method, we chose a set of numerical
simulation libraries developed at LNCC [Gomes et al. 2017]. The so-called MSL (Multi-
scale hybrid-mixed Set of Libraries) supports the implementation of numerical simulators
based on classical or multiscale finite element methods. It is developed in C++, and has
28, 260 lines of non-commented code.4 It supports hybrid parallelism with OpenMP and
MPI, and integrates with many third-party libraries. Among them, Eigen and the Stan-
dard Template Library (STL) are the main sources of dynamic memory allocations—and
also of allocation anomalies—in MSL. We show that taming these anomalies in a MSL
simulator reduces its memory footprint by 37.27% and its execution time by 16.52%.

As a second contribution of this paper, we present a tool that gives support to
our method. Notice that some available tools—e.g. the Google Heap Profiler [Ghemawat
2019] and Valgrind/Massif [Seward et al. 2015]—provide, each of them, a subset of the
features that our method needs. Yet the developer cannot use these tools as an integrated
toolset that provides these features in an efficient and effective way.

The remainder of this paper is structured as follows. In Section 2 we give the con-
text of our work and discuss related work on allocation anomalies. Section 3 presents our
method and the associated tool. Section 4 validates the method experimentally. Finally,
we present some concluding remarks and possibilities for future work in Section 5.

2. Background and Related Work on Memory Anomalies

Heap allocators reserve memory chunks—so-called heap blocks—that are requested at
runtime. The programming interface (API) of these allocators is always based on a dozen
functions such as malloc/new, free/delete, calloc, and realloc/resize. Most
Linux distributions use GNU Libc (GLIBC) [GNU Developer community 2019] as their
standard C runtime library. Other allocators are also available such as Hoard [Berger et al.
2000], TCMalloc [Ghemawat and Menage 2007], and TBB Malloc [Kukanov and Voss

1http://eigen.tuxfamily.org
2https://www.boost.org/doc/libs/1_65_1/libs/numeric/ublas
3https://www.numpy.org
4Computed with sloccount tool.

2007]. The performance of these allocators may vary in execution time and in consumed
memory space. Nevertheless, all of them impose on the application an overhead that
increases with the amount of allocation anomalies.

Researchers and practitioners have already studied the issues of memory con-
sumption by applications.

The study on the Belady anomaly [Belady et al. 1969] was the first to analyze the
performance behavior of applications taking into account memory access patterns. This
study focused on memory paging, but showed that a method for such analysis was needed
for assessing counter-intuitive behaviors.

Since then, memory leaks [Hastings and Joyce 1992, Boehm 1995] have been the
main memory issue studied by the scientific community [Novark et al. 2009, Andrzejak
et al. 2017]. Memory leaks are areas of dynamically allocated memory that the applica-
tion can no longer reach or free. Memory leaks pose problems that are different from the
ones the memory allocation anomalies introduce, but some profiling tools used to analyze
the former can be also used to deal with the latter, as discussed in Subsection 2.1.

Space leaks are less studied than memory leaks. They occur when the application
uses more memory than needed. The term was first coined in [Wadler 1987] in the context
of functional programming to refer to applications that do release the allocated memory,
but later than the developer expects. Since then, space leaks have been revisited for differ-
ent languages—e.g., Haskell in [Mitchell 2013], Java for embedded applications in [Guo
et al. 2013]. Space leaks can be regarded as a type of memory allocation anomaly, and
can be detected and fixed by the method proposed herein, together with other anomalies.

To the best of our knowledge, there is no other work in the area of high-performance
computing applications that deals with the identification and characterization of diverse
types of memory allocation anomalies, as our work does.

2.1. Tools
The heap allocators already provide some global statistics on the memory space the appli-
cations allocate (e.g., malloc stats). In the case of TCMalloc, statistics on the number
of memory allocations per object size are also available. These statistics are useful to
identify some potential allocation anomalies, but lack information that allows locating
and characterizing these anomalies.

Some tools have been designed for heap memory analysis and can help in locating
and characterizing allocation anomalies. These tools can be divided into two main groups:
(i) tools that allow instrumenting specific parts of the application code; (ii) tools that
offer comprehensive memory allocation statistics. The Google Heap Profiler [Ghemawat
2019] and the GNU Libc mtrace5 pertain to the first group. They allow the developer
to reduce the cost of profiling, but offer no means by which the developer can select
specific allocation sizes for a detailed analysis. The Intel Vtune Amplifier [Kukunas 2015]
and Valgrind/Massif [Seward et al. 2015] pertain to the second group. They offer the
developer plenty of information regarding the location and size of the allocations, but
does not allow the developer to instrument code regions. This limitation results in a high
cost in terms of analysis time because of the significant overhead during the profiling. To

5http://man7.org/linux/man-pages/man3/mtrace.3.html

sum up, the tools presented herein are inappropriate for our method, because they cannot
provide a view of allocation measurements that is at the same time precise and selective.

3. Method and Tool for Taming Allocation Anomalies
Allocation anomalies can be numerous and involve a wide spectrum of allocation sizes.
To tackle them, we propose an iterative method and an associated tool.

First, the developer performs a global profiling of the number and sizes of memory
allocations. From this first view, the developer chooses an allocation size to analyze in
more detail. The choice of such size may depend on the developer’s knowledge of the
source code and data structures. Nevertheless, if the developer does not understand why
there are so many allocations of specific sizes, he can choose as a general rule the smallest
sizes first, because they are the ones more likely to impose the highest overheads.

Second, the developer performs a detailed profiling of memory allocations of the
chosen size. This detailed profiling allows the developer to first locate the places in the
source code where these allocations happen, and then characterize their importance.

Third, the developer refactors the source code to reduce the amount of allocations
of the chosen size.

Example: we illustrate the use of the method with a simulator implemented with MSL.
More specifically, we explore the Multiscale Hybrid-Mixed (MHM) finite-element method
available in this set of libraries [Araya et al. 2013]. The MHM method is interesting for
presenting our method because it is composed of different, clearly separable phases of
resolution, each one with a distinct allocation pattern:

• split: This phase has a work distribution process. The MHM method departs from
a coarse mesh defined over the physical domain of interest, and then defines a local
problem for each element of this mesh. Besides, it also defines a global problem
that glues together the upscaled solutions of the local problems;

• local: This phase has a loosely-coupled process. Each local problem is solved
independently from other local problems;

• reduce: This phase has a gather process, followed by a tightly-coupled process.
The solutions to the local problems are loaded as inputs to the global problem,
which is then solved;

• post: This phase has a work distribution process followed by a loosely-coupled
process. The solution to the global problem is combined with the solution to each
local problem, again independently from other local problems, thus rendering the
final approximating solution.

In Fig. 1 we show the number and size of dynamic memory allocations during a
simulation of a two-dimensional diffusion process with MHM. The allocations are divided
into 3 main groups: small allocations (up to 256 KiB), medium-sized allocations (from
256 KiB to 1 MiB), and large allocations (more than 1 MiB). Notice in Fig. 1a that the
number of allocations of the first group is much larger than the other two. Besides, as
we show in Fig 1b, within the group of small allocations the number of 4- to 512-byte
allocations is much larger than that of 512-byte to 256-KiB allocations.

In the following we describe the steps of our method that tackle the anomalies
related to these small allocations.

 1000

 10000

 100000

 1x106

 1x107

 1x108

 1x109

Size group

n
u
m

b
e
r

o
f

a
llo

ca
ti

o
n
s

(l
o
g

sc
a
le

)

Small
Medium-sized

Large

(a) Number of allocations per size group.

 1

 32

 1024

 32768

 1.04858x106

 3.35544x107

 1 4 16 64 256 1024 4096 16384 65536 262144

n
u
m

b
e
r

o
f

a
llo

ca
ti

o
n
s

(l
o
g

sc
a
le

)

allocation size in bytes (logscale)

(b) Number of small-size allocations.

Figure 1. Number and size of dynamic memory allocations.

3.1. Identification of anomalies

First, the developer needs a global view of dynamic memory allocations in the applica-
tion, to identify which parts of its code need further attention in the analyses that will
follow. The developer can identify these parts more efficiently by instrumenting specific
code regions. (We describe the instrumentation in Subsection 3.6.) With our method the
developer may instrument regions at the application’s main function only. Taking for ex-
ample the MHM simulation presented at the beginning of this section, the developer can
instrument each of the 4 phases of the simulation in the main function: split, local, reduce,
post. In Table 1 we show the results of such an instrumentation—taking only allocation
sizes with more than 106 allocations in total.

After collecting overall statistics, the developer chooses a specific code region and
a specific allocation size for the following steps of the method. The choice of such a size
may take into account not only the total number of allocations for each size, but also the
knowledge and level of openness (e.g., if a library is developed by a third-party) of the
code and of the data structures involved.

Table 1. Number of allocations per allocation size (in bytes).

allocation size split local reduce post
8 289.9× 103 92.43× 106 19.7× 103 2.6× 103

12 135.2× 103 53.88× 106 0 0
16 0 49.41× 106 2 2.7× 103

24 577.5× 103 72.36× 106 1 0
32 12.3× 103 35.86× 106 3 0
40 5.0× 103 3.9× 106 0 0
48 7 39.53× 106 2 0
64 12.3× 103 20.3× 106 1 0
72 24.6× 103 14.98× 106 0 0
96 5 36.82× 106 0 0
144 3 5.18× 106 0 0
288 0 5.44× 106 1 0
320 36.9× 103 24.7× 106 0 0
384 0 3.88× 106 4.0× 103 2.7× 106

576 0 2.95× 106 0 0

3.2. Location of anomalies

In this step the developer performs a detailed profiling of the code region and allocation
size selected in the previous step of our method. To explain what the detailed profiling
is, we introduce the concept of stack trace type. It is the set of stack traces with exactly
the same function signature at each level of the stack. A stack trace type thus represents
a specific execution path taken by the application. Each function signature includes the
name of the function, its parameters, the source code file, and the line number in which
the function is defined.

In Listing 1 we show an example of output of our tool when we instrumented the
local phase of a MHM simulation to trace 12-byte allocations. The first line of the output
shows the number of different stack trace types. The following lines give further detail for
each stack trace type. We only show two of these stack trace types in the listing— notice
that they have different signatures at some of the stack levels. The listing also shows the
number of occurrences of each stack trace type. The developer may use this number to
select the most pertinent stack trace types for the next step of the method.

3.3. Characterization of anomalies

To characterize an anomaly, we take all the stack trace types selected in the previous step,
and build from them a call graph indicating the different execution paths each stack trace
type represents. Each entry of a stack trace type is a vertex in this call graph; the vertices

Listing 1. Stack trace types

Number of stack trace types: 14
Stack trace type 1/14 : 256 occurrences
[0]operator new(...) @ /usr/lib/x86_64-linux-gnu/libstdc++.so.6
[1]__gnu_cxx::new_allocator<int>::allocate(...) @ /usr/include/c++/7/ext/new_allocator.h:101
[2]std::vector<...>::max_size() const @ /usr/include/c++/7/bits/stl_vector.h:676
[3]std::_Vector_base<...>::_M_allocate(...) @ /usr/include/c++/7/bits/stl_vector.h:169
[4]std::vector<...>::_M_fill_insert(...) @ /usr/include/c++/7/bits/vector.tcc:504
[5]std::vector<...>::resize(...) @ /usr/include/c++/7/bits/stl_vector.h:712
[6]Element::allocNodes(...) @ .../include/element.h:288
[7]Element::alloc(...) @ .../include/element.h:266
[8]Mesh::getElem(...) const @ .../src/mesh.cpp:5007
[9]Mesh::operator[](...) const @ .../include/mesh.h:1297
[10]StdFiniteElementSpace::create() @ .../src/space_stdfiniteelem.cpp:134
[11]StdFiniteElementSpace::create(...) @ .../src/space_stdfiniteelem.cpp:187
[11]DiffusionCGProblem::configureSpacesImpl() @ .../examples/src/problem_cgdiffusion.cpp:356
[13]Problem<...>::getDataFiles[abi:cxx11]() @ .../include/problem.h:489
[14]MHMLocalProblem<...>::readDataFiles(...) @ .../include/problem_mhmlocal.h:320
[15]main @ .../src/main_mhm_diffusion_memalloc.cpp:81
[16]__libc_start_main @ /lib/x86_64-linux-gnu/libc.so.6
[17]_start @ ??:?

... //other stack trace types

Stack trace type 12/14 : 256 occurrences
[0]void* std::malloc(...) @ /usr/lib/x86_64-linux-gnu/libc.so
[1]void* Eigen::conditional_aligned_malloc<true>(...) @ .../Eigen3/src/Core/util/Memory.h:212
[2]int* Eigen::internal::conditional_aligned_new_auto<...>(unsigned long) @ .../Eigen3/src/Core/util/Memory.h:374
[3]Eigen::DenseStorage<...>::resize(long, long, long) @ .../Eigen3/src/Core/DenseStorage.h:555
[4]Eigen::PlainObjectBase<...>::resize(long, long) @ .../Eigen3/src/Core/PlainObjectBase.h:47
[5]void Eigen::PlainObjectBase<...>::resizeLike<...>(...) @ .../Eigen3/src/Core/PlainObjectBase.h:374
[6]Eigen::PlainObjectBase<...>::PlainObjectBase<...>(...) @ .../Eigen3/src/Core/PlainObjectBase.h:533
[7]Eigen::Matrix<...>::Matrix<...>(...) @ .../Eigen3/src/Core/Matrix.h:376
[8]Mesh::getElem(...) const @ .../src/mesh.cpp:5007
[9]Mesh::operator[](...) const @ .../include/mesh.h:1297
[10]FiniteElementSpace::setEssentialBC(...) @ .../src/space_finiteelem.cpp:36
[11]DiffusionCGProblem::configureSpacesImpl() @ .../examples/src/problem_cgdiffusion.cpp:356
[12]Problem<...>::getDataFiles[abi:cxx11]() @ .../include/problem.h:489
[13]MHMLocalProblem<...>::readDataFiles(...) @ .../include/problem_mhmlocal.h:320
[14]main @ .../main_mhm_diffusion_memalloc.cpp:81
[15]__libc_start_main @ /lib/x86_64-linux-gnu/libc.so.6
[16]_start @ ??:?

... //other stack trace types

shared by distinct execution paths in the call graph are functions called within distinct
stack trace types.

In Fig. 2 we show a snip of the call graph obtained from Listing 1. The ver-
tices shared by the largest amount of execution paths—functions Mesh::getElem()

and Mesh::operator[]()— are the targets of the next step of our method.

3.4. Fixing anomalies

The last step of our method is to refactor the code so that the functionality is preserved
while minimizing the undesired allocations. In the example used throughout this sec-
tion, the creation of temporary objects of class Element caused the identified anomaly.
These objects represent geometric elements in a mesh—they allocate memory for stor-
ing information such as node coordinates and node-edge connectivity. Most of the time,
these objects are used for a simple processing (e.g., computing the number of degrees of
freedom related to the element) and destroyed just afterwards. In these cases, the cost of
memory allocation and deallocation surpasses that of the actual computation.

To fix the anomaly above, we implemented a new class SurrogateElement

with the same interface as Element, and a template superclass ElementBase to guar-
antee an efficient interface compatibility. Instances of SurrogateElement, however,
only store a reference to the original mesh and an index of the element in that mesh.
As a result, SurrogateElement operations are computationally less efficient than the
equivalent ones from Element, but without the cost of heap management. Mind that
SurrogateElement does not replace Element in MSL; in some situations the devel-
oper needs the representation of a geometric element dissociated from a mesh. Distin-
guishing these situations emphasizes the importance of characterizing anomalies.

...

...Element::alloc(...) @ .../include/element.h:266

Eigen::Matrix<...>::Matrix<...>(...) @ .../Eigen3/src/Core/Matrix.h:376

Mesh::getElem(...) const @ .../src/mesh.cpp:5007

Mesh::operator[](...) const @ .../include/mesh.h:1297

StdFiniteElementSpace::create() @ .../src/space_stdfiniteelem.cpp:134

...

FiniteElementSpace::setEssentialBC(...) @ .../src/space_finiteelem.cpp:36...

Figure 2. Call graph derived from the stack trace types in Listing 1.

3.5. Iterating

At the end of the last step, the developer gets back to the first step of the method to
assess the results of the previous iteration and choose another allocation size for a next
iteration, if needed. In Subsection 4.2 we illustrate the use of iterations in our method
with a complete case study.

3.6. Tool

The tool developed as part of our method collects two types of measurements: (i) num-
ber of allocations per allocation size; and (ii) number of instances of each stack trace
type per allocation size. To reduce the cost of profiling, our tool allows the developer
to selectively define code regions for detailed profiling. This is achieved via a “code
sectioning” system (like Google Heap Profiler). Our tool is also very precise with re-
gard to the localization of allocations, because it records the full stack trace for each
stack trace type. The source code of our tool is open source and freely available at:
https://gitlab.com/EnzoMolion/profiling-library.

4. Results

4.1. Experimental setup

We conducted experiments with our method in two setups of MHM simulations. In all
the experiments, the simulator code was compiled with GNU C++ compiler version 7.4,
and used the standard GLIBC heap allocator.

First, we applied the method over a small use case. For this case, we used a single-
node machine configuration, with 8 cores in a single socket using OpenMP as the only
parallelism technique. This case simulated a diffusion process in stationary regime over
a two-dimensional domain, using quadratic approximating functions. We used a mesh of
4, 096 triangles at the global level. Within each element of the mesh, we solved a local
problem composed of 1, 137 linear equations. These local problems feed a global problem
composed of 99, 328 linear equations. This amounts to 4, 756, 480 linear equations to be
solved in total in the simulation, of which 4, 657, 152 are related to local problems.

The numbers above reflect on the amount of memory allocated in each phase of
the simulation, as we show in Table 2. We use in this table the same size groups as those
of Fig. 1a. The phase of local problems is clearly the one most likely to impose the largest
memory-related overheads on the simulation. This phase has therefore been the main
focus of the case study.

After each iteration of the method, we ran a larger use case to measure the overall
execution time and maximum memory consumption throughout the simulation. For this
case, we used a two-node configuration in a cluster, with 2 sockets of 12 cores each, using

Table 2. Number of allocations and amount of allocated memory per phase.

phase small allocations mid-sized allocations large allocations
split 1.26× 106 − 87.18 MiB 21− 13.27 MiB 1− 1.66 MiB
local 136.67× 106 − 7.376 GiB 4.8× 103 − 2.666 GiB 7.3× 103 − 7.483 GiB

reduce 44.0× 103 − 3.45 MiB 45− 20.47 MiB 24− 4.05 GiB
post 36.2× 103 − 84.88 MiB 0 0

OpenMP within each socket and 4 MPI ranks in total (one per socket). This case also
simulated a diffusion process in stationary regime, but over a three-dimensional domain,
using cubic approximating functions. We used a mesh of 1, 536 tetrahedra at the global
level. Within each element of the mesh, we solved a local problem composed of 12, 405
linear equations on average. These local problems feed a global problem composed of
158.208 linear equations. This amounts to 19, 212, 288 linear equations to be solved, of
which 19, 054, 080 are related to local problems.

4.2. Identification and characterization of anomalies in the small use case

We applied the method in the smaller use case described above, iterating 3 times to tackle
different memory allocation anomalies found in the MHM simulator:

• Use of temporary objects that dynamically allocate memory for short periods of
time (the example depicted in Subsection 3.4): characterized when we did a de-
tailed profiling over allocations of 12 bytes;

• Use of STL C++ class std::vector<> to store matrices as vectors-of-vectors:
characterized when we did a detailed profiling over allocations of 24 bytes;

• Use of statement objData = objData*otherData instead of objData *=

otherData, when objData internally allocate vectors: characterized when we
did a detailed profiling over allocations of 16 bytes.

In Fig. 3 we illustrate the time- and space-wise overheads of the heap management
during the execution of the MHM simulator for the small use case after each of the 3
iterations of our method.

In Fig. 3a we show the cumulative number of allocations of small size made
throughout the simulations, as collected by our tool. This number decreases monoton-
ically after each iteration of our method. This reduction—of about 30% at the end of
the last iteration—contributes to decrease the time-wise overhead imposed by the heap
management, leading to a reduction in the overall execution time of the simulation, as we
demonstrate in the following subsection with the larger use case.

In Fig. 3b we show the maximum number of extra heap bytes allocated throughout
the simulations, as collected by the Massif tool [Seward et al. 2015]. This number repre-
sents the amount of bytes allocated in excess of what the application asked for, and can

 0

 1x108

 2x108

 3x108

 4x108

 5x108

 6x108

 1 4 16 64 256 1024 4096 16384 65536 262144

cu
m

u
la

ti
v
e
 n

u
m

b
e
r

o
f

a
llo

ca
ti

o
n
s

allocation size in bytes (logscale)

Not optimized
After 1st iteration

After 2nd iteration
After 3rd iteration

(a) Number of allocations of small size.

 0

 5x107

 1x108

 1.5x108

 2x108

Extra-heap

b
y
te

s

Not optimized
After 1st iteration

After 2nd iteration
After 3rd iteration

(b) Number of extra heap bytes allocated.

Figure 3. Time- and space-wise overheads.

be caused: (i) by the administrative bytes associated with each heap block; or (ii) by allo-
cators rounding up the number of bytes asked for, to ensure suitable alignment within the
heap block. The difference of about 15% at the end of the last iteration demonstrates that
our method can also reduce the space-wise overhead imposed by the heap management,
allowing larger simulations to take place in a same computational resource.

4.3. Impact of anomaly fixing in the large use case
In Fig. 4 we show the performance of the MHM simulator for the large use case after each
of the 3 iterations of our method, using the following performance indicators: (i) resident
set size; and (ii) overall execution time. We collected these indicators with the accounting
tool of the cluster’s resource manager (Slurm6). The maximum (resp., average) resident
set sizes represent the maximum (resp., average) of the highest memory footprints over
all the 4 MPI ranks in the simulation. Figure 4a shows a reduction in the maximum
resident sizes by 37.27%, and in the average resident sizes by 58, 18%. Figure 4b shows
a reduction in the execution time by 16.52%. Notice that the last iteration of the method
considerably reduced the total amount of memory demanded during the simulation, even
if with only a slight decrease in its overall execution time.

5. Conclusions and future work
In this paper, we have studied anomalies related to dynamic memory allocations. We have
proposed an iterative method that allows a developer of high-performance computing ap-
plications to detect, locate, and correct these allocation anomalies. We have successfully
applied this method on a multiscale numerical simulator that allocated huge amounts of
small chunks of memory. The results after 3 iterations of the method (taming allocations
of 12, 24, and 16 bytes) show impressive gains in the number of calls to heap allocators—
making the simulator run faster—and in the memory footprint—making the simulator
capable of solving larger problems. We intend to apply this method to other applications,
especially from Petrobras (the Brazilian oil company).

The method we have proposed requires some profiling features to help the devel-
oper quickly detect and correct anomalies. We have proposed a tool that offers a compro-
mise between obtaining precise information with a manageable cost of instrumentation

6https://slurm.schedmd.com

 0

 5x106

 1x107

 1.5x107

 2x107

MaxRSS AveRSS

kb
y
te

s

Not optimized
After 1st iteration

After 2nd iteration
After 3rd iteration

(a) Maximum/average resident set size.

00:00

01:00

02:00

03:00

04:00

05:00

06:00

07:00

Elapsed

m
in

u
te

s

Not optimized
After 1st iteration

After 2nd iteration
After 3rd iteration

(b) Total execution time.

Figure 4. Performance of simulator.

and collection of profiling traces. We plan to study the integration of these features to
existing memory profiling tools such as Valgrind/Massif [Seward et al. 2015], which are
planned to be extensible. Unfortunately, it is more difficult to consider extending indus-
trial profiling tools, whose source code is not open.

In this paper, we focused our method on the reduction of small memory allo-
cations. The size of the allocations was then the main criterion for optimization. The
optimization aimed at minimizing the allocation of unnecessary temporary objects, or
aggregating the small-sized allocations in bigger ones, or both.

As future work, we plan to study other optimization criteria, such as the lifetime of
dynamically allocated memory areas. We believe a memory area with an extremely short
lifetime does not necessarily have to be allocated on the heap, but rather on the stack. An-
other criterion, complementary to the lifetime, is the number of times an allocated object
is actually accessed and used. Assessing these new types of anomaly may require new
approaches to the anomaly fixing. Object-oriented languages such as C++ have operator
overload capabilities that may help to detect and correct these anomalies.

References
Andrzejak, A., Eichler, F., and Ghanavati, M. (2017). Detection of memory leaks in

C/C++ code via machine learning. In 9th International Workshop on Software Aging
and Rejuvenation (WoSAR 2017), pages 252–258, Toulouse, France.

Appelbe, B. and Bergmark, D. (1996). Software tools for high performance computing:
Survey and recommendations. Scientific Programming, 5:239–249.

Araya, R., Harder, C., Paredes, D., and Valentin, F. (2013). Multiscale hybrid-mixed
method. SIAM Journal on Numerical Analysis, 51(6):3505–3531.

Arndt, D., Bangerth, W., Clevenger, T. C., Davydov, D., Fehling, M., Garcia-Sanchez, D.,
Harper, G., Heister, T., Heltai, L., Kronbichler, M., Kynch, R. M., Maier, M., Pelteret,
J.-P., Turcksin, B., and Wells, D. (2019). The deal.II library, version 9.1. Journal
of Numerical Mathematics.

Belady, L. A., Nelson, R. A., and Shedler, G. S. (1969). An anomaly in space-time
characteristics of certain programs running in a paging machine. Communications of
the ACM, 12(6):349–353.

Berger, E. D., McKinley, K. S., Blumofe, R. D., and Wilson, P. R. (2000). Hoard: A
scalable memory allocator for mumtithreaded applications. In ASPLOS-IX Proceed-
inggs of the 9th International Conferences on Architectural Support for Programming
Languages and Operating Systems, pages 117–128, Cambridge, MA, USA.

Boehm, H. (1995). Dynamic memory allocation and garbage collection. Computers in
Physics, 9:297–393.

Ghemawat, S. (2019). Gperftools Heap Profiler. https://gperftools.github.
io/gperftools/heapprofile.html.

Ghemawat, S. and Menage, P. (2007). TCMalloc: Thread caching malloc. http://
goog-perftools.sourceforge.net/doc/tcmalloc.html.

GNU Developer community (2019). The GNU C library (glibc). https://www.gnu.
org/software/libc.

Gomes, A. T. A., Pereira, W. S., Valentin, F., and Paredes, D. (2017). On the im-
plementation of a scalable simulator for multiscale hybrid-mixed methods. CoRR,
abs/1703.10435.

Gropp, W. D. and Lumsdaine, A. (2006). Parallel Tools and Environments: A Survey,
chapter 12, pages 223–232. SIAM.

Guo, C., Zhang, J., Zhang, Z., and Zhang, Y. (2013). Characterizing and detecting re-
source leaks in Android applications. In Proceedings of the 28th IEEE/ACM Interna-
tional Conference on Automated Software Engineering (ASE’2013), pages 389–398,
Palo Alto, CA, USA.

Hastings, R. and Joyce, B. (1992). Purify: Fast detection of memory leaks and access
errors. In Proceedings of the Winter USENIX Conference, pages 125–136, San Fran-
cisco, CA, USA.

Kirk, B. S., Peterson, J. W., Stogner, R. H., and Carey, G. F. (2006). libMesh: A C++
library for parallel adaptive mesh refinement/coarsening simulations. Engineering with
Computers, 22(3–4):237–254.

Kukanov, A. and Voss, M. J. (2007). The foundations for scalable multi-core software in
Intel Threading Building Blocks. Intel Technology Journal, 11(04):309–322.

Kukunas, J. (2015). Intel VTune Amplifier. In Kukunas, J., editor, Power and Perfor-
mance: Software Analysis and Optimization. Elsevier.

Logg, A., Wells, G. N., and Hake, J. (2012). DOLFIN: a C++/Python finite element
library. In Logg, A., Mardal, K.-A., and Wells, G., editors, Automated Solution of
Differential Equations by the Finite Element Method: The FEniCS Book, pages 173–
225. Springer Berlin Heidelberg, Berlin, Heidelberg.

Mitchell, N. (2013). Leaking space. Queue, 11(9):10:10–10:23.

Novark, G., Berger, E. D., and Zorn, B. G. (2009). Efficiently and precisely locating
memory leaks and bloat. In Proceedings of the 2009 ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI’09), pages 397–407,
Dublin, Ireland.

Rathgeber, F., Ham, D. A., Mitchell, L., Lange, M., Luporini, F., Mcrae, A. T. T., Bercea,
G.-T., Markall, G. R., and Kelly, P. H. J. (2016). Firedrake: Automating the finite
element method by composing abstractions. ACM Transactions on Mathematical Soft-
ware, 43(3):24:1–24:27.

Servat, H., Llort, G., Huck, K., Gimenez, J., and Labarta, J. (2013). Framework for a
productive performance optimization. Parallel Computing, 39:336–353.

Seward, J., Nethercote, N., and Weidendorfer, J. (2015). Valgrind 3.11 Reference Manual.
Samurai Media Limited.

Supalov, A., Semin, A., Klemm, M., and DahnKen, C. (2014). Optimizing HPC Applica-
tions with Intel Cluster Tools: Hunting Petaflops. Apress.

Wadler, P. (1987). Fixing some space leaks with a garbage collector. Software: Practice
and Experience, 17(9):595–608.

