Murad Abuaisha 
email: murad.abuaisha@mines-paristech.fr
  
Ahmed Rouabhi 
email: ahmed.rouabhi@mines-paristech.fr
  
On the validity of the uniform thermodynamic state approach for underground caverns during fast and slow cycling

Keywords: Underground caverns, fast and slow cycling, uniform thermodynamic state, spatial heterogeneities, finite element simulations

Gas storage in underground caverns provides a promising technique to reply efficiently to the renewable energy needs through periods of intermittency. An appropriate prediction of the cavern performance, in terms of thermal inventory and the quantity of stored or retrieved gas, depends on the gas thermodynamics and the thermo-mechanical response of the surrounding rock.

The rate of injected or withdrawn mass to/from caverns controls the spatial heterogeneities of the temperature and pressure fields. It also controls the magnitude of gas velocity which represents the driving force for the convective heat transfer with the surrounding rock domain. In order to consider as many industrial concerns during cycling as possible (for instance rock creep and gas diffusion), researchers tend to simplify the cavern thermodynamic problem by neglecting the spatial variations of pressure and temperature which leads to a cavern uniform state. This reduces tremendously the simulation cost, yet it raises up a question about the validity of such assumption during fast cycling. We will be addressing this concern by performing simplified (uniform thermodynamic state) and complete simulations that take into account all the complexities of this computational fluid dynamics problem. A discussion section at the end of this paper will provide us with a margin of trust with regard to the simplified approaches for seasonal and daily cycling of underground caverns.

Introduction 1

The intermittency problem that usually characterizes renewable energy led to vast storage techniques 2 in the last few decades [START_REF] Nadau | A regenerator pilot to evaluate the technical and economic relevance of energy storage by adiabatic compressed air energy storage by ceramic media[END_REF][START_REF] Kushnir | Temperature and pressure variations within compressed air energy storage caverns[END_REF][START_REF] Götz | Renewable Power-to-Gas: A technological and economic review[END_REF][START_REF] Lehner | Power-to-gas: technology and business models[END_REF]. Hydrogen/energy storage in solution-mined caverns [START_REF] Charnavel | Advanced geometrical modelling of salt dissolution during cavern leaching -illustration with a case study[END_REF][START_REF] Pernette | Underground storages at Tersanne and Etrez: prediction and simulation of cavity leaching in a salt layer charged with insoluble materials[END_REF] is one of the Besides, such a thermodynamic response requires to be fully coupled with the thermo-hydro-mechanical behavior of the rock mass surrounding the cavern [START_REF] Labaune | Dilatancy and tensile criteria for salt cavern design in the context of cyclic loading for energy storage[END_REF].

As an attempt to simplify this Computational Fluid Dynamics (CFD) problem, scientists tend to neglect the velocity field and the spatial variations of temperature and pressure over the cavern volume.

This approach leads to a uniform cavern state where the thermodynamic variables (pressure and temperature) are functions of time only [START_REF] Böttcher | Thermo-mechanical investigation of salt caverns for short-term hydrogen storage[END_REF][START_REF] Guo | Numerical investigation of a joint approach to thermal energy storage and compressed air energy storage in aquifers[END_REF][START_REF] He | Exergy storage of compressed air in cavern and cavern volume estimation of the large-scale compressed air energy storage system[END_REF][START_REF] Xia | A simplified and unified analytical solution for temperature and pressure variations in compressed air energy storage cavern[END_REF][START_REF] Serbin | The influence of thermodynamic effects on gas storage cavern convergence[END_REF][START_REF] Rutqvist | Modeling of coupled thermodynamic and geomechanical performance of underground compressed air energy storage in lined rock caverns[END_REF][START_REF] Raju | Modeling and simulation of compressed air storage in caverns: A case study of the Huntorf plant[END_REF]. This simplification reduces tremendously the numerical weight of the problem and allows to better concentrate on other phenomena that take place in the well and the rock domain around the cavern. He et al, [START_REF] He | Exergy storage of compressed air in cavern and cavern volume estimation of the large-scale compressed air energy storage system[END_REF] provided a design approach to estimate the energy storage capacity of a fixed-volume cavern. Since they intended to concentrate on cavern operation schemes in isochoric uncompensated or isobaric compensated modes, as well as heat transfer conditions including isothermal, convective heat transfer, or adiabatic wall conditions, they developed a uniform thermodynamic model.

In a similar framework, Raju and Khaitan [START_REF] Raju | Modeling and simulation of compressed air storage in caverns: A case study of the Huntorf plant[END_REF] needed to validate their uniform thermodynamic model by properly calculating the heat transfer coefficient between the gas and the surrounding rock domain. For this purpose, they took the Huntorf plant as a case study and validated their simulations based on the plant's operating schemes. Guo et al, [START_REF] Guo | Numerical investigation of a joint approach to thermal energy storage and compressed air energy storage in aquifers[END_REF] tried to study the effect of the reservoir boundary permeability, specific heat, and thermal conductivity on the efficiency of compressed air storage systems. Therefore, they used a uniform thermodynamic model where they investigated pressure and temperature distributions due to different injection air temperature operations. There have been a few other papers where authors tried to account for the spatial variations in the cavern volume, however performed simulations were short (few hours) and other simplifications were implemented like the Boussinesq approximation [START_REF] Barajas | Effective modeling and analysis of salt-cavern natural-gas storage[END_REF][START_REF] Tietze | Comparison of hydrogen and methane storage by means of a thermodynamic analysis[END_REF][START_REF] Spiegel | On the Boussinesq approximation for a compressible fluid[END_REF]. Barajas and Civan [START_REF] Barajas | Effective modeling and analysis of salt-cavern natural-gas storage[END_REF] were concerned by studying the interactions of storage gas with the surface facilities through well and leaking into the rock formation. They developed a comprehensive CFD model and fully coupled it with the heat transfer approaches to calculate the temperature, pressure, and velocity fields in the underground caverns. However, simulations were short (24 hours), and pressure and temperature variations over the cavern volume did not exceed 1 MPa and 5 • C respectively.

The slow/seasonal cycling of underground caverns stems from the population's seasonal need of energy, where gas is stored in summer and extracted in winter. However, the increase of human energy demands, as well the environmental concerns associated, necessitate the use of viable and clean energy.

Hydrogen storage in salt caverns represents a future fuel source. Nevertheless, the use of hydrogen as fuel requires fast utilization of the storage systems to respond to the daily demands of fuel required by the population [START_REF] Edwards | Hydrogen and fuel cells: Towards a sustainable energy future[END_REF]. Therefore, and due to the considerable simplifications usually adopted in the uniform thermodynamics modeling, a question always arises about the validity of such simplifications, especially during fast cycling of caverns when spatial variations of temperature and pressure are significant. The miscalculation of these variations leads to a miscalculation of the gas density field in the cavern, and consequently, for a given cavity volume, a misestimation of the stored gas mass.

To address this concern, we made use of an in-house simplifying code (DEMETHER [START_REF] Rouabhi | A multiphase multicomponent modeling approach of underground salt cavern storage[END_REF]) and a CFD COMSOL license. The goal was to compare the simplified simulation results of DEMETHER, to the complex simulation results of COMSOL, where all complexities of the problem were considered, i.e. full mesh refinement, velocity field, convective heat transfer, and the turbulent flow modeling. The simulation results were correlated for both slow (seasonal) and fast (daily) cycling where one expects better match with regard to the slow cycling and more deviation in the case of fast treatment. In both simulations the cavern was assumed full of gas with no brine or insoluble material, and only thermal conduction with the surrounding rock domain was considered.

The paper proceeds as follows: the complete physical model for cavern thermodynamics was first presented along with the rock mass energy equation; the simplified uniform thermodynamic state technique was then discussed under the framework of the DEMETHER in-house code. The complete physical model with its complexities of meshing and turbulent flow was validated based on experimental results Appendix B. Once validations were verified, simulations on the cavern scale were run using the simplified and the complete approaches and simulation results were correlated for fast and slow cycling. The paper ends with a discussion section on the validity of this simplified approach. For a typical spherical cavern of volume 300,000 m 3 created at 910 m depth, severe cycling schemes that led to a mass change in the range of [-69% to -29%] of the initial mass, demonstrated almost similar results for slow/seasonal cycling between simplified and complete simulations. However, a difference margin of 7% was observed in the compared results during fast/daily treatment.

General thermodynamics of caverns

We will start by assuming an underground cavern filled with a mono-component single-phase fluid (Fig. 1). The fluid thermodynamic state can be defined either by (ν, T ) or (p, T ), with ν = 1/ρ (m 3 /kg) and p (Pa) being the specific volume and pressure respectively, and T (K) is the temperature. The underground storage system can be divided into three domains: 1) the well which extends from the ground surface to the cavern; 2) the cavern itself; and 3) the rock mass that surrounds the cavern and the well.

Complete solution of cavern thermodynamics

Injecting or withdrawing gas to/from caverns applies changes to the gas mass density ρ (kg/m 3 ), velocity v v v , and temperature T . The developments of these three fields are calculated using the general balance laws:

mass balance: ρ + ρ ∇.v v v = 0; momentum balance: ρ v v v -∇. σ σ σ = ρ g g g;
energy balance:

ρ u + ∇ . ψ ψ ψ = σ σ σ : ∇ ∇ ∇v v v, (1) 
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Ground surface p (x,t) where σ σ σ is the fluid stress tensor (Pa), g g g the gravitational acceleration vector (m/s 2 ), u the specific internal energy (J/kg), and ψ ψ ψ the fluid heat flux (W/m 2 ). For any function ϕ = {ρ, v v v, u}, the material derivative is expressed as φ

T (x,t) v (x,
= ∂ t ϕ + v v v.∇ ∇ ∇ϕ.
Stocke's law is used to calculate the stress tensor in a moving fluid undergoing external effects,

σ σ σ = 2µ D D D d -p δ δ δ, ( 2 
)
where µ is the fluid dynamic viscosity (Pa s), and D D D d is the deviatoric part of the rate of strain tensor

D D D = 0.5 × ∇ ∇ ∇v v v + ∇ ∇ ∇v v v T (1/s).
Fourier's law is used to describe the relation between heat flux ψ ψ ψ and the temperature gradient ∇ ∇ ∇T (K/m) through the fluid effective thermal conductivity Λ (W/m/K),

ψ ψ ψ = -Λ ∇ ∇ ∇T. (3) 
The fluid state equation can be completely described using two state functions; the mass density ρ(p, T ), and the heat capacity C p (T ) (J/kg/K) at a given pressure [START_REF] Rouabhi | A multiphase multicomponent modeling approach of underground salt cavern storage[END_REF]. The thermodynamic variables are related to each other through the formula p = ρ T Z, with Z being the gas compressibility factor.

Common examples are when fluid density is assumed constant in case of incompressible fluids, and when Z = R/M w in case of ideal gases, with M w being the gas molecular weight (kg/mol) and R (J/mol/K) the universal gas constant. In case of high pressure and low temperature, the assumption of ideal gas is weak and a real gas behavior needs to be considered.

As we will be conducting relatively short simulations (2 months maximum), we will neglect any mechanical behavior of the rock mass around the cavern [START_REF] Labaune | Dilatancy criteria for salt cavern design: a comparison between stress-and strain-based approaches[END_REF], and we will consider only the thermal interaction between rock and fluid. For a time-dependent problem, the temperature field in the surrounding rock mass verifies the following form of the heat equation,

∂ t T s = κ s ∇.(∇ ∇ ∇T s ), (4) 
with T s and κ s (m 2 /s) being the rock temperature and thermal diffusivity respectively.

Heat convection regimes of a gas injected in or withdrawn from underground caverns can be either natural or forced. Natural convection corresponds to configurations where the gas flow is driven by buoyancy forces. Rayleigh number Ra is generally used to characterize the regime of natural heat convection.

It is expressed as the ratio of buoyancy and viscosity forces multiplied by the ratio of momentum and thermal diffusivities [START_REF] Bormann | The one-set of convection in the Rayleigh-Bénard problem for compressible fluids[END_REF],

Ra = Buoyancy forces Viscosity forces × Momentum diffusivity Thermal diffusivity = ρ 2 g α ∆T L 3 µ 2 × µ C p Λ = ρ 2 g α C p µ Λ ∆T L 3 , (5) 
where α = -ν ∂ T ρ| p is the isobaric volumetric thermal expansion coefficient (1/K), L is the cavity length over which flow takes place, g is the gravitational acceleration, and ∆T is a temperature difference usually set by the solids surrounding the fluid. When the Rayleigh number is small (typically Ra < 10 3 ), convection is negligible and most of heat transfer occurs by conduction in the fluid. Besides, a turbulent model is necessary to fully describe the gas flow when Buoyancy forces are considerably high, i.e. Ra > 10 8 [START_REF] Sankar | Numerical study of natural convection in a vertical porous annulus with discrete heating[END_REF].

The forced convection regime is observed when the flow is driven by external phenomena that dominate buoyancy effects. In this case the flow regime can be characterized using the Reynolds number as an indicator [START_REF] Loret | Fluid injection in deformable geological formations: Energy related issues[END_REF][START_REF] Sun | Forced convection heat transfer from a circular cylinder with a flexible fin[END_REF],

Re = Inertial forces Viscous forces = ρ ||v v v|| L µ , (6) 
with ||v v v|| being the magnitude of the fluid velocity. At low Reynolds numbers (Re < 2300), viscous forces dominate and laminar flow is observed. At high Reynolds numbers (4000 < Re < 2300), the damping in the system is very low, giving small disturbances. If the Reynolds number is high enough (Re > 4000), the flow field eventually ends up in a turbulent regime. Most of the underground cavern operations exhibit high Reynolds Re ∼ 10 6 and Rayleigh Ra ∼ 10 15 numbers [START_REF] Karimi-Jafari | Comportement transitoire des cavités salines profondes[END_REF], which necessitates the integration of a fluid flow turbulent model to solve for velocity disturbances. Direct numerical simulations of turbulent flows using Navier-Stoke's equation are prohibitively expensive in terms of space and time discretization.

This makes the use of eddy-viscosity models based on the Reynolds Averaged Navier-Stokes (RANS) equation quite common and acceptable in the CFD codes [START_REF] Wilcox | Turbulence modeling for CFD[END_REF][START_REF] Kuzmin | On the implementation of the k-ǫ turbulence model in incompressible flow solvers based on a finite element discretization[END_REF]. In this work we will use the popular eddy-viscosity k-ǫ model [START_REF] Kuzmin | On the implementation of the k-ǫ turbulence model in incompressible flow solvers based on a finite element discretization[END_REF][START_REF] Lew | A note on the numerical treatment of the k-ǫ turbulence Model[END_REF][START_REF] Wright | Non-linear k-ǫ turbulence model results for flow over a building at full-scale[END_REF][START_REF] Braga | Computation of turbulent free convection in left and right tilted porous enclosures using a macroscopic k-ǫ model[END_REF] to account for flow turbulences, see Appendix A for details.

One last concern we may experience in the CFD simulations, is the forced heat convection term in the gas energy equation (v v v.∇ ∇ ∇T ). This term can produce numerical instabilities that require special treatment.

A thumb rule to quantify these produced numerical noises is the use of the Péclet number Pe,

Pe = ||v v v|| h e 2 κ f , (7) 
where h e is the averaged element size (m) and κ f = Λ/ρ C p is the fluid thermal diffusivity (m 2 /s).

For a uniform mesh with first-order shape functions, it has been mathematically proven that numerical instabilities occur when Pe > 1. The necessary consistent stabilization methods, i.e. Streamline and

Crosswind Diffusion [START_REF] Abuaisha | Stabilization of forced heat convections: Applications to Enhanced Geothermal Systems (EGS)[END_REF], will be applied when necessary to overcome numerical noise. During underground cavern simulations, natural heat convection is seen during the standstill/pause periods, however, forced convection is expected during injection and withdrawal cycling.

The evolution of the thermodynamic state of gas stored in underground caverns can be solved for by applying the finite element method on the system of Eqs 1 along with the proper initial and boundary conditions. However the following factors need to be considered:

1. the spatial discretization should be precise and fine enough to describe properly the distribution of the velocity field;

2. adequate mesh refinement must be adopted at the solid-fluid interface to account for the convective heat transfer;

3. a turbulent flow model is needed which adds another two variables, namely k and ǫ, to the list of unknowns.

This complete physical model with all related complexities of mesh refinement, spatial variations, convective heat transfer, and turbulent flow is validated in Appendix B.

Simplified solution of cavern thermodynamics

Underground caverns have large geometries and they are utilized over long periods of time. This renders the complete CFD simulations of gas cycling over their lifetime a tremendous if not a prohibitive task. Since in most cases, underground storage necessitates seasonal/slow cycling, scientists assume that cavern spatial variations of pressure and temperature to be negligible in the main part of the cavern volume [START_REF] Böttcher | Thermo-mechanical investigation of salt caverns for short-term hydrogen storage[END_REF][START_REF] Guo | Numerical investigation of a joint approach to thermal energy storage and compressed air energy storage in aquifers[END_REF][START_REF] He | Exergy storage of compressed air in cavern and cavern volume estimation of the large-scale compressed air energy storage system[END_REF][START_REF] Xia | A simplified and unified analytical solution for temperature and pressure variations in compressed air energy storage cavern[END_REF][START_REF] Serbin | The influence of thermodynamic effects on gas storage cavern convergence[END_REF][START_REF] Rutqvist | Modeling of coupled thermodynamic and geomechanical performance of underground compressed air energy storage in lined rock caverns[END_REF][START_REF] Raju | Modeling and simulation of compressed air storage in caverns: A case study of the Huntorf plant[END_REF]. Henceforth, they apply the concept of a heat transfer coefficient (λ c ) to account for solid-fluid heat exchange over the cavern surface, 

= ψ ψ ψ s . n n n s T s -T , (W/m 2 /K) (8) 
with n n n s being the cavity inward normal vector and T the fluid temperature passing by the wall. Estimation of this coefficient is tedious, however, once in situ data is available, it can be precisely predicted [START_REF] Raju | Modeling and simulation of compressed air storage in caverns: A case study of the Huntorf plant[END_REF].

In this paper, and as a simplistic approach that serves the comparison between the simplified and the complete solutions, a solid-fluid temperature continuity over the cavern surface was assumed. However, the well heat transfer coefficient (λ w ) was calculated using empirical laws.

As an example to this simplified uniform thermodynamic state approach, we are presenting our DEMETHER in-house FEM code. Based on the assumptions adopted by Rouabhi et al, [START_REF] Rouabhi | A multiphase multicomponent modeling approach of underground salt cavern storage[END_REF] for pipe flow (constant cross section), the well velocity and thermodynamic variables are functions of time t and the curvilinear abscissa x along the well axis, i.e. v(x, t), T (x, t), and p(x, t). For this case, the system of Eqs 1 becomes:

ρ ν -v ′ = 0; ρ v + p ′ = ρ g g g . t t t + (L ζ /A) ζ w ; ρ( u + p ν) = (L w /A) ψ w -v (L ζ /A) ζ w , (9) 
where the prime denotes the variable derivative along the well axis, A is the flow cross sectional area (m 2 ), t t t is the vector tangent to the pipe wall, L ζ is the well circumference available for fluid flow (m), and L w is the well circumference available for heat transfer (m). These two circumferences are equal in the case of simple pipe flow. ψ w is the heat exchange across the pipe wall, and ζ w is the friction stress. The quantities ψ w and ζ w are usually given by empirical laws [START_REF] Braga | Laminar and turbulent free convection in a composite enclosure[END_REF][START_REF] Kakaç | Convective heat transfer[END_REF][START_REF] Kaviany | Principles of heat transfer[END_REF]. The stress ζ w is generally expressed as

ζ w = -C f ρv|v|/2.
The term ψ w implies the heat flux across the pipe wall, it can be expressed using the Newton's law as ψ w = λ w (T s -T ). In the DEMETHER code, the following relations were adopted to calculate the empirical coefficients,

C f = 2 (8/Re) 12 + (A + B) -3/2 1/12
, with, A = -2.457 ln (7/Re) 0.9 + 0.27(εL ζ /D H ) , and, B = (37530/Re) 16 , Nu = 3.66 for Re ≤ 2300, and,

Nu = (C f /2)(Re -1000)Pr/ 1 + 12.7 C f /2(Pr 2/3 -1)
for 2300 < Re < 5 × 10 6 , and, 0.5 < Pr < 2000, [START_REF] He | Exergy storage of compressed air in cavern and cavern volume estimation of the large-scale compressed air energy storage system[END_REF] where ε is the wall roughness, The problem is fully coupled in the sense that if the well variables are known, they can be used to determine the unknown parts of the boundary conditions of the cavern and the formation. Using these boundary conditions, the problem in the latest domains can be solved for leading to new data that can be put for a next time step solution. With regard to the cavern itself, assuming a uniform thermodynamic state simplifies the system of Eqs 1 into:

D H = 4A/L ζ (m) is the hydraulic diameter,
Ṁ /M = -α Ṫ + β ṗ; M C p Ṫ -V α T ṗ = Q I (h w t -h c ) + Ψ s , (11) 
where M is the gas mass (kg), β = ν ∂ p ρ| T is the isothermal compressibility factor (1/Pa), V is the cavity volume (m 3 ) (assumed constant),

h w t = h w + v v v . v v v/2
is the well dynamic/total enthalpy (J/kg), h c is the cavern enthalpy (J/kg), Q I is the inflow rate (kg/s), and Ψ s = S ψ ψ ψ s . n n n s ds is the power exchanged between gas and the surrounding rock (W). With the assumption of solid-fluid temperature continuity over the cavern surface, this power exchange is calculated using the Fourier conduction equation in the rock formation side.

The assumption of a uniform thermodynamic state implies the neglection of spatial variations and velocity field in the system of Eqs 11. This leads to considerable simplifications to the mathematical problem. Considering that the time derivatives do not account for convective terms any more, and that the main variables are only functions of time, the system of Eqs 11 represents a system of ordinary differential equations of p(t) and T (t). The complexities left stem from the necessity to model a real gas behavior (when necessary and appropriate), and the discretization needed in the rock domain to solve for Eq. 4. However, since the cavern thermodynamic behavior is now assumed uniform in its domain (single point behavior), the surrounding rock mass is discretized into finite elements and heat conduction is assumed one-dimensional.

Simulations on the cavity scale

The boundary value problem represents a spherical cavity of volume V = 300, 000 m 3 in a surrounding rock domain. The well extends from the surface at z = 0 m to the cavity at z = z w = -910 m. The initial cavity volume averaged temperature and pressure are 40 • C and 22 MPa respectively (Fig. 2).

Gas is injected at T = 40 • C following the program shown in Fig. 3. The gas used in the simulations is ideal hydrogen 1 and the cavern is assumed initially full with mass M (0) = 4.52 × 10 6 kg.

Figure 3 shows the injection schemes that will be considered in our simulations in terms of relative mass change M = (M/M (0) -1) × 100%. The first scheme represents fast/daily cycling where our cavern is utilized extensively, and one cycle (4.5 days) leads to a relative mass change in the range [-69% to -29%].

Second scheme represents slow/seasonal cycling utilization where the cavern experiences the same relative mass change, yet over a period of 58.5 days. There are periods of standstill/rest/pause after injection and withdrawal that are marked by constant relative mass change over time. Simulations are run for 60 days to allow for the investigation of thermal exchange between gas in the cavern and the surrounding rock 1 The assumption of ideal gas simplifies calculations considerably. The gas cycling in the spherical cavern shown in Fig. 2 is to be simulated using DEMETHER and COMSOL, then results of these softwares will be correlated for fast and slow cycling. As such simulations can be performed using other softwares, and for the purpose of generalizing the objective of this work, we shall be referring to DEMETHER as the simplified approach and to COMSOL as the complete approach.

For the complete simulations, the boundary conditions are set as shown in Fig. 2. The rock formation far-field temperature boundary conditions were assumed to be of the Dirichlet type, i.e. T = T ∞ (z), with T ∞ (z) being the initial geothermal temperature. In case of the simplified simulations, T ∞ (z) is replaced by its average over the cavern surface. Gas is injected at T = 40 • C following the two schemes of Fig. 3.

As for the initial conditions, in the complete simulations, the well and cavern are assumed in equilibrium with the surrounding rock T (x, 0) = T ∞ (z). However, in the case of simplified simulations, the cavern temperature is set to T (0) = 40 • C. Yet, the same temperature gradient (Fig. 2) is applied over the well length.

- for good accuracy [START_REF] Kuzmin | On the implementation of the k-ǫ turbulence model in incompressible flow solvers based on a finite element discretization[END_REF][START_REF] Lacasse | On the judicious use of the k-ǫ model, wall functions and adaptivity[END_REF]. For the comparison purpose, a similar one-dimensional discretization with 5000 elements was used in the simplified simulations for the rock domain, and the well was discretized into 1000 elements over its length. Rock thermal diffusivity was set equal to κ s = 0.29 × 10 -5 m 2 /s.

Ideal hydrogen was assigned the following thermodynamic properties: Λ = 0.195 W/m/K; C p = 10225 J/kg/K; and µ = 8.75 × 10 -6 Pa s.

Figure 5 shows the development of the complete simulations volume averaged and the simplified approach temperature and pressure histories in the cavern during the slow and fast cycling schemes.

Since pressure histories are mainly affected by mass changes, simplified and complete pressure histories are too much comparable (Figs 5(a,c)). However, and with regard to temperature histories, temperature histories show very slight differences in the case of slow cycling (Fig. 5(b)), yet differences are noticeable in the case of fast cycling and they increase with time to stabilize eventually (Fig. 5(a)).

To further comment on the efficiency of the simplified approach, the temperature and the vertical gas velocity profiles along the treatment well were compared. A pipe model for the well simulations in the simplified approach was used, and the solid-fluid interaction was accounted for using empirical laws. In the case of the complete simulations, only extensive and appropriate mesh refinement was implemented all through the model to calculate the velocity field and the convective heat transfer. temperature field (Fig. 8). is not the case in the pressure contours where variations are almost vertical and are typically attributed to the gas weight (Fig. 9).

T = 63.8 (°C) Geothermal Temperature Q r (m) z (m) R is the cavern radius T=T ∞ (z) T=T ∞ (z) T=T ∞ (z)
As to quantify the spatial variations of velocity, temperature, and pressure over the time course of simulations, the radial and vertical components of these fields were averaged over the cavern volume (Fig. These spatial variations in the three fields create the solution differences between the simplified and the complete approaches (Fig. 5).

As to investigate the validity of implementing a turbulent flow model even at the level of slow cycling, The cavern volume averaged values (Fig. 11) indicate that at most of the spatial positions, and for the majority of the simulation time, a turbulent flow model is required. The turbulent k -ǫ model used in this paper will still give appropriate results if flow turns out to be laminar at some locations. High values of these dimensionless numbers are related to the low dynamic viscosity of hydrogen.

The Biot number is another dimensionless number that we can use to quantify the heat transfer part of our problem [START_REF] Xu | Extending the validity of lumped capacitance method for large Biot number in thermal storage application[END_REF]. This number relates the conductive resistance of the rock domain to the convective resistance of gas inside the cavern, i.e. Bi c = (ℓ/Λ s )/(1/λ c ) = λ c ℓ/Λ s , with ℓ = √ κ s t being the thermal penetration depth into the rock domain. To calculate the Biot number over the cavern surface, Eq. 8 was used while setting the fluid temperature equal to the cavern center temperature, while heat flux and solid temperature were averaged over the cavern surface, i.e. λ c = ψ ψ ψ s . n n n s Surface /( T s Surface -T Center ). Fig.

12(a) shows the development of λ c during the treatment course, where unlike the case of slow cycling, it does not vary a lot during the fast cycling course.

Knowing the cavern heat transfer coefficients for fast and slow cyclings, a maximum value of Bi c ≈ 14.0 is observed in the case of fast cycling and that of approximately 5.0 in the case of slow cycling (Fig. 12(b)).

A lesser value of Biot number means a more convective resistance (smaller λ c ), which indicates a more uniform cavern temperature distribution that interprets a good correlation between the simplified and the complete simulations. 13(b)). However, considerable discrepancies are observed in the case of fast cycling (Fig. 13(a)). Similarly, Fig. 14 shows the power exchanged between the gas in the cavern and the rock domain during fast and slow cycling and for complete and simplified simulations. The figure demonstrates almost an identical gain and loss of energy in the case of slow cycling for complete and simplified simulations (Fig. 14(b)). However, noticeable discrepancies are clear in the case of fast cycling, where simplified approaches tend to overestimate the energy loss to the rock domain during injection (Fig. 14(a)). 

Discussion and conclusion

The objective of this research was to know to which level the simplified uniform thermodynamic state simulations of gas storage in underground caverns (used generally) could be valid, by comparing it to complete simulations that would address all the complexities of the problem, i.e. mesh refinement, gas velocity field, turbulent flow model, and convective heat transfer. As we had access to an in-house simplified code (DEMETHER) and CFD COMSOL license, two simulations of fast and slow cycling were launched. It was perceived initially that if spatial variations of the thermodynamic variables were small to a certain point, complex simulations could correlate to the simplified approach. b,d).

In the case of slow cycling, relative differences are quite small and do not exceed 1%. However, these differences increase over time in the case of fast cycling, yet they tend to reach a maximum plateau of 7%.

The increase over time is related to temperature exchange with the rock mass, where the gas velocity by the cavern wall drives the convective heat transfer.

Eventually, and despite considering all possible complexities of the problem, the simplified slow cycling simulations for both well profiles (Figs 6(a,b,c)) and cavern histories (Fig. 5), were quite close to the complete simulations with relative differences that did not exceed 1%. In terms of calculation times, simplified simulations (the DEMETHER code in this case) did not last longer than 2 hours, however, complete simulations (COMSOL) for fast cycling took approximately 60 days, and for slow cycling 45 days on parallel computation server of 16 cores. There are still more obvious differences between complete and simplified results in the case of fast cycling that reach relative differences of 7%. Though well velocity 20 profiles were comparable, temperature profiles were considerably different, which renders the use of such simplified approaches questionable in the case of fast cycling.

It is understood that a trade-off between accuracy and the calculation time is to be made. It is, until this time, still unfeasible to run complex complete simulations over the entire cavern lifetime, i.e. 30 years and maybe more. Yet, the simplified approaches can give out results in a few days. In the case of seasonal utilization of underground caverns, i.e. gas is stored in summer and withdrawn in winter, the simplified simulations are quite efficient in terms of results and the calculation cost. In addition to that, such simplified approaches allow researchers to concentrate on/address other problems that are of significant importance to the industry, of which we might cite the thermo-hydro-mechanical behavior of the rock mass during cycling, real gas behavior, interactions between the cavity species (gas, brine, and insoluble material), multi-phase simulations, and gas diffusion/loss into the rock mass. Still, while modern humanity demands on energy increase, the simplified approaches, to a certain level, will impose a definite level of inaccuracy that might be unacceptable. The miscalculation of the cavern thermodynamic variables development will lead to misestimation of the stored gas mass, as an example. simulations with a turbulent flow model. Discrepancies can be related to several factors, of which the fact that Bannach et al, [START_REF] Bannach | Technology enhancement for 1) inventory assessment and mechanical integrity testing of gas-filled solution mined caverns and 2) mechanical integrity tests of solution mines and liquid storage caverns[END_REF] performed their tests while having a bowl of brine inside the model, i.e. certain degree of vapor presence. It is also observed that, even at this low rate of injection (t = 320 s and Q = 0.007 kg/s), gas hits the bottom of the model. We do not expect this to happen in the real caverns where we anticipate gas velocity to almost vanish before crossing half the model height (at least in case of seasonal cycling). 
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 1 Figure 1: Schematic diagram of a typical underground cavern, x x x is the position vector at time t.

  λ c = Normal thermal conduction on the solid wall Temperature difference between solid and fluid

  Nu is the Nusselt number, Pr = µC p /Λ is the Prandtl number. The pipe Reynolds number takes the form Re = ρ v D H /µ. The well heat transfer coefficient is expressed in terms of the Nusselt number as λ w = Λ Nu/D T , with D T = 4A/L w being the thermal diameter (m).
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 2 = 300,000 m 3 Spherical cavity in a surrounding rock domain Salt rock T(0) = 40 °C p(0) = 22 MPa M(0) = 4.52 Mkg H = 40 °C Q Geothermal temperature: T (°C) = 17.0 -0.024 z (m) T (°C) Q Surface z = z w = -910 m

Figure 2 :

 2 Figure 2: Schematic diagram of the boundary value problem: it represents a spherical cavern created at depth 910 m in a surrounding rock domain. The geothermal gradient gives a cavern volume averaged temperature of 40 • C. The cavern is assumed initially full of ideal hydrogen with mass M (0) = 4.52 × 10 6 kg at p(0) = 22 MPa.

Figure 3 :

 3 Figure 3: Two cycling schemes to run our cavern: fast/daily cycling that leads to a relative mass change of [-69% to -29%] in 4.5 days; and slow/seasonal cycling where cavern experiences the same mass changes yet over a period of 58.5 days. Points p 1 of withdrawal, p 2 of injection, and p 3 of pause, are displayed on the figure to investigate velocity and temperature profiles in the coming discussions.

Figure 4

 4 Figure 4 shows the 2-D axysemtrical discretization of our boundary value problem for the complete simulations. The mesh consists of 445304 elements of which 24607 quadrilateral boundary elements to account for solid-fluid heat transfer and turbulent flow. Aside from the boundary layer quadrilateral elements, we made sure that the well be discretized into at least another 5 triangular elements to solve for possible radial variations of its thermodynamic quantities. At this level of discretization, solution was not mesh dependent, and the values of wall function δ + w were in accordance with recommendations
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 42 Figure 4: 2-D axysemtrical discretization of the boundary value problem of Fig. 2 for complete simulations. A surrounding rock volume of 25R is chosen around the cavity and well to avoid the effect of far-field boundaries. Mesh is considerably refined on the solid-gas boundary with quadrilateral boundary elements based on the recommendations of the k-ǫ turbulent flow. Mesh is also heavily refined for a certain volume in the rock domain around the cavity and well to better account for the large changes happening close to them in the time frame of our simulations (60 days). Mesh contains 445304 elements of which 24607 quadrilateral boundary elements.
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 656 Figures6(a, b, c) show the well temperature and velocity profiles in the complete (dashed-dotted lines) and the simplified (solid lines) approaches during slow cycling at points p 1 (withdrawal), p 2 (injection), and p 3 (standstill) of Fig.3 respectively, and Figs 6(d, e, f) show the same profiles yet during fast cycling.It is clear that these profiles are quite comparable in the case of slow cycling, where velocity profiles are almost vertical, meanwhile temperature profiles show a curving behavior depending on the state of treatment (withdrawal or injection). In the case of pause/standstill, velocity is equal to zero, and temperature profiles show linear variations and tend to resemble the natural geothermal temperature profile. In the case of fast cycling (Figs6(d, e, f)), and even-though velocity profiles are to some point comparable, temperature profiles are considerably different and they do not show the curving variations anymore due to the fast treatment. In the case of the complete approach, well profiles were calculated

214Figure 7 :

 7 Figure 7: Contours of the magnitude of gas velocity vector ||v v v|| (m/s). The figure compares the results of slow and fast cycling at points p 1 , p 2 , and p 3 for the same value range of [0 to 0.2] m/s. White arrows show the gas flow patterns.

Figure 8 :

 8 Figure 8: Contours of temperature T ( • C). The figure compares the results of slow and fast cycling at points p 1 , p 2 , and p 3 . White arrows show the gas flow patterns.

Figure 9 :

 9 Figure 9: Contours of pressure p (MPa). The figure compares the results of slow and fast cycling at points p 1 , p 2 , and p 3 . White arrows show the gas flow patterns.

Fig. 11 Figure 10 :

 1110 Fig. 11 shows the development of the volume averaged Reynold's and Rayleigh numbers during the course

Figure 11 :

 11 Figure 11: Development of the volume averaged Re and Ra numbers during the course of slow cycling. The figure also shows time-course of the maximum and minimum possible values within the cavern volume.

Figure 13 comparesFigure 12 :

 1312 Figure13compares the radial temperature distribution in the rock domain for the simplified and the complete simulations and during fast and slow cycling at points p 1 (withdrawal), p 2 (injection), and p 3 (standstill) of Fig.3. In the complete simulations, profiles are tracked at the cavern wall at the cylindrical coordinates (r = R, z = z w -R m). The one-dimensional discretization in the simplified simulations was sufficient to reproduce identical thermal distribution to the complete simulations (Fig.

Complete at p 1 Simplified at p 1 Complete at p 2 Simplified at p 2 Complete at p 3 Simplified at p 3 Figure 13 :

 11223313 Figure 13: Radial temperature distribution in the rock domain: the figure compares between the simplified and the complete simulations for the cases of fast (a) and slow cycling (b) and at points p 1 (withdrawal), p 2 (injection), and p 3 (standstill) of Fig. 3.

Figure 14 :

 14 Figure 14: Development of the power exchanged between gas and the rock domain: the figure compares between the simplified and the complete simulations for the cases of fast (a) and slow cycling (b).

Figure 15 shows

 15 Figure 15 shows the absolute value of the relative Kelvin temperature difference (|1-T Complete /T Simplified |× 100%) between complete and simplified simulations of Figs 5(b, d).

Figure 15 :

 15 Figure 15: Relative Kelvin temperature difference |1 -T Complete /T Simplified | × 100%: comparison between complete and simplified simulations for fast and slow cycling of Figs 5(b, d).
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 23412341 Figure B.1: Schematic diagram of the laboratory model used to validate the turbulent thermodynamic flow of gas in underground caverns. The figure shows the axes where the vertical temperature profiles are to be measured, ten sensors over each vertical axis: sensors M (central), Z (at r = R/2), and W (by the wall). Sensor M3 is displayed exclusively as experimental temperature profile histories will be compared to simulation results at this location.
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 567 Figure B.5: Injection test 7: a) Gas velocity magnitude history at sensor M3. b) Gas vertical velocity component history at the model wall at location (r = R, z = L/4). The figure compares between the simulation results of laminar and turbulent flow models.

Figure B. 8

 8 Figure B.8 shows gas velocity contours and flow patterns during injection at t = 320 s and withdrawal at t = 194 s. Though the gas velocity in the withdrawal tube is almost seventh fold the value during the injection test, only small model volume near the tube is affected and the gas average velocity magnitude remains in the range shown in the graph, i.e. 0.02 to 0.14 m/s. However, in case of injection, a large model volume is affected by the high tube velocity, as can be shown in the dark red region excluded from the velocity magnitude range. The differences in the calculated tube velocity are attributed to the assigned mass rates. Following Fig. B.2, at time t = 320 s, the injected mass rate is Q ≃ 0.01 kg/s, meanwhile Q ≃ -0.02 kg/s during withdrawal at t = 194 s.

Injection at t = 320 sm

 320 Figure B.8: Gas velocity contours during test 7 (injection) at t = 320 s, and during test 14 (withdrawal) at t = 194 s. The figure also shows a 2-D zoom-in at the tube connection to show the flow in/out the model volume. The tube gas velocity (||v v v|| well ) is also displayed at the same time.

Table B .

 B 1: Test specifications as performed by Bannach et al, [38]: Tests 7 and 14 Figure B.2: Mass flow rates implemented in tests 7 and 14. The graph data was digitized from Bannach et al, [38]. Table B.2: Beattie-Bridgeman model constants for nitrogen as described in Eq. B.1.T cr = 126.20 (K), p cr = 3398.441 (kPa), and ρ cr = 311.22 (kg/m 3 ) convective heat transfer due to the gas speeding by the model wall.

					Test 7 (Injection) Test 14 (Withdrawal)
	Pressure		Start		60.7 bar	100.3 bar
			End		94.4 bar	1.1bar
	Average temperature	Start		48.9 • C	48.7 • C
			End		48.9 • C	48.9 • C
	Boundary temperature Top plate		46.0 • C	46.0 • C
			Thermostat 4	46.0 • C	46.0 • C
			Thermostat 3	48.0 • C	48.0 • C
			Thermostat 2	50.0 • C	50.0 • C
			Thermostat 1	53.5 • C	53.5 • C
			Bottom plate	53.5 • C	53.5 • C
	Duration of treatment (injection/withdrawal)	170 s		∼500 s
		0.04				
		0.02				
	Mass flow (kg/s)	-0.06 -0.04 -0.02 0				
		-0.08			Test 7 (Injection)
					Test 14 (Withdrawal)
		-0.1				
		0	100	200	300	400	500
				Time (s)	
		A 0	a	B 0	b	c
	136.2315 0.02617 0.05046 -0.00691	4.20 × 10 4
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Appendix A.

The k-ǫ turbulent flow model

A turbulent model is necessary to fully describe gas flow in underground caverns especially when inertial forces are high, i.e. Ra > 10 8 and Re > 4000 [START_REF] Wilcox | Turbulence modeling for CFD[END_REF]. One of the most popular and used eddyviscosity models is the k-ǫ model [START_REF] Kuzmin | On the implementation of the k-ǫ turbulence model in incompressible flow solvers based on a finite element discretization[END_REF][START_REF] Lew | A note on the numerical treatment of the k-ǫ turbulence Model[END_REF][START_REF] Wright | Non-linear k-ǫ turbulence model results for flow over a building at full-scale[END_REF]. It is a two-equation model which gives a general description of turbulence by means of two transport partial differential equations:

1. the first transported variable determines the energy in the turbulence and is called turbulent kinetic energy k (m 2 /s 2 ); 2. the second transported variable is the turbulent dissipation ǫ (m 2 /s 2 /s) which determines the rate of dissipation of the turbulent kinetic energy.

In our research this model is implemented by applying the following definitions into Eqs 2 and 3:

• µ and Λ are replaced by there effective values;

where µ t and Λ t are the turbulent/eddy parts of the dynamic viscosity and of the thermal conductivity, defined as,

with C µ and σ T being empirical coefficients,

• stress tensor in Eq. 2 is replaced by a modified quantity;

• the instantaneous velocity field v v v is expressed as the sum of an average part v v v and turbulent part

The kinetic energy of turbulence k (m 2 /s 2 ) and its dissipation rate ǫ (m 2 /s 2 /s) are defined by averaging the turbulent part of the velocity field;

and are obtained by solving their respective transport equations,

and,

with ψ ψ ψ k and ψ ψ ψ ǫ being the diffusion fluxes of k and ǫ and are defined as,

The turbulent kinetic energy produced by shear P is modeled as,

The k-ǫ empirical quantities C µ , C 1 , C 2 , σ k , σ ǫ , and σ T , are assigned the following values respectively [START_REF] Kuzmin | On the implementation of the k-ǫ turbulence model in incompressible flow solvers based on a finite element discretization[END_REF][START_REF] Lew | A note on the numerical treatment of the k-ǫ turbulence Model[END_REF][START_REF] Wright | Non-linear k-ǫ turbulence model results for flow over a building at full-scale[END_REF], 0.09, 1.44, 1.92, 1.0, 1.3, and 0.9.

Near the model walls, Reynold's number is rather small and viscous effects dominate which renders the k-ǫ equations invalid. Consequently, the problem cannot be described completely unless shear viscous stresses are defined on the wall as well as the necessary boundary conditions for the k-ǫ model. For this cause, Kuzmin et al, [START_REF] Kuzmin | On the implementation of the k-ǫ turbulence model in incompressible flow solvers based on a finite element discretization[END_REF] and Lacasse et al, [START_REF] Lacasse | On the judicious use of the k-ǫ model, wall functions and adaptivity[END_REF] provided analytical solutions of the boundary layer equations while assuming non-slip conditions. The non-slip condition makes the velocity vector tangent to the wall, i.e. v v v . n n n = 0. The balance equation of the tangential viscous forces exerted by the turbulent stress tensor is given by, and δ + w are the model wall functions that take into account the discretization near the wall as well as the gap size between the wall and the turbulent flow domain. COMSOL adopts the same relations for these functions as can be found in literature [START_REF] Kuzmin | On the implementation of the k-ǫ turbulence model in incompressible flow solvers based on a finite element discretization[END_REF][START_REF] Lacasse | On the judicious use of the k-ǫ model, wall functions and adaptivity[END_REF], and it gives δ + w as a result and an analysis variable. It is required, for good accuracy, that this parameter be equal to 11.06 on most of the walls.

Once k and ǫ are known by solving their transport equations, the effective parameters of Eq. A.1 are calculated by substituting for their turbulent parts. Subsequently, the conservation equations of cavern thermodynamics are solved for using these effective parameters and the modified stress tensor. The use of the k-ǫ model requires specific considerations and it has its certain limitations:

1. simulations start by describing a laminar flow regime until time t = t L and the turbulent flow model is activated for t > t L . The initial values of turbulent kinetic energy k 0 and its dissipation ǫ 0 are assigned depending on the laminar dynamic viscosity [START_REF] Kuzmin | On the implementation of the k-ǫ turbulence model in incompressible flow solvers based on a finite element discretization[END_REF];

2. the k-ǫ model requires equilibrium in the boundary layers. Consequently, it does not respond correctly to flows with adverse pressure gradients. This is not common in the case of gas flow since pressure spatial variations are rather small and can generally be neglected when compared to the cavern volume values (Figs 10(e, f));

3. there are some numerical constraints with regard to the mesh refinement near walls. Relatively small elements need to be used in the boundary layers and numerical solutions are to be investigated so that accuracy can not be considerably compromised [START_REF] Lacasse | On the judicious use of the k-ǫ model, wall functions and adaptivity[END_REF][START_REF] Blocken | CFD simulation of the atmospheric boundary layer: wall function problems[END_REF].

Validation on the laboratory scale

This appendix aims at validating the thermodynamic framework (Eqs 1) and particularly the k-ǫ model for turbulent flow (Appendix A) using laboratory experiments and under the application of highrate gas injection and withdrawal.

The laboratory experiments performed by Bannach et al, [START_REF] Bannach | Technology enhancement for 1) inventory assessment and mechanical integrity testing of gas-filled solution mined caverns and 2) mechanical integrity tests of solution mines and liquid storage caverns[END_REF] will be used as the basis for our vali- Tests were performed by establishing the desired initial and boundary conditions (in terms of pressure and temperature). Figure (B.2) shows the injection and withdrawal rates as implemented by Bannach et al, [START_REF] Bannach | Technology enhancement for 1) inventory assessment and mechanical integrity testing of gas-filled solution mined caverns and 2) mechanical integrity tests of solution mines and liquid storage caverns[END_REF] for tests 7 and 14. Same rate schemes were fed to COMSOL in order to compare simulations to experimental data.

The Beattie-Bridgeman model is used to describe the thermodynamic behavior of nitrogen as a real gas [START_REF] Deming | The constants of the Beattie-Bridgeman equation of state with Bartlett's P-V-T data on nitrogen[END_REF]. This model is based on five experimentally determined constants, it is expressed as, There is a good match between the numerical results of turbulent flow and the experimental data. The simulation results for laminar flow are underestimating the true thermodynamic behavior, besides, they show numerical instabilities in-spite of the use of a heavily refined mesh (time-volume averaged Pe = 0.7).

The necessity to integrate a turbulent flow model can be conceived from calculating the Reynold's and the Rayleigh numbers. We have averaged these numbers over the model volume and simulation time to CFD simulations require the generated mesh to have high quality, enough resolution for the desired accuracy, and to be computationally at a low cost. Usually such meshes need to be excessively refined in regions of sharp gradients for the three fields of unknowns. Therefore, our mesh was heavily refined near the model wall, along the injection well, and near the entrance where gas goes into the model volume.

Our numerical solution stopped to be mesh dependent at meshes contained approximately 70,000 elements. However, considering that the simulation time was relatively short, and that we tried to correlate our simulations to experimental data, we chose our mesh so that the volume averaged Péclet number was Pe=0.7. Our objective was to decrease the solution dependency on the stabilization techniques that tend to be diffusive and that may affect the numerical solution for the validation goal of this section.

The evolution of the wall function δ + w (Eq. A.10) during tests 7 and 14 did not exceed 11.062 Pa s, it is around the suggested value (11.06) for good accuracy of the k-ǫ turbulent model [START_REF] Kuzmin | On the implementation of the k-ǫ turbulence model in incompressible flow solvers based on a finite element discretization[END_REF][START_REF] Lacasse | On the judicious use of the k-ǫ model, wall functions and adaptivity[END_REF].