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An abstract domain for trees with numeric relations

We present an abstract domain able to infer invariants on programs manipulating trees. Trees considered in the article are defined over a finite alphabet and can contain unbounded numeric values at their leaves. Our domain can infer the possible shapes of the tree values of each variable and find numeric relations between: the values at the leaves as well as the size and depth of the tree values of different variables. The abstract domain is described as a product of (1) a symbolic domain based on a tree automata representation and (2) a numerical domain lifted, for the occasion, to describe numerical maps with potentially infinite and heterogeneous definition set. In addition to abstract set operations and widening we define concrete and abstract transformers on these environments. We present possible applications, such as the ability to describe memory zones, or track symbolic equalities between program variables. We implemented our domain in a static analysis platform and present preliminary results analyzing a tree-manipulating toy-language.

Introduction

The abstract interpretation framework [START_REF] Cousot | Abstract interpretation: A unified lattice model for static analysis of programs by construction or approximation of fixpoints[END_REF] enables the development of sound static analyzers by inferring and proving invariants on reachable states of programs. Invariants in the scope of abstract interpretation are elements of a lattice called an abstract domain. Most domains focus on numeric or pointer variables. By contrast, we propose here an abstract domain for variables whose values are tree data-structures. Tree values appear natively in some languages (such as OCaml) and applications (such as the DOM in web programming) or can be encoded through pointer manipulations (as in C). Trees can abstract terms in logic programming. A tree domain can also be useful to collect symbolic expressions appearing in a program. Used memory zones. Prog. 1 describes an append function defined in the C language, this function adds an integer at the end of a linked list. The infinite set of unbounded terms of the form *(*( ...*(head + 4) ...+ 4) + 4) represents memory zones that are used by the append function. Our analyzer is able to infer and represent such sets of terms. This provides the information that Prog. 1 does not use any of the data field of the linked list. Such a function would be fairly commonly called in a real-life project. In a classical top-down static analysis by abstract interpretation, function calls are inlined at each call site. A way to improve scalability is to design modular analyzers able to reuse previous analysis results (as emphasized in [START_REF] Cousot | Modular static program analysis[END_REF]). In order to be able to successfully reuse function body analysis, input states must be unified. Moreover the cost of performing the analysis of the body of functions grows with the number of variables that need to be tracked. A common way to deal with both problems is to use framing on the inputs of the functions (as in separation logic [25]). This improves [START_REF] Bouajjani | Abstract regular tree model checking of complex dynamic data structures[END_REF] precision: as we know that they are not modified by the function call, (2) body analysis efficiency: as the input state is reduced and finally (3) modularity: as constraints on the usage of the first analysis are relaxed by the removal of constraints.

Symbolic relations. Prog. 2 is a C function computing an approximation of the golden ration (as it is the limit of the sequence r 0 = 1, r n+1 = 1+ 1 rn ). As classical numerical domains can not represent such numerical relations, methods were proposed to track symbolic equality between expressions (see [START_REF] Miné | Symbolic methods to enhance the precision of numerical abstract domains[END_REF]). However such methods can not handle the unbounded iteration of Prog. 2. The set of reachable states at the end of Prog. 2 can be expressed by r = 1 + 1/(1 + 1/ . . . 1 . . . ) with depth n. Please note that to infer such results we need to express numerical relations between the size of trees and the numeric variables from the program.

Numerical environment. Consider now the OCaml Prog. 3, we want to prove that the assert false expression is never reached. This program builds a list of size 2 * n with alternating values x + 1 and x -1. The assertion states that the head of the list is x + 1. After the definition of t there are two types of reachable states. [START_REF] Bouajjani | Abstract regular tree model checking of complex dynamic data structures[END_REF] Those that have not gone through the loop (t → [], x → Z, n → 0), and (2) those that have gone through at least one iteration of the loop: (t → [a 1 ;a 2 ; a 3 ; ...], x → α, n > 0, a 1 → α + 1, a 2 → α -1, a 3 → α + 1), where α ∈ Z. Therefore we need to be able to keep numerical relations between the parametric and unbounded number of numeric values appearing in t and numeric variables from the program. Classical numeric domains do not provide out-of-the-box abstractions for sets of partially defined numerical functions, therefore we define such an abstraction. As an example of analysis result, the memory representation obtained by our analysis for t describes the set of trees of the form: Cons(a, Cons(b, Cons(a, ..., Nil) ...)) where a = x + 1 and b = x -1. Therefore we are able to prove that the assert false expression is never reached.

Contributions. The main contributions of the article are threefold: [START_REF] Bouajjani | Abstract regular tree model checking of complex dynamic data structures[END_REF] The extension of results on tree automata to the abstract interpretation framework by definition of a widening operator, in order to represent the set of tree shapes that a variable can contain. (2) The definition of a numerical domain built upon classical abstract domains able to represent sets of partial numerical maps with heterogeneous and unbounded definition sets. This is necessary to represent the numeric values at the leaves of a set of trees, as trees are unbounded and can contain a different number of leaves. [START_REF] Bourdoncle | Sémantiques des Langages Impératifs d'Ordre Supérieur et Interprétation Abstraite[END_REF] The definition of a novel abstraction for trees that can contain numerical values at their leaves. This last domain combines the abstractions (1) and [START_REF] Bouajjani | Abstract regular model checking[END_REF]. Moreover it is relational as it can express relations between numerical values found in trees and in the rest of the program, and relations between trees. Finally all results were implemented in an existing framework and experimented on a toy-language.

Limitations. At this point, analyses can only be performed on the toy language presented thereinafter, not on real life code, therefore we do not present any benchmark results, even though examples of analysis results will be put forth. Indeed Prog. 1, 2 and 3 were precisely analyzed once encoded into our toylanguage (see Prog 4 and Prog 5).

Outline. We start, in Sec. 2, by presenting the concrete semantic we want to abstract. In Sec. 3 we build a first abstraction which forgets numerical values and focuses on abstracting tree shapes. Sec. 4 presents a novel numerical abstract domain required for the definition of the abstract domain of Sec. 5, which aims at precisely representing numerical constraints between trees and program variables. In Sec. 6 we provide remarks on the implementation and results of the analyzer. Finally Sec. 7 mentions related works while Sec. 8 concludes. Additional algorithms can be found in App. A and B, while App. C provides proofs.

Notations. Abstractions are classically Galois connections (see [START_REF] Cousot | Abstract interpretation: A unified lattice model for static analysis of programs by construction or approximation of fixpoints[END_REF]) between the concrete and abstract lattices. However, as some of the lattices do not enjoy a best abstraction function we define their abstractions in term of representations (as defined by Bourdoncle in [START_REF] Bourdoncle | Sémantiques des Langages Impératifs d'Ordre Supérieur et Interprétation Abstraite[END_REF], also known as concretization only framework). In the following, representations are denoted (A,

⊆ A ) γ ← -(B, ⊆ B ) whereas Galois connections are denoted (A, ⊆ A ) ---→ ← --- α γ (B, ⊆ B ).
Moreover A B denotes the set of partial maps from A to B, and

λ |A x.f (x) ∈ B denotes the map in A → B that associates f (x) to x. Finally when f ∈ A → C and g ∈ B → C, with A ∩ B = ∅, f g is the function defined on A ∪ B, that associates f (x) to x (resp. g(x)) whenever x ∈ A (resp. x ∈ B).
2 Syntax and concrete semantics Definition 1. An alphabet F is a finite set, a ranked alphabet is a pair R = (F, a) where F is an alphabet and a ∈ F → N. For f ∈ F, we call arity of f the value a(f ). We assume that Z and F are disjoint and we define the set of natural terms over R (denoted T Z (R)) to be the smallest set defined by:

-

Z ⊆ T Z (R) -∀p ≥ 0, f ∈ F, t 1 , . . . , t p ∈ T Z (R), a(f ) = p ⇒ f (t 1 , . . . , t p ) ∈ T Z (R)
Moreover when R contains at least one symbol of arity 0, we define terms over R (denoted T (R)) to be the smallest set defined by:

-∀p ≥ 0, f ∈ F, t 1 , . . . , t p ∈ T (R), a(f ) = p ⇒ f (t 1 , . . . , t p ) ∈ T (R)
In the following, F n denotes the subset of F of arity n. Moreover given a term t ∈ T (R) we denote f = head(t) ∈ F and sons(t) a possibly empty tuple (t 1 , . . . , t n ) of elements of T (R) such that t = f (t 1 , . . . , t n ).

Remark 1. Numerical leaves are defined to contain integers, however this could be modified to rationals, real numbers or floats. We are parametric in the type of numeric values, as they are delegated to an underlying numerical domain. Syntax of the language and concrete operations. We assume already defined a small imperative language and extend it (in Fig. 1) with statements, tree expressions (tree -expr) which are expressions that are evaluated to trees, and simple symbol expressions (sym -expr) which enable the manipulation of symbols. We add the ability to build a tree which contains only a numerical leaf: make integer(e), the ability to read the i-th son of a tree t: get son(t, i), . . . . 

E make symbolic(s ∈ Fm, T1, . . . , Tm) (E, F ) = {s(t1, . . . , tm) | ∀i, ti ∈ E Ti (E, F )} E make integer(e ∈ expr) (E, F ) = E e (E, F ) E is symbol(T ) (E, F ) = {true | ∃t ∈ E T (E, F ), ∃f ∈ R, t = f (. . . )} ∪ {false | ∃t ∈ E T (E, F ), t ∈ Z} E get son(T, e) (E, F ) = {t | ∃i ∈ E e (E, F ), t ∈ E T (E, F ), f ∈ Fm>i, t = f (t0, . . . , tm-1) ∧ ti = t} E get num head(T ) (E, F ) = {i ∈ Z | ∃t ∈ E T (E, F ), t = i} E get sym head(T ) (E, F ) = {s ∈ R | ∃t ∈ E T (E, F ), t = s(. . . )}
Fig. 2: Concrete operations on natural terms int i ; int n ; tree y ; assume ( n >= 0) ; i = 0; y = make_symbolic ( " p " ,{}) ; while ( i < n ) { y = make_symbolic ( " * " , { make_symbolic ( " + " , {y , make_integer (4) }) }) ; i = i +1; } Program 4: *(p+4) iterated int n ; int i ; int x ; int rep ; tree t ; assume (n >=0) ; i = 0; t = make_symbolic ( " Nil " ,{}) ; while ( i < n ) { t = make_symbolic ( " Cons " ,{ make_integer (x -1) , t }) ; t = make_symbolic ( " Cons " ,{ make_integer ( x +1) , t }) ;

i = i + 1; }; if ( get_sym_head ( t ) != " Nil " ) { rep = get_num_head ( get_son (t ,0) ) ; assert ( rep > x ) ; } Program 5: List manipulation V) denoted expr, a set of statements stmt, a notion of numerical environment E ∈ E = V → Z, a set of tree program variables T , a notion of tree environment F ∈ F = T → ℘(T Z (R)), D = E × F is our concrete domain.
Finally we assume already partially defined on numerical expressions an evaluation function

E e ∈ expr (E ∈ V → Z, F ∈ T → ℘(T Z (R))) ∈ ℘(Z).
Using this operator we are able to define Prog. 4 which computes the memory zones used by append from Prog 1, and Prog. 5 that simulates the behavior of Prog. 3.

Natural term abstraction by tree automata

In this section we start by defining a value abstraction for tree sets (in Sec. 3.1), which is then lifted to an environment abstraction (in Sec. 3.2).

Value abstraction

As a first abstraction for natural terms, we put aside numerical values and define an abstraction able to describe sets of tree shapes. Tree automata enable the description of set of terms built upon a finite ranked alphabet. The ranked alphabet of the language we want to analyze is extend with the symbol to denote potential positions of numerical values.

Definition 2 (Finite tree automata). A finite tree automaton (FTA) over a ranked alphabet R is a tuple

(Q, R, Q f , δ), where Q is a (finite) set of states, Q f ⊆ Q is the set of final states, and δ ∈ ℘( n∈N F n × Q n × Q) is the set of transitions. We define δ : ( n∈N F n × Q n ) → ℘(Q) by: δ(f, - → q ) = {q | (f, - → q , q ) ∈ δ}. When δ is such that, ∀n ∈ N, f ∈ F n , - → q ∈ Q n , |δ(f, - → q )| = 1,
we say that the automaton is complete and deterministic (CDFTA). We then abuse notations and denote by δ(f, -→ q ) the unique element in the set δ(f, -→ q ). Definition 3 (Reachability). Given a FTA A = (Q, R, Q f , δ) we define, a reachability function reach A : δ(head(t), (q 1 , . . . , q n ))

T (R) → ℘(Q) reach A (t)
If sons(t) is the empty tuple (which is the case when t is a constant a), the union is made over a unique element (which is the empty tuple), which then boils down to: δ(a, ()). If sons(t) is not the empty tuple and for some i, Reach A (t i ) is empty, then Reach A (t) is also empty Example 3. Consider the ranked alphabet R = {f (2), a(0)}, and the automaton

A = ({u, v}, R, {v}, {a() → u, f (v, v) → v, f (u, u) → u, f (u, u) → v}). Then reach A (a) = {u}, reach A (f (a, a)) = {u, v}, reach A (f (f (a, a), a)) = {u, v}.
Definition 4 (Acceptance). Given a FTA A = (Q, R, Q f , δ), a term t, we say that t is accepted by the automaton if reach A (t) ∩ Q f = ∅. L(A) denotes the set of terms accepted by automaton A.

Example 4. With the definition of Ex. 3, L(A) is the set of terms over R that contain at least one f . Definition 5 (Tree regular languages). A set of terms T over a ranked alphabet R is called tree regular if there exists a FTA A over R such that L(A) = T . The set of tree regular languages over a ranked alphabet R is denoted TReg(R).

Remark 2. As for regular languages, for all A ∈ FTA there exists A ∈ CDFTA such that L(A) = L(A ), moreover A is computable (see [START_REF] Comon | Tree automata techniques and applications[END_REF]).

Example 5. -As proved in Ex. 4 the set of all terms over {f (2), a(0)} that contain at least one f is tree regular. -Consider now the ranked alphabet {a(1), b(1), (0)} and the set of terms T = { , a(b( )), a(a(b(b( )))), . . . }. We can prove (in a similar way as for a n b n in regular languages) that T is not tree regular. -On every ranked alphabet R: every finite language, the empty language and T (R) are tree regular.

Proposition 1. (TReg(R), ⊆, ∩, ∪, . c , ∅, T (R)) is a complemented lattice with infinite height, moreover it is not complete. ⊆, ∩, ∪ and complementation (. c ) are computable operations on tree automata [START_REF] Comon | Tree automata techniques and applications[END_REF].

We denote by R the ranked alphabet R after adding the symbol of arity 0 (we assume that ∈ R). Given a natural term t, we define t to be the term obtained by replacing every integer with the symbol.

Proposition 2. (℘(T Z (R)), ⊆) γ ← -(TReg(R ), ⊆) where γ(A) = {t | t ∈ L(A)
} is a representation. Moreover with such a γ definition, ∪, ∩ soundly represent the union and the intersection. Remark 3. We only have a representation and not a Galois connection as language T of Ex. 5 does not have a best tree regular over approximation. Example 6. Let R = {+(2)} and A = ({0, 1}, R , {0, 1}, {( () → 0, +(0, 0) → 1, +(0, 1) → 1)}). Examples of terms recognized by A are shown on Fig. 3. Natural terms from our running example U and V (defined in Ex. 2) are also contained in γ(A). Moreover as we do not provide numerical constraints: 1 + (3 + 4), 23, 1 + (2 + (3 + 4)) are also elements in γ(A).

Due to the infinite height of the lattice, a widening operator is required. In the following, we assume given a constant w ∈ N, this constant will be used to stabilize increasing chains, the greater the constant, the more precise our widening operator will be.

Definition 6. Let A = (Q, R, Q f , δ) ∈ FTA, and ∼ be an equivalence relation on Q, such that p ∼ q ∧ p ∈ Q f ⇒ q ∈ Q f . We define A/ ∼= (Q/ ∼, R, Q f / ∼,
(f,q1,...,qn,q)∈δ {(f, q ∼ 1 , . . . , q ∼ n , q ∼ )}) where q ∼ is the equivalence class of q in ∼.

Proposition 3. For every A ∈ FTA and every ∼ equivalence relation on its states, L(A) ⊆ L(A/ ∼).

Therefore following the idea from [START_REF] Feret | Abstract interpretation-based static analysis of mobile ambients[END_REF] and in [START_REF] Gall | Verification of communication protocols using abstract interpretation of FIFO queues[END_REF], we define a widening operation by quotienting states of automata by an equivalence relation of finite index. We define by induction a special sequence of equivalence relations on states of tree automata:

∼ 1 = {Q f , Q \ Q f }
and ∼ k+1 is ∼ k where we split equivalence classes not satisfying the following condition: ∀f ∈ F n , ∀p 1 , . . . , p n ∈ Q, ∀q 1 , . . . , q n ∈ Q, ( n i=1 p i ∼ k q i ) ⇒ δ(f, p 1 , . . . , p n ) ∼ k δ(f, q 1 , . . . , q n ) and ∀q ∈ Q f , q ∼ k ⊆ Q f . This sequence of equivalence relations is the Myhill-Nerode sequence (see [START_REF] Comon | Tree automata techniques and applications[END_REF]). This sequence is of length at most the number of states of the automaton (before stabilization). Let φ(w) = max{i ≤ |Q| | index of ∼ i ≤ w} (given an integer w, φ yields the index of the most precise of the equivalence relationships in the Myhill-Nerode sequence, that contains at most w equivalence classes) and [A] w = A/ ∼ φ(w) . [A] w is therefore a FTA with at most w states such that L(A) ⊆ L([A] w ). As for regular languages, for every CDFTA a equivalent minimal CDFTA (in the sense of the number of states, and unique modulo state renaming) can be obtained by quotienting the automaton by ∼ |Q| . Therefore we define a widening operator on CDFTAs, which is then lifted to tree regular languages.

Definition 7 (Widening operator ). Let A, A be CDFTAs

, A A = [A ∪ A ] w .
Proposition 4. This widening is sound and stabilizes infinite sequences. Now that we are given an abstraction for natural term sets, let us show how this is lifted to a notion of abstract natural term environments mapping variables to natural terms. Given a set of natural term variables T , consider F = (T → TReg(R ))∪{⊥} and the set operators defined by the point-wise lifting of operators on TReg(R ). We also lift the concretization function

℘(T Z (R)) ← TReg(R ) E make integer(e ∈ expr) (E , F ) = {a}, R, {a}, { () → a} E get son(T, e ∈ expr) (E , F ) = (Q,R,Q f ,δ)∈E T (E ,F ) i∈E e (E )∩{0,...,m-1} (Q, R, {q ∈ Q | ∃p ∈ Q f , ∃s(p0, . . . , pm-1) → p ∈ δ ∧ pi = q}, δ)
Fig. 4: Abstract operators to F ← F . We assume given an abstract numerical environment E and an abstract evaluator E e . Abstract transformers make symbolic , is symbol , get son(e) , get sym head and get num head are simple tree automata operations. For concision Fig. 4 only provides definitions of two of these operators. Please note that these definitions require all states of the automata to be reachable. An example of use of the is symbol operator can be found in Ex. 7.

Other abstract operators are similar.

Example 7. Consider the tree automaton A of Ex. 6, (Fig. 3), with

F = (x → A): get sym head(x) (E , F ) = {+} and get num head(x) (E , F ) =

Numerical abstractions

As emphasized in the introductory example, we rely on numerical domains to introduce constraints on numerical variables found in trees. In a classical numeric abstraction (e.g. intervals [START_REF] Cousot | Static determination of dynamic properties of generalized type unions[END_REF], octagons [START_REF] Miné | The octagon abstract domain[END_REF], polyhedra [START_REF] Cousot | Automatic discovery of linear restraints among variables of a program[END_REF], . . . ), each abstract element represents a set of maps V → R for a fixed, finite set of variables V. In contrast, our numeric variables are leaves of a possibly infinite set of trees of unbounded size. Hence before starting the presentation of the numerical abstraction for natural terms, we show how to extend in a generic way an abstract element in two steps. Firstly we want to be able to represent a set of maps, where each map is defined over a (possibly different) finite subset of an infinite set of variables (this is done in Sec. 4.1). Secondly, we use summarization variables to relax the finiteness constraint, so as to represent sets of maps over heterogenous maps over infinitely many variables (done in Sec. 4.2).

Heterogeneous support

We define

M ∆ = ℘(V R)
, the set of partial maps from V, to R. M is ordered by the inclusion relation ⊆. In the following def (f ) denotes the definition set of f . We assume defined a representation (℘(S → R), ⊆)

γ S 0 ← --(N S , S 0 
), for every finite set S ⊆ V (such as octagons in |S| dimensions). N S comes with the usual abstract set operator S 0 , S 0 . Moreover if x ∈ S, y / ∈ S, S is another finite set and N ∈ N S then N [x → y] ∈ N S∪{y}\{x} is the abstract element obtained by renaming x into y, N |S ∈ N S is obtained by existentially quantifying dimensions associated to elements in S and not in S and adding unconstrained dimensions for elements in S and not in S. From now on we assume that this last operator is exact (as for intervals, octagons, polyhedra over R). However results from this section can be extended to numerical domains that are able, given

N ∈ N S , N ∈ N S , to check if γ S 0 (N ) ⊆ γ S 0 (N ) |S .
The precision of the extension defined in this subsection would then depend upon the precision of this test in the underlying domain. Finally . S 0 (resp. . ,S 0 ) refers to the classical concrete (resp. abstract) semantic of operators on sets of numerical maps (resp. abstract elements).

A classical method for the abstraction of heterogeneous maps is the use of a partitioning of the concrete element according to the definition set of its represented maps. However partitioning induces an increase in numerical operation cost (exponential in the number of variable) which we would like to avoid. Therefore in order to abstract sets of maps with heterogeneous definition sets, we start by abstracting the potential definition set. We choose a simple lowerbound/upper-bound abstraction (l and u in the following definition). Moreover we need to abstract the potential mappings given a definition set: this is done using a classical numerical domain. Contrary to partitioning, we will use only one numerical abstract element, defined on the upper-bound u, to represent all environments (instead of one abstract element by definition set). We also add a element, used in the case where the upper bound u is infinite.

Definition 8 (Numerical abstraction). Let us define the following set:

M ∆ = { N , l, u | l, u ∈ ℘(V )∧l and u are finite∧l ⊆ u∧N ∈ N u ∧N = ⊥ u 0 }∪{ , ⊥}.
An element of M is therefore: either , ⊥ or a triple N , l, u where l and u are finite sets of variables such that N is defined over u.

Definition 9 (Concretization function).

Abstract elements from M are mapped to M thanks to the following concretization function:

γ(⊥) = ∅, γ( ) = M and γ( N , l, u ) = {ρ ∈ S → Z | l ⊆ S ⊆ u ∧ ρ ∈ γ S 0 (N ) |S )} Example 8. As an example consider γ( {x = y, x ≤ 3, z = 0}, {x}, {x, y, z} ) = {(x → a) | a ≤ 3} ∪ {(x → a, y → a) | a ≤ 3} ∪ {(x → a, z → 0) | a ≤ 3} ∪ {(x → a, y → a, z → 0) | a ≤ 3}.
As intended, the resulting set of maps contains maps with different definition sets.

Definition 10 (Order). On M we define the following comparison operator:

N , l, u N , l , u ⇔ l ⊆ l ⊆ u ⊆ u ∧ N u 0 N |u ,
this comparison is trivially extended to (resp. ⊥) as being the biggest (resp. smallest) element in M . In the following M p denotes the subset of M where u = p extended with and ⊥. Proposition 5. γ is monotonic for .

Fig. 5 provides the definition of the concrete and abstract semantics of the classical numerical statements, Assume and Assign (denoted x ← e). We denote vars(e) the set of variables appearing in e. We recall that Assume(c

) S 0 (E ∈ ℘(S → R)) = {f ∈ E | true ∈ E c (f )} and x ← e S 0 (E ∈ ℘(S → R)) = Assume(c) (M) = Assume(c) 0({f | f ∈ M ∧ vars(c) ⊆ def (f )}) Assume(c) ( N , l, u ) = Assume(c) ,u 0 (N ), l ∪ vars(c), u x ← e (M) = x ← e 0({f | f ∈ M ∧ vars(e) ∪ {x} ⊆ def (f )})
x ← e ( N , l, u ) = x ← e ,u 0 (N ), l ∪ vars(e) ∪ {x}, u Fig. 5: Concrete and abstract semantic of usual numerical operators

{f [x → e ] | f ∈ E ∧ e ∈ E e (f )}.
In order to ease the lifting of these classical operators we define stmt 0 (M ∈ M)

∆ = ∪ S finite⊆V stmt S 0 (M ∩ (S → R))
, for every statement stmt. Moreover we assume the existence of the following abstract operators: Assume(c) ,u 0 (N ) and x ← e ,u 0 N abstracting soundly their respective concrete transformers. Note that the concrete semantic of Assume(c) (resp. x ← e) enforces that maps are defined at least on the variables appearing in c (resp. in e and on x). Abstract operators from Fig. 5 are sound with respect to γ and their concrete operators.

We now need to define that abstracts the classic set operator ∪. We can not directly apply the corresponding abstract operator on the numerical component of the abstractions as they might have different definition sets. A first naive solution would be to extend their respective definition set and to perform the abstract operation on the resulting elements:

N |u∪u u∪u 0 N |u∪u . However consider M = {x = y}(= U ), {x, y}, {x, y} and N = {x = z}(= V ), {x, z}, {x, z} ,
where the underlying domain is the octagon domain where elements are represented as a set of linear constraints (e.g. {x = y}). We have U |{x,y,z} = {x = y} and V |{x,y,z} = {x = z}, hence U |{x,y,z} {x,y,z} 0 V |{x,y,z} = . Consider now the abstract element in M : R = {x = y, x = z}(= W ), {x}, {x, y, z} . The concretization of R over-approximates the union of the concretization of M and N , and its numerical component is more precise than . We note that the numerical constraints appearing in W could be found in U or V , therefore in order to remove the aforementioned imprecision we define a refined abstract union operator, denoted as , that uses constraints found in the inputs in order to refine its result. This is done using the strenghtening operator of Algo. 1 which adds constraints from C that do not make the projection of X to u (resp. v) lower than the threshold U (resp. V ). We assume that, given an abstract element U , we can extract a finite set of constraints satisfied by U , those are denoted constraints(U ) (the more constraints can be extracted, the more precise the result will be). For example if the numerical domain is the interval domain, constraints have the form ±x ≥ a. If the numerical domain is the octagon domain the constraints operator yields all the linear relations among variables that define the octagon.

Definition 11 ( operator). Let U ∈ N u , V ∈ N v be two numerical environments, let X ∈ N u∪v , let C be a sequence of numerical constraints over Algorithm 1: strengthening operator Input : X , C: a set of constraints, U ∈ Nu: a soundness threshold on environment u, V ∈ Nv: a soundness threshold on environment v Output: Z an abstract element over-approximating U on u and

V on v 1 Z ← X ; 2 foreach c ∈ C do 3 T ← Assume(c) ,u∪v 0 (Z ); 4 if U u 0 T |u ∧ V v 0 T |v then 5 Z ← T ; 6 end 7 return Z ; u ∪ v, let c = u ∩ v we define: U V = let X = (U |c c 0 V |c ) |u∪v in let C = constraints(U ) ∪ constraints(V ) in strengthening(X , C, U , V ) Remark 5.
-The precision of depends upon the order of iteration over constraints c ∈ C in Algo. 1. Our implementation currently iterates in the order in which constraints are returned from the abstract domains. More clever heuristics will be considered in future work. -U V starts by performing the join over the domain c, the result is then strengthened. Other strenghtening(X , U ∈ N u , V ∈ N v ) operator could be defined, however in order to ensure soundness of , it must satisfy the following constraints: U u 0 strenghtening(X , U , V ) and V v 0 strenghtening(X , U , V ).

Example 9. Let us now consider the example introduced thereinbefore U V = {x = y, y = z} ∈ N {x,y,z} . Indeed using the notations of Def. 11:

Z ∆ = X = ∈ N {x,y,z} , C = {x = y, y = z}, moreover Assume(x = y) ,u∪v 0 ( ) = {x = y}( ∆ = T ), U {x,y} 0 {x = y} = T |{x,y} and V {x,z} 0 = T |{x,z} . There- fore constraint x = y is added to Z . At the next loop iteration: Assume(x = z) ,u∪v 0 ({x = y}) = {x = y, x = z}( ∆ = T ), U {x,y} 0 {x = y} = T |{x,y} and V {x,z} 0 {x = z} = T |{x,z} . Therefore constraint x = z is added to Z . Proposition 6 (Soundness of ). let U ∈ N u and V ∈ N v , then γ u 0 (U ) ⊆ (γ u∪v 0 (U V )) |u and γ v 0 (V ) ⊆ (γ u∪v 0 (U V )) |v
Definition 12 (Union abstract operators). We define the following abstract set operator: N , l, u N , l , u ∆ = N N , l ∩ l , u ∪ u . This operator soundly abstracts the union. Moreover in order to ensure the stabilization of infinitely increasing chains in M we define the following widening operator:

N , l, u N , l , u =    N u 0 N |u , l, u when l ⊆ l ∧ u ⊆ u N N , l , u when l ⊂ l ∧ u ⊆ u otherwise
Remark 6. This widening operator over-approximates to whenever the upperbound on the definition set is growing. This yields a huge loss of information however this numerical domain is designed as a tool domain used by a higher level abstraction in charge of stabilizing the environment before applying the widening, so that this case will not be used in practice.

Subsequent tree abstractions require the definition of the following operators:

-N , l, u |-x ∆ = N |u\{x} , l \ {x}, u \ {x} and N , l, u |+x ∆ = N |u∪{x} , l ∪ {x}, u ∪ {x}
which respectively removes (adds) a variable to the numerical environment.

-N , l, u |S is computed by adding variables in S and not in u and removing variables in u that are not in S.

Representation of maps over potentially unbounded sets

In this subsection we focus on the problem of defining abstract numerical environments on potentially infinite environments. A classical method we use here is variable summarization (see [START_REF] Gopan | Numeric domains with summarized dimensions[END_REF]). This is based on the folding of several concrete objects (a potentially infinite number) to an abstract element which summarizes all concrete objects. The folding is encoded in a function f mapping summarized variables to the set of concrete variables they abstract. Given an abstract numerical environment N and a mapping from summary variables:

V to sets of concrete variables f ∈ V → ℘(V) where f (v 1 ) ∩ f (v 2 ) = ∅ ⇒ v 1 = v 2 ,
we define the collapsing of a partial map ρ ∈ V Z under a summarizing function f : Given a summarizing function f we can now define an extension of the concretization function γ of the previous subsection in the following manner:

↓ f (ρ) = {ρ ∈ V Z |∀v ∈ V , (f (v ) ∩ def (ρ) = ∅ ∧ ρ (v ) = undefined) ∨ (∃v ∈ V, v ∈ f (v ) ∩ def (ρ) ∧ ρ (v ) = ρ(v))} Example 
γ[f ](N ) = {ρ ∈ V Z |↓ f (ρ) ⊆ γ(N )}
Example 11. Going back to Ex. 10 and considering the numerical abstract element: N = {x ≤ y}, {x}, {x, y} , we have:

γ(N ) = {(x → α) | α ∈ Z} ∪ {(x → α, y → β) | α ≤ β}. We have: m ∈ γ[f ](N ) ⇔↓ f (m) ⊆ γ(N ) ⇒ {x} ⊆ def (↓ f (m)) ⊆ {x, y}.
Therefore if we assume m defined on d then f (z) ∩ def (m) = ∅ hence there would be an element in ↓ f (m) defined on z. Hence m is not defined on d, similarly for g. Moreover {x} ⊆ def (↓ f (m)) implies that m is defined on a. Finally:

γ[f ](N ) = {(a → α) | α ∈ Z} ∪ {(a → α, b → β) | α ≤ β} ∪ {(a → α, c → β) | α ≤ β} ∪ {(a → α, b → β, c → γ) | α ≤ β ∧ α ≤ γ}.
The abstract domains we will define in the following sections will employ this summarization framework. The manipulation of summarized variables requires the definition of a fold(E, x, S) (resp. expand(E, x, S)) operator yielding a new environment where x is used as a summary variable for S (resp. where a summary variable x is desummarized into a set of variables S). Let S and S be two finite sets of elements such that S ∩ S ⊆ {x}, we define:

expand 0 (N , x, S ) = v∈S N [x → v] |(S\{x})∪S and fold 0 (N , x, S ) = v∈S N [v → x] |(S\S )∪{x}
(which generalize the one introduced in [START_REF] Gopan | Numeric domains with summarized dimensions[END_REF]). These operations are lifted as operators on elements of M :

expand( N , l, u , x, S) ∆ = expand 0 (N , x, S), l \ {x}, (u \ {x}) ∪ S fold( N , l, u , x, S) ∆ = fold 0 (N , x, S), (l \ S) ∪ {x} if S ⊆ l (l \ S) otherwise , (u \ S) ∪ {x}

Natural term abstraction by numerical constraints

We are now able to represent sets of maps with heterogeneous supports and to lift their concretization (modulo a summarization function) to sets of maps with infinite and heterogeneous supports. Given a tree shape (in the sense of Sec. 3), we can associate a numeric variable to each numeric leaf, and use a numeric abstract element to represent the possible values of these leaves. We will name the variable of each leaf as the path from the root to the leaf, i.e., V is a set of words in {0, ..., n -1} where n is the maximum arity of the considered ranked alphabet. In order to avoid confusion such paths will be denoted 0, 1, 1 for the word (0, 1, 1). A summarized variable then represents a set of such paths. We will abstract such sets as regular expressions. Using the summarization extended to heterogeneous supports presented in the previous section, it will be possible to represent, using a single numeric abstract element, a set of contraints over the numeric leaves of an infinite set of unbounded trees of arbitrary shape.

Hole positions and numerical constraints

The presentation of our computable abstraction able to represent numerical values in trees is broken down (for presentation purposes) into two consecutive abstractions. The first one is not computable, as natural terms are abstracted as partial environments over tree paths to numerical values. This abstraction looses most of the tree shapes but focuses on their numerical environment. A second abstraction will show how partial environments over paths are abstracted into numerical abstract elements defined over a regular expression environment.

In the following, when R is a ranked alphabet of maximum arity n, we call words sequences of integers, w = (w 0 , . . . , w p-1 ) ∈ {0, . . . , (n-1)} p will be called a word of length p (denoted |w|), w i denotes the i-th integer of the sequence, w = (w 1 , . . . , w p-1 ) is the tail of word w, W(R) = {0, . . . , (n -1)} is the set of all words over {0, . . . , n -1} of arbitrary size.

Definition 13 (Position in a term). Given a natural term t and a word w we inductively define the subterm of t at position w (denoted t |w ) to be:

t |w =    (t w0 ) |w when |w| > 0 ∧ t = f (t 0 , . . . , t p-1 ) with w 0 < p t when |w| = 0 undefined otherwise Moreover we denote by numeric(t) = {w ∈ N | t |w ∈ Z}.
Definition 14 (Positioning lattice with exact numerical constraints). We define C(R)

∆ = ℘(W(R)
Z), an element of C(R) is therefore a set of partial maps that are acceptable bindings of positions to integers.

Proposition 7 (Galois connection with natural terms). When t is a natural term, t Z is the partial map: λ |numeric(t) w.t w . We have the following Galois connection:

(℘(T Z (R)), ⊆) ------→ ← ------ α C(R) γ C(R) (C(R), ⊆), with: γ C(R) (Γ ) = {t ∈ T Z (R) | t Z ∈ Γ } α C(R) (T ) = {t Z | t ∈ T }
Example 12. Consider our running example (introduced in Ex. 2), V = {+(x,

+(z, y)) | x ≤ y ∧ z ≤ y}, we have α C(R) (V ) = { 0 → α, 1, 0 → γ, 1, 1 → β | α ≤ β ∧ γ ≤ β}.
The concretization of which is exactly V .

Example 13. Consider however the ranked alphabet {f (2), g(2), a(0)}, and the tree a. Its abstraction contains only the empty map, the concretization of which is the set of all terms that do not contain any numerical value. For example: f (g(a, a), a), g(a, a), . . . . This emphasizes that we loose information on:

the labels in the natural terms: we only have the path from the root of the term to leaves with numerical labels, not the actual symbols along the path. the shape of the natural terms: we do not keep any information on subterms that do not contain numerical values. Now that we have abstracted away the shape of the automaton, we are left with numerical environments with potentially infinite dimensions (that are words over the alphabet {0, . . . , n-1}) and different definition sets. Therefore following the idea of Sec. 4 we want to define a summarization for sets of words over the alphabet {0, . . . , n -1}. A summarization of such a language can be expressed as a partition into sub-languages. The set of regular languages over the alphabet {0, . . . , n -1} is a subset of the set of languages over this alphabet, that is closed under common set operations. Hence given a set {r 1 , . . . , r m } of regular expressions (with respective recognized language {L 1 , . . . , L m }), we summarize all words in L i inside a common variable r i and therefore ↑ {r 1 , . . . , r m } denotes the summarization function: λr i .L i . In the following, Reg n denotes the set of regular expressions over the alphabet A n = {0, . . . , n -1}. As for tree regular expressions, (Reg n , ⊂, ∩, ∪, . c , ∅, A n ) is a (non complete) complemented lattice of infinite height, upon which we can define a widening operator (see [START_REF] Gall | Abstract lattices for the verification of systèmes with stacks and queues[END_REF]) in a similar manner as for tree regular expressions (this widening is also parameterized by an integer constant). We recall moreover that operators ⊂, ∩, ∪ and complementation (. c ) are computable, and that every finite set of words is regular. Moreover we have the following representation: (A n , )

γReg n =Id ← ------(Reg n , ).
Finally in order to disambiguate regular expressions from integers we will typeset them within . in a bold font as in: 0 + 0.1 .

Example 14. Using notations from Sec. 4.2, V = Reg n and V = W(R). Consider our running example (introduced in Ex. 2), natural terms from V = {+(x, +(z, y)) | x ≤ y ∧ z ≤ y} contain three paths to numerical values: 0 , 1, 0 and 1, 1 . Numerical constraints on 0 and 1, 0 are similar, therefore the two paths are summarized into one regular expression: 0 + 1.0 , 1, 1 is left alone in its regular expression: 1.1 . The two constraints x ≤ y ∧ z ≤ y can now be expressed as one: 0 + 1.0 ≤ 1.1 .

In Ex. 14, we saw that tree paths with similar numerical constraints can be summarized in one regular expression. However, for precision purposes, we do not want to summarize all tree paths into one regular expression. Hence, we will keep several disjoint regular expressions, which we call a subpartitioning. Definition 15 (Subpartitioning). Given a regular expression s, a subpartitioning of s is a set {s 1 , . . . , s n } of regular expressions such that ∀i = j, s i ∩s j = ∅ and n i=1 s i ⊆ s. We note P (s) the set of all subpartitioning of s. Moreover if S = {s 1 , . . . , s n } is a set of regular expressions, [S] ∅ = S \ {∅}.

Remark 7. Contrary to a partitioning of s, we do not require that the set of partitions covers s. Indeed when a set of tree paths is unconstrained we can just remove it from the partitioning, therefore no dimension in the numerical abstract environment will be allocated for this path.

Definition 16 (Positioning lattice with numerical abstraction). Given a ranked alphabet R, where the maximum arity of symbols is n, we define

C (R) = { s, p, R | s ∈ Reg n , p ∈ P (s), R ∈ M p }. Therefore C (R) are triples contain- ing:
s: (called support) a regular expression coding for positions at which numerical values can be located. -p: a subpartitioning of s. Elements of the same partition are subject to the same numerical constraints. Note that these partitions are regular. -R : an abstract numeric element where a dimension is associated to each partition, this dimension plays the role of a summary dimension.

Remark 8. In the following, numerical abstract elements described in the form {c}, where c is a set of constraints, refer to c, vars(c), vars(c) ∈ M . Unification. The previous definition shows that two elements U = s, p, R and V = s , p , R can have different subpartitionings (p and p ). However the partitions in p and in p might overlap, thus giving constraints to similar tree paths. Therefore in order to define the classical operators: , and , we need to unify the two abstract elements (U and V ) so that given a tree path and the partition in which it is contained in U , it is contained in the same partition in V . This will enable us to rely on abstract operators on the numerical domain. In order to perform unification, we rely on the expand and fold operators. Indeed consider our running example,

(ci,j) i≤n,j≤m ← pi ∩ p j ; 2 (pi) i≤n ← pi ∩ s c ; 3 (p j ) j≤m ← p j ∩ s c ; 4 (qi) i≤n ← pi ∩ s ∩ (∪ j≤m ci,j) c ; 5 (q j ) j≤m ← p j ∩ s ∩ (∪ i≤n ci,j) c ; 6 R ← R ; 7 R ← R ; 8 for i = 1 to n do 9 R ← expand(R , pi, [{ci,j} j≤m ∪ {pi} ∪ {qi}] ∅ );
U = 0 + 1 , { 0 , 1 }, { 0 ≤ 1 } and V = 0 + 1.(0 + 1) , { 0 + 1.0 , 1.1 }, { 0 + 1.0 ≤ 1.1 } .
We see that constraints on tree path 0 is given: in U by partition 0 and in V by partition 0 + 1.0 . However we can split the partition 0 + 1.0 into two partitions: 0 and 1.0 , and expand variable 0 + 1.0 into the two variables 0 and 1.0 in the numeric component:

expand({ 0 + 1.0 ≤ 1.1 }, 0 + 1.0 , { 0 , 1.0 }) = { 0 ≤ 1.1 , 1.0 ≤ 1.1 }.
Once U and V are unified we can rely on the numerical join to soundly abstract the union. Note that splitting partitions is more precise than merging them. Indeed, consider the example where: in U we have 0 ≥ 0 and 1 ≤ 0 and in V we have 0 + 1 = 0. Splitting partition in V yields: 0 = 0, 1 = 0, after joining we get 0 ≥ 0, 1 ≤ 0. Whereas merging partitions in U yields 0 + 1 unconstrained, after joining we also get that 0+1 is unconstrained. However unifying by splitting or merging partitions in both abstract elements might result in an over-approximation of the initial elements. This does not pose a threat to the soundness of the join operator, but it does for the inclusion test. Unifying by splitting partitions induces an increase in the number of partitions which we want to avoid when trying to stabilize abstract elements in the widening. Hence, we define three unification operators:

-An operator unify join that splits partitions from U and V , this operator might induce an over-approximation for both U and V and is used in the join operation. This operator is presented in Algo. 2, and illustrated in Fig. 6. -An operator unify subset that does not modify V (in order to avoid overapproximated it), we only split and merge (using the fold operator) partitions from U as, if the over-approximated U is smaller than V , then so is the original U . This operator is presented in Algo. 4 (in App. A). -An operator unify widen that unifies U and V by only merging partitions so that the number of partitions does not increase. This operator is used in the widening definition, it is defined in Algo. 5 (in App. A). Operators unify subset and unify widen are only defined in App. A as their definition is similar to unify join.

Definition 17 (Comparison C (R)

). Using unify subset we define a relation on C (R):

C (R) = {(U , V ) | ( s, p, N , s , p , N ) = unify subset(U , V ) ⇒ s ⊆ s ∧ ∀b ∈ p , (b ⊆ s c ∨ ∃!a ∈ p, b ∩ s = a) ∧ N N [φ]
} where φ is the renaming from p into p that renames b to a when such an a exists.

Example 15. Going back to our running example:

U = 0 + 1 , { 0 , 1 }, { 0 ≤ 1 }(= A ) and V = 0 + 1.(0 + 1) , { 0 + 1.0 , 1.1 }, { 0 + 1.0 ≤ 1.1 } . We have s ⊆ s hence U
V . However if we now consider W : ( + 1).(0 + 1) , { ( + 1).0 , ( + 1).1 }, { ( + 1).0 ≤ ( + 1).1 }(= B ) . W is already unified with U , we have s ⊆ s and φ : ( ( + 1).0 → 0,

( + 1).1 → 1 ). Moreover A B [φ] = { 0 ≤ 1 }. Hence U W .
Proposition 8. We have:

(C(R), C(R) ) γ1 ← -(C (R), C (R) ), where: γ 1 ( s, p, R ) = {f | def (f ) ⊆ γ Reg n (s) ∧ f ∈ γ[↑ p](R )}. By composition we get: (℘(T Z (R)), ⊆) γ2 ← -(C (R), C R ), with γ 2 = γ C(R) • γ 1 .
Example 16. Going back to our running example:

V = 0 + 1.(0 + 1) , { 0 + 1.0 , 1.1 }, { 0 + 1.0 ≤ 1.1 } . We have: ↑ p = ( 0 + 1.0 → { 0 , 1, 0 }, 1 → 1 ). Hence, γ 1 (V ) = {( 0 → α, 1 → β) | α ≤ β} ∪ {( 1, 0 → α, 1 → β) | α ≤ β} ∪ {( 0 → α, 1, 0 → γ, 1 → β) | α ≤ β ∧ γ ≤ β}.
The product with tree automata refines this result so that only the last set is left.

We now define the operator that relies on the unify join operator of Algo. 2. Once elements are unified we can distinguish three kinds of partitions:

1 = 1 0 = 0 U ( + 1).1 = 1 ( + 1).0 = 0 V ( + 1).1 = 1 ( + 1).0 = 0 ? Z 1 = U V 1 .1 = 1 1 .0 = 0 Z 2 = U V
Fig. 7: Widening illustration partitions found in both abstract elements ( in Fig. 6).

partitions found in only one of the two, which do not overlap over the support of the other abstract element (denoted u o ), these are outer-partitions. Information on such partitions can be soundly kept when joining two abstract elements (partition a in Fig. 6). partitions found in only one of the two, which overlap over the support of the other abstract element, these are inner-partitions. Information on such partitions can not be soundly kept when joining two abstract elements.

(partition b in Fig. 6) Therefore in the following definition of the join operator, we compute (once elements are unified) the common partitions and both outer-partitions and merge them to form the resulting subpartitioning.

Definition 18 (Union abstract operator). Given U , V ∈ C (R), if ( s, p, R , s , p , R ) = unify join(U , V ), let c be p ∪ p , let u o (U outer-partition) be {e ∈ p | e ⊆ s c }, let v o (V outer-partition) be {e ∈ p | e ⊆ s c }, we then define: {c,d,e, b} . We see here that using a naive numerical join operator, we would not have been able to get such a precise result (the numerical join would have yielded ).

U C (R) V = s ∪ s , c ∪ u o ∪ v o , R |c∪u o R |c∪v o Proposition 9. We have: γ 1 (U ) ∪ γ 1 (V ) ⊆ γ 1 (U C (R) V ).
unify widen C (R) contains infinite increasing chains, therefore we need to provide a widening operator. As for the other operators, widening is computed on unified abstract elements. However we recall that in order not to increase the number of partitions, we defined a unify widen (in Algo. 5 in App. A, and illustrated in Fig. 8). This operator produces U and V , over-approximations of its inputs with the same number of partitions. Moreover it ensures that each partition of U intersects exactly one partition of V . This can be obtained by iterative merging partitions that overlap in both arguments until the abstract elements have the exact same partitions. Therefore from the result of unify widen we can extract a list of pairs (a, b) where a is a partition from U , b is a partition from V and a ∩ b = ∅. This defines a bijection from partitions of U onto partitions of V .

compose. In order to ensure stabilization we first need to stabilize the supports on which abstract elements are defined. This is easily done using the automaton widening (s 1 s 2 in Algo. 3). Fig. 7 illustrates the following simple example: U is an abstract element with support 0 + 1 , two partitions u = 0 and u = 1 , and numerical constraints u = 1 and u = 0. V is an abstract element with support ( + 1).(0 + 1) , two partitions v = ( + 1).0 and v = ( + 1).1 with the numerical constraints that v = 0 and v = 1. Supports are unstable, therefore we start by widening them, which yields a new support: 1 .(0 + 1) . The unification of U and V leaves subpartitionings unchanged and yields the bijection (u → v, u → v ). Given this information we now need to provide a new subpartitioning for the result of the widening. We see in this example that we could soundly use the subpartitioning from V , this would produce the abstract element Z 1 depicted in Fig. 7. However due to the widening of the support, paths of the form 1, 1, 1, 0 are in the support of the result but are left unconstrained as they are not in any of the partitions. Therefore we need to use the opportunity of the extension of the support to place constraints on the newly added paths. In order to do so we would like to force the extension of the existing partitions from U and V into the new support. Therefore we need to define a compose operator that produces a sound new partition, given: (1) a pair a, b of partitions (such as the one produced by unify widen), (2) the support s 1 (resp s 2 ) in which a (resp. b) lives and (3) a space to occupy r. The following criteria must be verified by the resulting partition p in order to be sound and to terminate:

p ∩ s 1 = a, p ∩ s 2 = b and p \ (s 1 ∪ s 2 ) ⊆ r. A variety of compose operators could be defined, we chose: compose(a, b, s 1 , s 2 , r) = a ∪ (b ∩ (s 2 \ s 1 )) ∪ ((a (a ∪ b)) ∩ r).
The idea is the following: we keep a (as it is always sound thanks to the definition of the unify widen operator), we keep the part from b that satisfies the soundness condition, and we extend into the space left to occupy according to the automata widening of a and a∪b. In our example, considering the pair (u, v), this would translate as: a = 0, b ∩ (s 2 \ s 1 ) = 1.0 and (a (a ∪ b)) ∩ r = 0 ( + 1).0 ∩ 1 ≥2 (0 + 1) = 1 ≥2 .0 . We get the new partition: 1 .0 . Doing the same with the pair (v, v ) yields 1 .1 . Finally we get the abstract element Z 2 from Fig. 7, which is more precise than Z 1 .

Algorithm 3: widening operator

Input : U , V two abstract elements 1 ( s1, p1, R 1 , s2, p2, R 2 ) ← unify widen(U , V ) ; 2 s ← s1 s2; 3 r ← s \ (s1 ∪ s2); 4 foreach a ∈ p1 do 5 b ← the unique element from p2 such that b ∩ a = ∅; 6 p ← compose(a, b, s1, s2, r); 7 p ← {p} ∪ p; 8 R 1 ← R 1 [a → p]; 9 R 2 ← R 1 [b → p]; 10 r ← r \ p; 11 if p = p1 then 12 return s, p, R 1 R 2 ; 13 else 14 return s, p, R 1 R 2 ;
Definition 19 (Widening). Algo. 3 provides the definition of a widening operator using the unify widen operator and parameterized by a compose function.

Widening stabilization. Our abstraction contains three components: (1) a support that describes the set of paths to numerical positions in the tree, (2) a subpartitioning of this support and (3) a numerical component giving constraints on partitions in the subpartitioning. We will show how the widening operator from Algo. 3 stabilizes all three components.

-Regular expression widening is used on supports when widening is called. Therefore ensuring support stabilization. -Once supports are stable (this means s 2 ⊆ s 1 ), we have p = a for every pair (a, b) of partitions. Meaning that once shapes stabilize, the only modifications allowed on the subpartitionings are those made by the unify widen operator. Moreover each partition resulting from the operator is the union of input partitions, when the shape stabilizes there is only a finite number of those, hence the subpartitioning will stabilize. -Once subpartitionings are stable (p 1 = p in Algo. 3) numerical widening is applied on the numerical component in order to ensure stabilization. Example 18 (Numerical example). Consider the simple example where:

R = {f (2)}, U = 0 + 1 , { 0 , 1 }, { 1 = 0 } and V = 0 + 1 , { 0 , 1 }, { 1 ≥ 0 , 1 ≤ 0 + 1} .
U and V have the same shape, therefore widening will be performed on the numerical component of the abstraction, therefore:

U V = 0 + 1 , { 0 , 1 }, { 1 ≥ 0 }
Reducing dimensionality and improving precision. As emphasized by the previous examples, definitions and illustrations, the numerical component of an abstract state is used as a container for constraints on regular expressions, every node in a regular expression must then satisfy all numerical constraints on the underlying regular expression. Therefore when two nodes of a tree satisfy the same constraints, they should be stored in the same partition so as to reduce the dimension of the numerical domain (thus improving efficiency). Moreover the widening operator provided in Fig. 3 relies (for precision) on the fact that partitions are built by similarity of constraints, therefore partition merging, when it does not result in an over-approximation, also leads to a precision gain. The unification operator defined in Fig. 2 tends to split partitions whereas the widening operator defined in Algo. 3 tends to merge them. In order to reduce dimensionality, we would like to define a reduce : C (R) → C (R) operator, that folds variables with similar constraints into one. Please note that ∀S ∩ S ⊆ {x}, x ∈ S and R ∈ N S , we have that R N S expand(fold(R , x, S ), x, S ). This means that when variables are folded into one, expanding them afterwards would yield a bigger abstract element. For example, consider the octagon

R = {x ≥ 2, y ≥ 2, x = y} then fold(R , z, {x, y}) = {z ≥ 2}( ∆ = R ) and expand(R , z, {x, y}) = {x ≥ 2, y ≥ 2}. However if we consider R = {x ≥ 2, y ≥ 2} then fold(expand(R , z, {x, y}), z, {x, y}) = R . Therefore if
we assume given a score function score(R , x, S ) ranging in [0, 1] such that score(R , x, S ) = 1 ⇔ R = expand(fold(R , x, S ), x, S ), we are able to define a generic reduce operator parameterized by a value α (see Algo. 6 in App. A). This reduce operator merges partitions until no more set of partitions has a high enough score according to the score function. Finding a good score function is a work in progress. As a first approximation we used the following trivial one: score 0 (R , S) = 1 when expand(fold(R , x, S), x, S) = R and 0 otherwise. This score 0 guarantees there is no loss of precision, but can miss opportunities for simplification.

Example 19. Consider the following example: U = 0 + 1 , { 0 , 1 }, { 0 = 0, 1 = 0} . Relations on 0 and 1 can be expressed in one relation using the summarizing variable 0 + 1 . This yields: reduce(U

) = 0 + 1 , { 0 + 1 }, { 0 + 1 = 0} . Note that expand({ 0 + 1 = 0}, 0 + 1 , { 1 , 0 }) = { 0 = 0, 1 = 0}. Therefore no information is lost.
Abstract semantic of operators. As for tree automata, abstract semantic of operators defined in Sec. 2 can be defined as simple transformations on regular automata. Indeed the make symbolic(s ∈ R) (resp. get son) operator, amounts to adding (resp. removing) an integer letter to: (1) the partitions in the subpartitioning and (2) the support. make integer(e ∈ expr) amounts to building an abstract element with support and a subpartitioning containing only { }, on which we put the constraint that it is equal to e. is symbol needs only split the support and each partition, in the two language L = { } and A n \ L. Indeed in order to restrict to terms having only an integer as root, the support must be reduced to . The get sym head operator always yields the whole ranked alphabet (as this was abstracted away and will be refined by the automaton abstraction). Finally for get num head: (1) if the empty path is in the sup-port we produce the set of integers satisfying the numerical constraints on the partition containing , and in case no such partition could be found, and (2) otherwise we know that no numerical value is produced.

Product of tree automata and numerical constraints

The abstraction by tree automata defined in Sec. 3 and the abstraction by numerical constraints on tree paths defined in Sec. 5.1 provide non comparable information on the set of terms they abstract. Indeed the former describes precisely the shape of the term but can not express numerical constraints whereas the latter abstracts away most of the shape and focuses on numerical constraints. Therefore, to benefit from both kinds of information, we use a reduced product between the two domains. Both abstractions in the product contain information on potential integer positions. The position of the symbol in the tree automaton abstraction and the support in the numerical constraints abstractions both yield this information. Therefore we remove the support component from the product as the information can be retrieved from the tree abstraction. The definitions of the abstract operators in Sec. 5.1 require the support to be a regular language. We show in this subsection how to retrieve the support of a tree automaton with holes and that it is regular.

Given a FTA(Q, R, Q f , δ) over a ranked alphabet R with maximum arity n. We assume that every node in Q is reachable. Consider the following system over variables v p for p ∈ Q with values in the set of languages over the alphabet A n (. designates the classical concatenation operator lifted to languages) :

{v p = (s,(q1,...,qm),q)∈δ|qi=p v q .{i} ∪ { } if p ∈ Q f ∅ otherwise | p ∈ Q}
Every language {i} for i ∈ N is regular and does not contain , moreover ∅ and { } are regular languages. Therefore by application of Arden's rule (see [START_REF] Hopcroft | Introduction to Automata Theory, Languages, and Computation[END_REF]) and Gauss elimination we can compute the unique solution of this system, moreover every v p is regular. Variable v p is defined so that: w ∈ v p if and only if there exists a tree t recognized by the automaton such that p ∈ reach(t |w ). Therefore if ∈ R we have that the regular language: ∪ ( ,(),p)∈δ v p represents exactly the potential positions of integers in trees accepted by the tree automaton.

Height and size. The product is enriched with a simple height and size abstraction. We add two numerical variables in the numerical component of the abstraction that encode potential heights and sizes of the trees in the abstracted set. Basic abstract transformers are implemented for those numerical values.

Environment abstraction

In the previous section, we designed abstractions for sets of trees. However in order to be able to tackle the examples from the introductory section (Sec. 1) we need to design an abstraction able to represent maps from a set of variables to natural terms. In Sec. 3 we have shown how to lift abstractions on natural terms to abstractions of environments over a given finite set of finite term variables T . We apply the same mechanism here to lift the product presented in Sec. 5.2. However lifting the product would result in abstract environments being maps from natural term variables to abstractions containing a numerical environment. In order to be able to express numerical relations between two sets of natural terms or even between numerical program variables and numerical values of natural terms we factor away the numerical environment so that it is shared by all natural term abstractions in the term environment and by the program variables in the numerical environment. Therefore the final abstraction is a pair (m, R ) where: (1) m is a map from T to an abstract element that is a product of the automaton abstraction and the hole positioning abstraction. Moreover as all the numerical constraints are stored in a common numerical environment the product abstraction amounts to a pair (A, p) where A is an element of the automaton abstraction and p is a partitioning of its support. (2) R is an element of M binding in the same numerical element: numerical program variables and all partitions found in the mapping m.

6 Implementation and example

Implementation

The analyzer was implemented in OCaml (∼ 5000 loc) in the novel and still in development Mopsa framework (see [START_REF] Miné | Design of a Modular Platform for Static Analysis[END_REF]). Mopsa enables a modular development of static analyzers defined by abstract interpretation. An analyzer is built by choosing abstract domains, and combining them according to the user specification. Mopsa comes with pre-existing iterators and domains (e.g. interprocedural analysis, loop iterators, numerical domains, . . . ), and new ones can be added (e.g. tree abstract domain). A key feature of Mopsa is the ability of an abstract domain to use the abstract knowledge it maintains to transform dynamically expressions into other expressions that can be manipulated more easily by further domains, providing a flexible way to combine relational domains. For instance, assume that a domain abstracts arrays by associating a scalar variable a 0 , a 1 , . . . , to each element a[0], a [START_REF] Bouajjani | Abstract regular tree model checking of complex dynamic data structures[END_REF], ..., of an array a, and delegating the abstraction of the array contents to a numeric domain for scalars. It can then evaluate

E 2 * a[i] + i (i → [0, 1]) into the disjunction (2 * a 0 + i, i → [0, 0]) ∨ (2 * a 1 + i, i → [1, 1]), indicating that 2 * a[i] + i is equiv- alent to 2 * a 0 + i in
the sub-environment where i = 0 and to 2 * a 1 + i in the sub-environment where i = 1. Each term of the disjunction contains an array-free expression that can be handled by the scalar domain in the corresponding subenvironment. In the abstract, expressions can be evaluated by induction on the syntax into symbolic expressions to retain the full power of relational domains and disjunctive reasoning (see [START_REF] Miné | Design of a Modular Platform for Static Analysis[END_REF] for more details). We exploit this feature in our implementation to combine our tree abstractions. We implemented, in the Mopsa framework, libraries for regular and tree regular languages that offers the usual lattice interface enriched with a widening operator. Those libraries can be reused for the definition of other abstract domains. The overall complexity of the analysis is driven by the complexity of the lattice operations in the regular and tree regular libraries. Those are exponential in the number of states of the considered automata, which is bounded by the widening parameter.

Examples of analysis

Numerical variables of the form t.x, where t is a natural term variable, represent a variable allocated for tree t. For example: t.r where r is a regular expression is the variable allocated for partition r in tree t.

C introductory example. Let us consider the introductory example Prog. 4. The loop invariant inferred with our analysis is the following abstract element: U = (y → (A, { 0.(0.0) .1 (= r)}), R ), with A = {a, b, c, d}, { * (1), +(2), (0), (p, 0)}, {c}, { * (d) → c, +(c, a) → d, () → a, p → c} , and R satisfies the constraints: {i ≥ 0, i ≤ n, y.r = 4}. This describes precisely the set of terms of the form: p, * (p + 4), * ( * (p + 4) + 4), . . . . As mentioned in Sec. 6.1 evaluations of tree expressions yield pairs containing an expression and an abstract environment. Tree expressions are pairs (A, p), partitions in p are bound by the adjoined environment. Let us now present the result of the evaluation of the make integer(4) expression in the abstract environment U . Here we get the expression (A , { }) (where A recognizes only ) in the environment: (y → (A, {r}), R ) where R = R ∪ { = 4}. This example emphasizes how the environment is used to give constraints on the adjoined expression. This yields the ability to transport numerical relations from the leafs of the expression up to the assigned variable t.

OCaml introductory example. Let us now consider the introductory example Prog. 5. The inferred loop invariant is the following (r = (1.1) .0 and r = (1.1) .1.0 ): (t → (A, {r, r }), R ) and R satisfies the constraints: {t.r = x-1, t.r = t.r + 2, i ≥ 0, i ≤ n} and A = ({a, b, c, d}, {Cons(2), Nil(0), (0)}, {a}, {Cons(c, a) → d, Cons(c, d) → a, Nil → a, → c}). Please note that at the end of the while loops the two numerical environments that need to be joined are not defined over the same set of variables (in the environments that have not gone through the loop, variables t.r and t.r are not present). However thanks to the operator, we do not have to loose the numerical relations between these variables and x. Hence we are able to prove that the assertion holds.

The analyzer was able to analyze both examples and to infer the expected invariants.

Related works

Previous works on sets of trees abstractions [START_REF] Mauborgne | Representation of Sets of Trees for Abstract Interpretation[END_REF] were able to recognize larger classes of tree languages than tree automata. However we focused here on the abstraction of trees labeled with numerical values, therefore the work closest to ours would be [START_REF] Genet | Tree regular model checking for lattice-based automata[END_REF]. Indeed it defines tree automata where leaves can be elements of a lattice (for example an interval). They are therefore able to represent sets of natural terms, but can not express numerical relations between the leaves of trees. Moreover they rely on a partitioning of the leaf lattice for tree automata operations. In [START_REF] Bouajjani | Abstract regular tree model checking of complex dynamic data structures[END_REF] (and [START_REF] Bouajjani | Abstract regular model checking[END_REF]) tree automata and regular automata are used for the model checking of programs manipulating C pointers and structures. Other uses have been made of tree automata in verification: shape analysis of C programs as in [START_REF] Dudka | Predator: A practical tool for checking manipulation of dynamic data structures using separation logic[END_REF], computation of an over-approximation of terms computable by attackers of cryptographic protocols as in [START_REF] Monniaux | Abstracting cryptographic protocols with tree automata[END_REF]. Widening regular languages by the computation of an equivalence relation of bounded index is also done in [START_REF] Feret | Abstract interpretation-based static analysis of mobile ambients[END_REF] and in [START_REF] Gall | Verification of communication protocols using abstract interpretation of FIFO queues[END_REF]. As mentioned, variable summarization is often used to represent unbounded memory locations as in [START_REF] Halbwachs | Discovering properties about arrays in simple programs[END_REF] or [START_REF] Gopan | A framework for numeric analysis of array operations[END_REF]. Moreover numerical abstract domains able to handle optional variables have been defined such as [START_REF] Liu | Abstraction of optional numerical values[END_REF]. Finally termination analyses have been proposed for the analysis of programs manipulating tree structures (AVL, red-black trees) see [START_REF] Habermehl | Proving termination of tree manipulating programs[END_REF].

Conclusion

In this article we presented a relational abstract environment for sets of trees over a finite algebra, with numerically labeled leaves. We emphasized the potential applications of being able to describe such trees: description of reachable memory zones, tracking symbolic equalities between program variables, description of tree like structures. In order to improve the precision of the analysis while not blowing up its cost we defined a novel abstraction for sets of maps with heterogeneous supports. This numeric abstraction is able to represent optional dimensions in numerical domains without losing relations with optional variables. All domains presented in the article were implemented as a library in the Mopsa framework. Reduce operator The following reduce operator (Algo. 6) is parameterized by a score function. Given an abstract element X , reduce iteratively merges together the partitions that have the highest score, as long as this score is over a parameter α.

Algorithm 6: reduce operator

Input : X an abstract element Output: Z an over-approximation of X with fewer dimensions 1 s, p, R ← X ; 2 while ∃S ⊆ p, score(R , S) ≥ α do Therefore there exists v ∈↑ p(v ) ∩ def (ρ) such that g[φ](v ) = ρ(v ). From the two previous point we get that g[φ] ∈↓ ↑p (ρ), hence g[φ] ∈ γ(R ), by soundness of the underlying domain and by (N3) we have: g[φ] ∈ γ(R [φ]), hence g ∈ γ(R ). As this holds for every g ∈↓ ↑p (ρ), we have that: ↓ ↑p (ρ) ⊆ γ(R ). Finally from the last two points we get that ρ ∈ γ 1 (s , p , R ). Hence γ 1 ( s, p, R ) ⊆ γ 1 ( s , p , R ) Proof (of Prop. 9). Here again we assume the soundness of the unify join operator: ∀U , V , if U 1 , V 1 = unify join(U , V ), then γ(U ) ⊆ γ(U 1 ) and γ(V ) ⊆ γ(V 1 ). Therefore in order to prove the soundness of the C (R) operator we only have to prove that: let ( s, p, R , s , p , R Let us now define h : Reg n Z in the following way: if v ∈ def (g) then h(v ) = g(v ), if there exists some v ∈↑ p(v ) ∩ def (ρ) then h(v ) = f (v) otherwise h is undefined. Note that there can be several such h, we choose one of them. Let us show that h ∈↓ ↑p (ρ): let v ∈ Reg n , if ↑ p(v ) ∩ def (ρ) = ∅ then if h is defined, by definition it is either because:

• ↑ p(v ) ∩ def (ρ) = ∅, which is absurd,

• or because g is defined on v . Hence we have that v ∈ c ∪ u o and v ∩ def (ρ) = ∅, which is also absurd. Hence h is undefined.

if ↑ p(v ) ∩ def (ρ) = ∅ then:

• if v ∈ def (g), then ↑ p(v ) = v as def (g) ⊆ c ∪ u o ⊆ p we have (due to (N1)). Moreover there exists some v ∈ v ∩def (f ) such that g(v ) = ρ(v), hence h(v ) = ρ(v) • otherwise by construction of h there exists some v ∈↑ p(v ) ∩ def (ρ) such that h(v ) = ρ(v). Finally we have h ∈↓ ↑p (ρ) and therefore h ∈ γ(R ). Moreover if v ∈ def (h)∩(c∪ u o ) we have v ∈ def (g) or ↑ p(v )∩def (ρ) = ∅. In the latter case as p = c∪u i ∪u o , we have ↑ p(v)∩def (ρ) =↑ (c∪u o ∪v o )(v)∩def (ρ) = ∅, and therefore v ∈ def (g). Hence h |c∪u o = g, and as h ∈ γ(R ) we have: g ∈ γ(R |c∪u o ). We thus conclude

that ↓ ↑(c∪u o ∪v o ) (ρ) ⊆ γ(R |c∪u o ) hence ↓ ↑(c∪u o ∪v o ) (ρ) ⊆ γ(R |c∪u o R |c∪v o ). Thus giving us that ρ ∈ γ( s ∪ s , c ∪ u o ∪ v o , R |c∪u o R |c∪v o )
Proof of soundness of the widening operator of Sec. 5 is similar to the previous proof and is therefore not given here. Proof of its stabilizing property is sketched in the body of the paper.

Program 1 :Program 2 :

 12 Append to list in C float golden_ratio ( int n ) { int i Golden ratio in C let rec f x n = match n with | 0 -> [] | _ -> ( x +1) ::( x -1) ::( f x (n -1) ) let () = (* Assume x : int and n : int >=0 *) let t = f x n in match t with | [] -> () | p :: q when p > x -> () | _ -> assert false Program 3: List type in OCaml

Example 1 .

 1 Consider the ranked alphabet R = {*(1), &(1), +(2), x(0)}, u(n) means that symbol u has arity n. Then &x ∈ T (R), but *(&x+4) ∈ T Z (R), and *(&x+4) / ∈ T (R). Using this alphabet we can model C pointer arithmetic. Example 2. U = {+(x, y) | x ≤ y} and V = {+(x, +(z, y)) | x ≤ y ∧ z ≤ y} are two sets of natural terms over R = {+(2)} which we use as running examples.

Fig. 2 Fig. 1 :

 21 Fig. 1: Syntax extension of the language

Remark 4 .Fig. 3 :

 43 Fig. 3: Example of accepted trees from Ex. 6

10 .

 10 Consider V = {x, y, z, t} and V = {a, b, c, d, g, h}, the environment ρ = (a → 0, b → 1, c → 2, d → 3) and finally the summarizing function f = (x → {a}, y → {b, c}, z → {d}, t → {g}). Collapsing environment ρ under f yields the set of environments: (x → 0, y → 1, z → 3) and (x → 0, y → 2, z → 3).

Fig. 6 :

 6 Fig. 6: Unification operator

10 for j = 1 to m do 11 R

 11 ← expand(R , p j , [{ci,j} i≤n ∪ {p j } ∪ {q j }] ∅ );12 return s, i≤n,j≤m [{qi, pi, ci,j}] ∅ , R , s , i≤n,j≤m [{q i , p j , ci,j}] ∅ , R ;

Example 17 .

 17 Consider the two following abstract elements (this is the particular case of our running example where all numerical values are equal): V = 0+1.(0+1) (= s), { 0+1.0 (= a), 1.1 (= b), {a = b}} , and U = 0+1 (= s ), { 0 (= c), 1 (= d)}, {c = d} . Intuitively U could encode the term (x + x) and V the term (x + (x + x)). The unification of those two elements is: V 1 = s, {c, b, 1.0 (= e)}, R where R = {c = b, e = b}, {b}, {c, b, e} and U 1 = U , moreover the common environment (c in previous definition) is: {c}, V outerpartitioning is {e, f }, U outer-partitioning is {d}. Hence: the numerical component resulting of the join is: {c = d}, {c, d}, {c, d} {c = b, e = b}, {b}, {c, b, e} which is: {c = b, e = b, c = d}, ∅,

8 a ← ∪e∈C 1 e; 9 b 12 R 2 ← 14 R 1 ← 15 f

 8912214115 25. John C. Reynolds. Separation logic: A logic for shared mutable data structures. In Proc. of 17th IEEE (LICS 2002, pages 55-74. IEEE Computer Society, 2002.two subpartitionings { 0 + 1 , 1.1 , 1.0 } and { 0 , 1 + 1.1 , 1.0 }. This will compute the pairs:({ 0 + 1 , 1.1 }, { 0 , 1 + 1.1 }) and ( 1.0 , 1.0 ).Algorithm 5: unify widen operatorInput : s1, p1, R 1 , s2, p2, R 2 two abstract elements Output: U , V two unified abstract elements1 p1 ← {p ∈ p1 | p ⊆ s c 2 ∪ p ∈p 2 p }; 2 V1 ← p1 ; 3 V2 ← p2; 4 E ← {(p1, p2) ∈ p1 × p2 | p1 ∩ p2 = ∅}; 5 S ← connected component((V1, V2, E)); 6 p 1 ← ∅; p 2 ← ∅; R 1 ← R 1 ; R 2 ← R 2 ; 7 foreach (C1, C2) ∈ S do ← ∪ e ∈C 2 e ; 10 if b = ∅ then 11 p 2 ← {b} ∪ p 2 ; fold(R 2 , b, C2); 13 p 1 ← {a} ∪ p 1 ; fold(R 1 , a, C1); ← f [a → b]; 16 endfch 17 return s1, p 1 , (R 1 ) |p 1 , s2, p 2 , (R 2 ) |p 2 , f

3 S 4 e ← ∪ x∈S x; 5 s

 345 ← argmax S ⊆p score(R , S ); , p, R ← s, (p \ S ) ∪ {e}, fold(R , e, S ); 6 end 7 return s, p, R ; is undefined on partitions contained in s c . Therefore g is only defined on partitions where φ is defined. Hence let us consider g[φ] such that g[φ](a) = g(b) when φ(b) = a and undefined otherwise. We have def(g[φ]) = {a | ∃b, φ(b) = a ∧ g is defined on b} = {φ(b) | b ∈ def (g)} = {φ(b) | b ∈ p ∧ b ∩ def (ρ) = ∅} ⊆ p (N4). Let us show that g[φ] ∈↓ ↑p (ρ). Let v ∈ Reg n : • If ↑ p(v ) ∩ def (ρ) = ∅ then let us assume that g[φ] is defined on v , then (from (N4)) v = φ(b) and ↑ p(v ) = v (as v ∈ p ) with b ∈ p ∧ b ∩ def (ρ) = ∅, moreover b ∩ s = v and def (ρ) ⊆ s, therefore we have: v ∩ def (ρ) = ∅ and thus ↑ p (v ) ∩ def (ρ) = ∅ which is absurd, hence g[φ] is undefined on v . • If ↑ p(v )∩def (ρ) = ∅,we have v ∈ p. Thanks to (N2) we also have that: ∃b ∈ p , v ∩b = ∅, we have necessarily that φ(b) = v and b∩s = v , hence b ∩ def (ρ) = ∅ and g is defined on b. Thus there exists v ∈ W(R) such that v ∈ (↑ p )(b) ∩ def (ρ), g(b) = ρ(v) (this comes from g ∈↓ ↑p (ρ)). We have ↑ p (b) = b and b ∩ def (ρ) = v ∩ def (ρ) (as def (ρ) ⊆ s), hence v ∈ v and v ∈↑ p(v ) ∩ def (ρ). Moreover g[φ](v ) = g(b) = ρ(v ).

  ) = unify join(U , V ), let c = p ∪ p , let u o = {e ∈ p | e ⊆ s c }, let v o = {e ∈ p | e ⊆ s c } then if ρ ∈ γ( s, p, R ) then ρ ∈ γ( s ∪ s , c ∪ u o ∪ v o , R |c∪u o R |c∪v o ).Indeed the operator definition is symmetric therefore we only prove the result for U . Let ρ ∈ γ 1 ( s, p, R ), we have by definition that def (ρ) ⊆ s hence def (ρ) ⊆ s ∪ s . Moreover we have ↓ ↑p (ρ) ⊆ γ(R ). Let us prove that we have:↓ ↑(c∪u o ∪v o ) (ρ) ⊆ γ(R |c∪u o R |c∪v o ). By soundness of we only need to prove that:↓ ↑(c∪u o ∪v o ) (ρ) ⊆ γ(R |c∪u o ). Therefore let g ∈↓ ↑(c∪u o ∪v o ) (ρ). We have def (g) = {v | v ∈ c ∪ u o ∪ v o ∧ v ∩ def (ρ) = ∅}. Moreover if v ∈ v o then v ⊆ s c , and as def (ρ) ⊆ s we have that v ∩ def (ρ) = ∅. Hence def (g) = {v | v ∈ c ∪ u o ∧ v ∩ def (ρ) = ∅}, moreover ∀v , v ∈ def (g), ∃v, v ∈ v ∩ def (f ) ∧ g(v ) = ρ(v) (N1).

  =let t 1 , . . . , t n = sons(t) in

	(q1,...,qn)∈(reach A (t1),...,reach A (tn))
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A Algorithms

Subset unification. Algo. 4 unifies two abstract elements U , V , without modifying V . This is used for the definition of the operator. Indeed over-approximating V would not be sound. Therefore Algo. 4 splits (or removes), and then merges partitions from U so that it is unified with V .

Algorithm 4: unify subset operator

Input : s1, {p1, . . . , pn}, R 1 , s2, {p 1 , . . . , p m }, R 2 two abstract elements Output: U , V two unified abstract elements, V is not modified 1 {ci,j} i≤n,j≤m ← pi ∩ p j ; 2 R ← R 1 ; 3 p ← ∅; 

This can be obtained by iteratively merging partitions that overlap in both arguments until the abstract elements have the exact same partitions. As an example, on the

B Abstract operators

B.1 Transformers for tree automatas

We only present algorithms working on tree automata (abstraction of tree sets), not on complete environments (abstraction of maps over a set of variables to tree sets) as the algorithms can be easily lifted.

Algorithm 7: make symbolic

Input : s ∈ Fn, t1, . . . , tn ∈ CDFTA, where the ti share the same ranked algebra R Output: a FTA 1 f ← a fresh state;

. . , tn so that they share no state;

r ← {false} ∪ r; 7 return r; Algorithm 9: get sym head

Algorithm 10: get num head

B.2 Transformers for numerical constraints

We only present algorithms working on elements of the form s, p, R (abstraction of tree sets), not on complete environments (abstraction of maps over a set of variables to tree sets) as the algorithms can be easily lifted. Please note that abstraction will not be relational until factorization of the numerical components. Moreover when r is a regular expression over Σ and a ∈ Σ, we denote ∂ a (r) = {w | a.w ∈ r} and a (r) = {a.w | w ∈ r}.

Algorithm 11: make symbolic

Algorithm 13: get son Algorithm 15: get sym head Proof (of Def. 7). We want to prove that tree automata widening is sound and stabilizes infinite sequences. Consider two tree regular languages U and V , which unique minimal deterministic automaton are A and B. We have

Let us now consider a sequence (U i ) i≥0 and (V i ) i≥0 defined by: V 0 = U 0 and V i+1 = V i U i . We have that ∀i ≥ 0, B i has at most w states. The set of tree automatas over R with at most w states is finite, moreover by soundness we have B i ⊆ B i+1 , hence sequence (B i ) i≥0 stabilizes and sequence (V i ) i≥0 stabilizes.

C.2 Numerical abstraction

We recall that we assumed the projection operation to be exact in the underlying numerical domain.

Proof (of Def. 10). We want to prove that γ is monotonic for , which is that

. By definition of γ we have that, there exists

. Moreover by definition of we have: Proof (of Prop. 6). We want to prove that: if 

Proof (of join of Prop. 12). We want to prove that soundly abstracts the union, that is ∀U , V , γ(U ) ⊆ γ(U V ) ∧ γ(V ) ⊆ γ(U V ). By symmetry we only prove that ∀U , V , γ(U

. By soundness of we have:

and by projection:

Proof (of widening of Prop. 12). We want to prove that soundly abstracts the union and that it stabilizes infinite chains.

-We start by proving that soundly abstract the union. Which means that:

) and as ρ 2 ∈ (γ u2 0 (N 2 )) |A2 and u 2 ⊆ u 1 there exists h 2 : V Z such that def (h 2 ) = u 2 \ A 2 and ρ 2 h 2 ∈ γ u2 0 (N 2 ), we extend once more with h 2 : ρ 2 h 2 h 2 ∈ γ u1 0 ((N 2 ) |u1 ). By soundness of u1 0 we get that:

Finally by projection we get that:

)) |A2 and (b). From (a) and (b) we get that: ρ 1 ∈ γ(U V ) and ρ 2 ∈ γ(U V ). Thus proving soundness.

-We know prove the infinite sequences are stabilized by the widening. Consider a sequence (U i ) i≥0 ∈ M and let (V i ) i≥0 be:

we are given by soundness of , that ∀j ≥ i, V j = , and therefore the sequence is stabilized. Therefore we assume in the following that ∀i ≥ 0, V i = . Given an abstract element X we denote X

is a finite set, therefore we can not have an infinitely decreasing sequence, hence there exists j ≥ 0 such that ∀k ≥ j, V k+1

• Consider finally the sequence: (Z k ) k≥0 = (V k+j ) k≥0 , we have: ∀k ≥ 

Proof (of Prop. 8). We assume given the soundness of the unification operator. Hence: ∀U , V , (U 1 , V 1 ) = unify subset(U , V ) ⇒ U U 1 ∧ V = V 1 (N1). Moreover we assume that (U 1 , V 1 ) = unify subset(U , V ) all partitions in U intersects a partition in V (N2). Let us now prove that γ 1 is monotonic in C , meaning that: ∀U , V , U C V ⇒ γ 1 (U ) ⊆ γ 1 (V ). Thanks to (N1) we only have to prove that: if s, p, N and s , p , N are such that: s ⊆ s ∧∀b ∈ p , (b ⊆ s c ∨∃!a ∈ p, b∩s = a)∧N N [φ], where φ is the renaming from p into p that renames b in a when such an a exists (N3) then: γ 1 ( s, p, R ) ⊆ γ 1 ( s , p , R ). Therefore let us assume that ρ ∈ γ 1 ( s, p, R ) and assume every conditions (N3). By definition of γ 1 we get that ρ ∈ γ[↑ p](R ) and def (ρ) ⊆ s. We therefore have (by definition of γ[↑ p](R )) that: ↓ ↑p (ρ) ⊆ γ(R ).

-We have def (ρ) ⊆ s ⊆ s -Let us now show that ρ ∈ γ[↑ p ](R ). We only need to prove that ↓ ↑p (ρ) ⊆ γ(R ). Therefore let g ∈↓ ↑p (ρ). We have g ∈ Reg n Z, moreover by definition of ↓ ↑p (ρ), we have v ∈ def (g) ⇔↑ p (v ) ∩ def (ρ) = ∅ ⇔ v ∈ p ∧ v ∩ def (ρ) = ∅. Moreover as def (ρ) ⊆ s ⊆ s we have that g