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The Plateau problem from the perspective of optimal
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Haim Brezis * Petru Mironescu †
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Abstract

Both optimal transport and minimal surfaces have received much attention in recent years.
We show that the methodology introduced by Kantorovich on the Monge problem can, surpris-
ingly, be adapted to questions involving least area, e.g. Plateau type problems as investigated
by Federer.

Le problème de Plateau vu dans la perspective du transport optimal. Résumé. Le
transport optimal, ainsi que les surfaces minimales, ont été abondamment étudiés ces der-
nières décennies. Nous mettons en évidence une analogie surprenante, au niveau méthodolo-
gique, entre l’approche de Kantorovich pour le problème de Monge et la minimisation de l’aire
dans des problèmes géométriques du type Plateau étudiés par Federer.

1 Introduction

This note originates in [9], where one of the topics is the minimization of the W1,1-energy of
S

1-valued maps with prescribed singularities. For example, if we consider a given closed curve Γ

in R
3, then

inf

{ˆ

R3
|∇u|; u ∈C∞(R3 \Γ;S1), deg(u,Γ)= 1

}
= 2πM0(Γ), (1)

where M0(Γ) is the least area spanned by Γ and deg(u,Γ) is the degree of u restricted to any small
circle linking Γ. This formula was conjectured by Brezis, Coron and Lieb [8, formula (8.22)]. It
was established in [8] for planar curves Γ; in full generality it is due to Almgren, Browder and
Lieb [2].

A similar formula holds in any dimension N ≥ 3. The proof of « ≥ » in [2] relies on geometric
measure theory (=GMT) techniques, and in particular it uses the coarea formula. As we will see
below (see Remark 1), (1) can be derived easily from the tools presented in Section 3.

In the special case N = 2, the role of Γ is played by finite collections of points (Pi), (Ni), i =

1, . . ., m, the condition deg(u,Γ) = 1 is replaced by deg(u,Pi) = 1, ∀ i (resp. deg(u, Ni) = −1, ∀ i),
where deg(u,a) is the degree of u on a small circle around a. Then (1) holds with

M0(Γ)= min
σ∈Sm

|Pi −Nσ(i)|,
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a quantity originally introduced by Monge in the context of optimal transport. Moreover, when
N = 2 it is possible to establish « ≥ » in (1) using the celebrated Kantorovich formula M = D (see
Theorem 1 below). This approach was originally used in [8]. It turns out that Federer, unaware of
the Kantorovich formula, rediscovered it (thirty years later) using tools of GMT [14, Section 5.10].

This suggests a possible connection between three topics: optimal transport, the Plateau prob-
lem and S

1-valued maps. The main purpose of this note is to present a common methodology
which fits both the Monge-Kantorovich problem (in its discrete version) and the Plateau problem
in codimension 1 (i.e., minimizing the area of a hypersurface with given boundary). Concerning
the connections with S

1-valued maps, we refer the reader to [9]; note however that such maps
occur in this paper as a tool, e.g. in Lemma 1.

There is a huge literature dealing with the Monge-Kantorovich optimal transport problem; see
e.g. Evans [11], Villani [29, 30], [7] and the references therein. In this note we concentrate on the
simplest possible setting, namely a finite number of points with a uniform distribution of masses.
We first recall a basic result in this theory; see Theorem 1 below (as stated in [5] and [7]; see also
[8] and [9]). Let d = d(x, y) be a pseudometric (i.e., the distance between two distinct points can be
zero) on a set Z. Let Pi, Ni, i = 1, . . .m, be points in Z such that Pi 6= N j, ∀ i, j (but we allow that
Pi = P j or Ni = N j for some i 6= j). We introduce three quantities. The first one, denoted M (for
Monge) is defined by

M = min
σ∈Sm

m∑

i=1
d(Pi, Nσ(i)), (2)

where the minimum in (2) is taken over the set Sm of all permutations of {1,2, . . ., m}.

The second one, denoted K (for Kantorovich), is defined by

K =min

{ m∑

i, j=1
ai j d(Pi, N j); A = (ai j) is doubly stochastic

}
. (3)

Recall that a matrix A = (ai j)1≤i, j≤m is doubly stochastic (DS) if

ai j ≥ 0, ∀ i, j,
m∑

i=1
ai j = 1, ∀ j,

m∑

j=1
ai j = 1, ∀ i.

Finally, define D (for duality) by

D = sup
ζ:Z→R

{ m∑

i=1
ζ(Pi)−

m∑

j=1
ζ(N j); |ζ(x)−ζ(y)| ≤ d(x, y), ∀ x, y ∈ Z

}
. (4)

Theorem 1. We have

M = K = D. (5)

There are, by now, several proofs of Theorem 1; see e.g. [7] and the references therein. The
first goal of this note is to discuss a proof whose structure can be easily adapted to the Plateau
problem, as explained in Section 3 below.

The main features of this proof, presented in Section 2, are the following.

1. As in [8], we use the Birkhoff [4] theorem on the extreme points of DS matrices combined with
the Krein-Milman theorem [24] to prove that M = K .

2. We prove that K = D via the analytic form of the Hahn-Banach theorem. This approach pro-
vides a natural alternative to the standard proofs; see e.g. [29, p. 23-25, p. 34-36], which relies
on convex analysis (resp. [11], based on linear programming). As we are going to see later, it
fits well with the proof of K (Γ)= D(Γ) in Theorem 2.
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In Section 3, we turn to the Plateau problem in 3D.

Let Γ⊂ R
3 be a smooth compact connected oriented curve (without boundary). By the Frankl-

Pontryagin theorem (see [16]; see also Seifert [28]), there exists a smooth compact oriented surface
S ⊂R

3 with boundary Γ. We may thus consider the finite quantity

M0(Γ)= inf{|S|; S ⊂R
3 is a smooth oriented surface such that ∂S =Γ}. (6)

Here, |S| =H 2(S) is the area of S.

By Stokes’ theorem, for each smooth compactly supported vector field, that we identify with a
1-form ζ ∈C∞

c (R3;Λ1), we have
ˆ

S

dζ=

ˆ

Γ

ζ. (7)

If ν (resp. τ) denotes the orienting unit normal to S (resp. the orienting unit tangent vector to
Γ), then (7) is equivalent to

curl(νH
2
xS)= τH 1

xΓ in D
′(R3;R3). (8)

With an abuse of notation, we identify S with νH 2
xS (resp. Γ with τH 1

xΓ), and then (8)
reads

curlS =Γ in D
′(R3;R3). (9)

One can also investigate a minimization problem involving « generalized surfaces » (that we
will identify later with 2-rectifiable currents in the sense of GMT) satisfying an appropriate ver-
sion of (9). More specifically, we consider a countable family of Borel subsets S i of C1 oriented
surfaces Σi ⊂R

3 such that
∑

i |S i| <∞ and, with νi the unit orienting normal to Σi, we have

curl
(∑

i

S i

)
=Γ in D

′(R3;R3). (10)

By analogy with the Monge-Kantorovich problem, we introduce three quantities, M(Γ), K (Γ)
and D(Γ). The first one is a « GMT version » of M0(Γ):

M(Γ) = inf{|S|; S =
∑

i

S i such that (10) holds}. (11)

Here, |S| is the mass of the vector-valued measure S =
∑

i S i (identified with
∑

iνiH
2
xS i).

When S is a classical surface, |S| equals the area of S.

Set

R = {S; S is a minimizer in (11)}. (12)

(A priori, R could be empty.)

Even more generally, we may consider finite measures µ ∈M (R3;R3) satisfying

curlµ=Γ in D
′(R3;R3) (13)

and the convex minimization problem

K (Γ)=min{‖µ‖M ; µ ∈M (R3;R3) is a measure such that (13) holds}. (14)

(In GMT’s terminology, up the action of the Hodge ∗ operator, the competitors in (11) are called
integral currents with boundary Γ, while the competitors in (14) are called real currents with
boundary Γ.)

3



From the above definitions, we have

M0(Γ)≥ M(Γ)≥ K (Γ).

Consider the set

Q = {µ∈M (R3;R3); µ is a minimizer in (14)}. (15)

Clearly, Q is non empty, convex, and weak∗ compact in M (R3;R3). By the Krein-Milman
theorem, Q has at least one extreme point.

We associate with (14) a « dual » problem

D(Γ)= sup

{ˆ

Γ

τ ·ξdH
1; ξ ∈C∞

c (R3;R3) and ‖curlξ‖L∞ ≤ 1

}
. (16)

If µ (resp. ξ) is a competitor in (14) (resp. (16)), then
ˆ

Γ

τ ·ξdH
1
= 〈Γ,ξ〉 = 〈curlµ,ξ〉 = 〈µ,curlξ〉 ≤ ‖µ‖M ‖curlξ‖L∞ , (17)

so that K (Γ)≥ D(Γ), and therefore

M0(Γ)≥ M(Γ)≥ K (Γ)≥ D(Γ). (18)

The central result in this direction is

Theorem 2. Let Γ⊂R
3 be a smooth compact connected oriented curve. Then

M0(Γ)= M(Γ)= K (Γ)= D(Γ). (19)

Moreover,

every extreme point of Q belongs to R, (20)

and consequently

convR
weak∗

=Q. (21)

Assertion (21) is an immediate consequence of (20) and the Krein-Milman theorem.

The fact that R 6= ; is a fundamental result in GMT, and is usually established using the
Federer-Fleming compactness theorem [15]. In our presentation, this assertion is a consequence
of (20) and the existence of extreme points. Previously, Hardt and Pitts [20] established that R 6= ;

without relying on the compactness theorem.

Equality M(Γ) = K (Γ) is originally due to Federer [14, Section 5.10]. Hardt and Pitts [20]
devised a different proof of this result; see also Almgren, Browder and Lieb [2, Remark (3), p.
9-10] for another approach. Assertion (20) seems to be new; its proof relies heavily on a beautiful
argument due to Poliakovsky [27], who answered a question raised in [10], concerning extreme
points in the framework of S1-valued maps.

Equality K (Γ) = D(Γ) is obtained via Hahn-Banach, very much in the spirit of the proof of
Theorem 1. This idea, in a slightly different context, goes back to Federer [13, Section 4.1.12]; see
also Brezis, Coron and Lieb [8, Theorem 5.1] and Giaquinta, Modica and Souček [18, Section 4.2.5,
Proposition 2, p. 414].

In order to obtain the equality M0(Γ)= M(Γ), we rely on the coarea formula. The effectiveness
of this tool in related problems was originally pointed out in Almgren, Browder and Lieb [2]; see
also Alberti, Baldo and Orlandi [1].

In Section 4, we present various generalizations of Theorem 2.
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2 A proof of Theorem 1

We divide the proof into two independent parts:

M = K (22)

and

K = D. (23)

Proof of (22). Choosing for A in (3) a permutation matrix yields K ≤ M. The reverse inequality,
K ≥ M, relies on Birkhoff ’s theorem on DS matrices (also called Birkhoff-von Neumann’s theorem
because von Neumann [31] rediscovered it independently a few years later). It asserts that the
extreme points of the convex set of DS matrices are precisely the permutation matrices. Applying
the Krein-Milman theorem one deduces that any DS matrix is a convex combination of permuta-
tion matrices, and consequently K ≥ M.

In fact, this argument yields an additional information. Denote by σ1, . . . ,σk the optimal per-
mutations in (2) and by Q1, . . . ,Qk the associated permutation matrices. Set

Q = {A; A is a DS matrix which achieves the minimum in (3)}. (24)

Theorem 3. We have

Q = conv{Q1, . . . ,Qk}, (25)

and in particular the extreme points of Q correspond precisely to the optimal permutations in (2).

Proof. Let A = (ai j) be any minimizer in (3). We may write A =
∑ℓ

n=1αnQ̂n, with αn > 0, ∀n,∑ℓ
n=1αn = 1 and each Q̂n a permutation matrix associated with a permutation σ̂n. Then

M =
∑

i, j

ai j d(Pi, N j)=
∑

i,n
αn d(Pi, Nσ̂n(i))≥ M.

Thus
∑

i d(Pi, Nσ̂n(i)) = M, ∀n = 1, . . .ℓ, i.e., each Q̂n, n = 1, . . . ,ℓ, is an optimal permutation
matrix.

Proof of (23). Clearly,

D ≤ K . (26)

Indeed, if A = (ai j) is DS and ζ satisfies |ζ(x)−ζ(y)| ≤ d(x, y), ∀ x, y ∈ Z, then

∑

i

ζ(Pi)=
∑

i, j

ai j ζ(Pi), (27)

∑

j

ζ(N j)=
∑

i, j

ai j ζ(N j) (28)

and thus

∑

i

ζ(Pi)−
∑

j

ζ(N j)=
∑

i, j

ai j (ζ(Pi)−ζ(N j))≤
∑

i, j

ai j d(Pi, N j). (29)

Taking supζ and infA in (29) yields (26).

Both quantities D and K involve the maximization (resp. minimization) of linear functionals
over convex sets. We present here a very natural and elementary approach leading to the equality
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D = K , which relies on the analytic form of Hahn-Banach (i.e., extension of linear functionals). A
totally similar device will be used in Section 3 in the framework of the Plateau problem.

The proof of D ≥ K consists of three simple steps.

Step 1. Set

L = sup

{ m∑

i=1
λi −

m∑

j=1
µ j; λi −µ j ≤ d(Pi, N j), ∀ i, j = 1, . . ., m

}
. (30)

We claim that

L = K . (31)

In the proof of (31), we do not use the assumption that d is a pseudometric; it could be any
nonnegative cost function.

Clearly (as in (27)–(29)), L ≤ K , and thus it remains to prove that K ≥ L.

Adding an ε> 0 (and the passing to the limit as ε→ 0), we may assume that d(Pi, N j)> 0, ∀ i, j.

Let X be the linear subspace of Rm2
defined by

X =

{
ξ= (ξi j) ∈R

m2
; ∃ (λi), (µ j) ∈R

m such that ξi j =λi −µ j, ∀ i, j

}

and set, for every ξ= (ξi j) ∈ X as above,

Φ(ξ)=
m∑

i=1
λi −

m∑

j=1
µ j. (32)

It is easy to see that Φ : X →R is well-defined and linear.

From (30) and scaling, we obtain

Φ(ξ)≤ L

∥∥∥∥
(

ξi j

d(Pi, N j)

)+∥∥∥∥
ℓ∞

, ∀ξ= (ξi j) ∈ X ,

where ‖(ξi j)‖ℓ∞ = supi, j |ξi j|. Equivalently, we have

Φ(ξ)≤ p(ξ), ∀ξ ∈ X , (33)

where p is defined on R
m2

by

p(ξ)= L

∥∥∥∥
(

ξi j

d(Pi, N j)

)+∥∥∥∥
ℓ∞

, ∀ξ ∈R
m2

.

Since p satisfies

p(αξ)=αp(ξ), ∀α> 0, ∀ξ ∈R
m2

, p(ξ+η)≤ p(ξ)+ p(η), ∀ξ,η ∈R
m2

,

(33) and the Hahn-Banach theorem in analytic form (see e.g. [6, Theorem 1.1]) yield the existence
of a linear functional Ψ on R

m2
such that

Ψ(ξ)=Φ(ξ), ∀ξ ∈ X , (34)

Ψ(ξ)≤ p(ξ), ∀ξ ∈R
m2

. (35)

We may thus write, for some matrix A = (ai j),

Ψ(ξ)=
m∑

i, j=1
ai j ξi j, ∀ξ ∈R

m2
. (36)
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From (32), (34) and (36), we see that

m∑

i=1
λi −

m∑

j=1
µ j =

m∑

i, j=1
ai j (λi −µ j), ∀λi, ∀µ j, (37)

and thus, by identification of coefficients in (37), we have

m∑

j=1
ai j = 1, ∀ i = 1, . . . , m (38)

and

m∑

i=1
ai j = 1, ∀ j = 1, . . . , m. (39)

On the other hand, choosing

ξi j =

{
−1, if i = i0, j = j0

0, otherwise
,

and applying (35), yields

ai0 j0 ≥ 0, ∀ i0, j0. (40)

By (38)–(40), the matrix A = (ai j) is DS.

Returning to (35) and choosing ξi j = d(Pi, N j), ∀ i, j, we find that
∑

i, j

ai j d(Pi, N j)≤ L, (41)

and thus

K ≤

m∑

i, j=1
ai j d(Pi, N j)≤ L.

Step 2. Let λi, µ j achieve the maximum in (30). Set Y = {Pi; i = 1, . . ., m}∪ {N j; j = 1, . . . , m} ⊂ Z

and let ζ : Y →R, ζ(Pi)=λi, ∀ i, ζ(N j)=µ j, ∀ j. We claim that

|ζ(x)−ζ(y)| ≤ d(x, y), ∀ x, y ∈Y . (42)

Unlike in Step 1, here we use the assumption that d is a pseudometric.

The key observation is the following. Let (b i j) be a DS matrix achieving the minimum in (3).
By (31) and the constraints

ζ(Pi)−ζ(N j)=λi −µ j ≤ d(Pi, N j), ∀ i, j, (43)

we have

m∑

i, j=1
b i j d(Pi, N j)= K = L =

m∑

i=1
λi −

m∑

j=1
µ j =

m∑

i, j=1
b i j (λi −µ j)≤

m∑

i, j=1
b i j d(Pi, N j),

and thus

b i j (λi −µ j)= b i j d(Pi, N j), ∀ i, j. (44)

Since for each i (resp. each j) there exists some k (resp. some ℓ) such that b ik > 0 (resp.
bℓ j > 0), we find from (44) that

for each i there exists some k = k(i) such that ζ(Pi)−ζ(Nk)= d(Pi, Nk) (45)
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and

for each j there exists some ℓ= ℓ( j) such that ζ(Pℓ)−ζ(N j)= d(Pℓ, Nk). (46)

Step 2 is then a consequence of the following claim. If ζ : Y →R satisfies (43), (45) and (46) for
some pseudometric d, then (42) holds.

Indeed, with k = k(i), we have (using (45))

ζ(Pi)−ζ(P j)= d(Pi, Nk)+ζ(Nk)−ζ(P j)≥ d(Pi, Nk)−d(P j, Nk)≥−d(Pi, N j).

Exchanging i and j, we find that (42) holds when x = Pi and y = P j. Similarly, using (46) we
obtain (42) for x= Ni and y= N j.

Finally, using (45) and (42) for Nk and N j, we find

ζ(Pi)−ζ(N j)= d(Pi, Nk)+ζ(Nk)−ζ(N j)≥ d(Pi, Nk)−d(N j, Nk)≥−d(Pi, N j).

Combining this with (43) yields (42) with x = Pi and y= N j.

Step 3. By (42), ζ has an extension to Z such that |ζ(x)−ζ(y)| ≤ d(x, y), ∀ x, y ∈ Z. By (26), Steps 1
and 2 , we find that

K = L ≤ D ≤ K ,

and thus (23) holds.

3 Proof of Theorem 2

In view of (18), the first assertion in Theorem 2 amounts to proving the inequalities

K (Γ)≤ D(Γ), (47)

M(Γ) ≤ K (Γ) (48)

and

M0(Γ)≤ M(Γ). (49)

The proof of Theorem 2 consists of five steps.

Step 1. Proof of K (Γ)≤ D(Γ). Consider the mapping

T : {curlξ; ξ ∈ C∞
c (R3;R3)}→R, T(curlξ)=

ˆ

Γ

τ ·ξdH
1. (50)

Let µ be any competitor in (14). By (17), we have T(curlξ) = 〈µ,curlξ〉, and thus T is well-
defined. By homogeneity and the definition of D(Γ), we have

|T(curlξ)| ≤ D(Γ)‖curlξ‖L∞ , ∀ξ ∈ C∞
c (R3;R3). (51)

By Hahn-Banach, T extends to a linear continuous functional, still denoted T, on Cc(R3;R3),
of norm D(Γ). Let µ ∈ M (R3;R3) be the measure such that T(η) = 〈µ,η〉, ∀η ∈ Cc(R3;R3), and
‖µ‖M = D(Γ). By the definition of T, we have

〈curlµ,ξ〉 = 〈µ,curlξ〉 =

ˆ

Γ

τ ·ξdH
1, ∀ξ ∈C∞

c (R3;R3),

and thus µ is a competitor in (14). We find that K (Γ)≤ ‖µ‖M = D(Γ).
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Step 2. Proof of M(Γ)≤ K (Γ). This is a clear consequence of (20).

Step 3. Proof of (20). This step relies heavily on the fine structure of BV functions.

Set ḂV(RN)= {ϕ ∈ L1
loc

(RN ); Dϕ ∈M (RN ;RN)}; we define similarly Ẇ1,1(RN).

Let µ be an extreme point of Q. Let S ⊂R
3 be any smooth compact oriented surface in R

3 such
that (9) holds, and set µ0 =µ−S.

Since µ0 is a measure satisfying curlµ0 = 0 in D ′(R3), there exists some ψ ∈ ḂV(R3) such that
µ0 = Dψ, and thus

µ= S+Dψ. (52)

We claim that

there exists some constant C ∈R such that ψ−C is Z-valued. (53)

This remarkable assertion is essentially due to Poliakovsky [27]; we postpone its proof, which
follows closely [27], to Step 4.

Assuming the claim proved, we continue as follows. By the Fleming-Rishel coarea formula for
BV functions (see e.g. [3, Theorem 3.40]), for a.e. t ∈ R the set [ψ> t] = {x ∈ R

3; ψ(x) > t} has finite
perimeter, denoted Per[ψ> t], and we have

‖Dψ‖M =

ˆ ∞

−∞

Per[ψ> t] dt. (54)

Equivalently, for a.e. t ∈R we have χ[ψ>t] ∈ ḂV(R3), and

‖Dψ‖M =

ˆ ∞

−∞

‖Dχ[ψ>t]‖M dt.

Let j ∈ Z and set F j = [ψ ≥ j]. Since for each t ∈ ( j−1, j) we have [ψ> t] = F j, we find that F j

has finite perimeter for every j, and that

‖Dψ‖M =

∞∑

j=−∞

Per F j. (55)

Let now, for j ∈Z,

E j =

{
F j, if j ≥ 0

(F j+1)c =R
3 \ F j+1, if j < 0

. (56)

By (55), we have

‖Dψ‖M =

∞∑

j=−∞

Per E j. (57)

We claim that

ψ=

∞∑

j=−∞

(sgn j)χE j
in ḂV(R3). (58)

This is proved as follows. Let m≥ 1 be an integer and set

ψm =





ψ, if |ψ| ≤ m

m, if ψ≥ m

−m, if ψ≤−m

.
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Clearly, we have

ψm →ψ in L1
loc(R

3) as m→∞. (59)

The coarea formula yields

‖D(ψ−ψm)‖M =
∑

| j|>m

Per F j → 0 as m→∞. (60)

On the other hand, we clearly have

ψm =

m∑

j=−m

(sgn j)χE j
in ḂV(R3). (61)

We obtain (58) from (59)–(61).

Granted (53), we complete the proof of (20) as follows. For each j, let R j be the reduced
boundary of E j, which is a 2-rectifiable set, and let ν j be the (measure theoretic) inner unit normal
to R j. Then PerE j =H 2(R j) and DχE j

= R j; see e.g. [3, Section 3.5]. Using this and (58), we find
that

µ= S+µ0 = S+
∑

j∈Z

(sgn j)R j;

this leads (via (57)) to the conclusion of the lemma.

Step 4. Proof of (53). Argue by contradiction and assume that (53) does not hold. This is equiva-
lent to the fact that (at least) one of the functions sin(2πψ), cos(2πψ) is not constant. Assume e.g.
that sin(2πψ) is not constant, and set

ψ± =ψ±
1

2π
sin(2πψ), µ± =+Dψ±.

By (52) and the assumption on ψ, we have µ± 6=µ and µ= (µ++µ−)/2. On the other hand, µ± is
a competitor in (14). We will prove that

‖µ‖M =
‖µ+‖M +‖µ−‖M

2
. (62)

Clearly, this contradicts the fact that µ is an extreme point of Q.

In order to prove (62), we rely on the structure of Dψ with ψ ∈ ḂV and on Volpert’s chain rule;
see e.g. [3, Chapter 3]. Recall that, if ψ ∈ ḂV, then the measure Dψ can be (uniquely) written as a
sum of an absolutely continuous part with respect to the Lebesgue measure, Daψ, whose density
is denoted ∇ψ, a Cantor part Dcψ and a jump part D jψ. With an abuse of notation, we write this
decomposition as:

Dψ=∇ψ+Dcψ+D jψ=∇ψ+Dcψ+ (ψ+−ψ−) Jψ. (63)

Here, Jψ is the jump set of ψ, which is a 2-rectifiable set, ν is an orienting unit normal to Jψ,
and ψ± are the approximate one-sided limits of ψ on Jψ.

On the other hand, Volpert’s chain rule asserts that, when f is C1 and Lipschitz, we have (for
the precise representative of ψ)

D( f ◦ψ)= f ′(ψ)∇ψ+ f ′(ψ)Dcψ+ ( f (ψ+)− f (ψ−)) Jψ. (64)

Using (64), we find that

Dψ± =[1±cos(2πψ)]∇ψ+ [1±cos(2πψ)]Dcψ

+ [(ψ+−ψ−)± (sin(2πψ+)−sin(2πψ−))/(2π)] Jψ

=∇ψ±+Dcψ±+D jψ±.

(65)
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We next note the following. If S, S′ are 2-rectifiable sets, with orienting unit normals ν and
ν′, then ν=±ν′ H 2-a.e. on S∩S′; see e.g. [17, Section 2.1.4]. With no loss of generality, we may
assume that, H 2-a.e. on S∩ Jψ, S and Jψ have the same orienting unit normal ν, and then (65)
yields

Dµ± =∇ψ±+Dcψ±+ (S \ Jψ)

+ [(ψ+−ψ−)± (sin(2πψ+)−sin(2πψ−))/(2π)] (Jψ \ S)

+ [1+ (ψ+−ψ−)± (sin(2πψ+)−sin(2πψ−))/(2π)] (Jψ∩S).

(66)

We now make the following observations:

1±cos(2πψ)≥ 0, (67)

(ψ+−ψ−)± (sin(2πψ+)−sin(2πψ−))/(2π) and ψ+−ψ− have the same sign, (68)

1+ (ψ+−ψ−)± (sin(2πψ+)−sin(2πψ−))/(2π) and 1+ψ+−ψ− have the same sign; (69)

(68) and (69) are immediate consequences of the fact that t 7→ t±sin t is non decreasing.

Using (67)–(69), we find that

‖µ+‖M +‖µ−‖M

2
=

ˆ

Ω

|∇ψ|+‖Dcψ‖M +H
2(S \ Jψ)+

ˆ

Jψ\S

|ψ+
−ψ−

|dH
2

+

ˆ

Jψ∩S

|1+ψ+
−ψ−

|dH
2
= ‖µ‖M ,

whence (62).

Step 5. Proof of M0(Γ)≤ M(Γ). We rely on the following auxiliary results.

Lemma 1. Let Γ⊂R
3 be as in Theorem 2. Then:

1. There exist some ε> 0 and an orientation preserving diffeomorphism

Φ :Γ×D(0,ε)→ {x ∈R
3; dist(x,Γ)≤ ε}

such that:

(a) Φ(x, z)∈ Nx (the normal plane at x to Γ), ∀ x ∈Γ, ∀ z ∈D(0,ε).

(b) |Φ(x, z)− x| = |z|, ∀ x ∈Γ, ∀ z ∈D(0,ε).

2. There exist some u ∈C∞(R3 \Γ;S1) and f ∈C∞(Γ;S1) such that

u(Φ(x, reıθ))= f (x) eıθ, ∀ x ∈Γ, ∀0< r ≤ ε/3, ∀θ ∈R (70)

and

∇u ∈ L1(R3). (71)

3. Any u = u1 + ıu2 as in item 2 satisfies

1

2π
curl(u∧∇u)=

1

2π
curl(u1∇u2−u2∇u1)=Γ in D

′(R3;R3). (72)

Here, « ∧ » stands for the vector product of complex numbers: if u = u1+ ıu2, then

u∧∇u = u1∇u2 −u2∇u1. (73)

Lemma 2. Let F ∈ L1(RN ;RN) and ψ ∈ ḂV(RN ). Then there exists a sequence (ψn) ⊂ C∞(RN) such

that:
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1. ψn ∈ Ẇ1,1(RN).

2. liminf
n→∞

ˆ

Ω

|F +∇ψn| ≤ ‖F +Dψ‖M .

3. Let K ⊂ R
N be a compact set such that H N−1(K ) = 0. Then we may choose ψn such that, in

addition, ψn = 0 in a neighborhood of K .

Granted Lemmas 1 and 2, we prove the inequality M0(Γ)≤ M(Γ) as follows. Let S =
∑

i S i be a
competitor in (11). By Lemma 1 item 3, we have

curl
(
S−

1

2π
u∧∇u

)
= 0 in D

′(R3;R3),

and thus (using Lemma 1 item 2)

S =
1

2π
u∧∇u+Dψ (74)

for some ψ ∈ ḂV(R3).

Set F = u∧∇u ∈ L1(R3;R3) and K =Γ. Let (ψn) be as in Lemma 2 and set un = u eıψn .

Clearly, un is smooth in R
3 \Γ. Let α = eıξ ∈ S

1 be a regular value of un in R
3 \Γ and set

Sα = [un =α], which is a smooth 2-submanifold of R3 \Γ, oriented by un ∧∇un. Since ψn = 0 near
Γ, for each x ∈Γ there exists some ε0 > 0 such that near x we have

Sα
=Φ

(
{(y, reıα(y)); y ∈ Γ, 0< r < ε0}

)
, with α(y)= ξ+ ı ln f (y). (75)

Here, −ı ln f is a smooth local phase of f .

By (75), Sα∪Γ has boundary Γ, and thus Sα∪Γ is a competitor in (6). Combining this with the
coarea formula, we obtain

ˆ

R3
|∇un| =

ˆ

R3\Γ
|∇un| =

ˆ

S1
|Sα

|dα=

ˆ

S1
|Sα

∪Γ|dα≥ 2πM0(Γ). (76)

On the other hand, we have

|∇un| = |un ∧∇un| = |u∧∇u+∇ψn|. (77)

Combining Lemma 2 item 2, (74), (76) and (77), we find that for every competitor S =
∑

i S i in
(14) we have |S| ≥ M0(Γ).

Granted Lemmas 1 and 2, the proof of Theorem 2 is complete.

Remark 1. We return here to (1), that we derive from Theorem 2 and its proof.

Step 1. Proof of « ≥ » in (1). If u is as in (1), then

curl(u∧∇u)= 2πΓ in D ′(R3;R3) (78)

(see [8, equation (8.30)]). Therefore, for every ξ ∈C∞
c (R3;R3) satisfying ‖curlξ‖L∞ ≤ 1 we have

ˆ

R3
|∇u| =

ˆ

R3
|u∧∇u| ≥

ˆ

R3
(u∧∇u) ·curlξ= 〈u∧∇u,curlξ〉

=〈curl(u∧∇u),ξ〉 = 2π〈Γ,ξ〉 = 2π

ˆ

Γ

τ ·ξdH
1.

(79)

Taking in (79) sup over ξ and using the equality M0(Γ)= D(Γ), we obtain « ≥ » in (1).

Step 2. Proof of « ≤ » in (1). Let µ ∈ Q, so that ‖µ‖M = K (Γ) = M0(Γ) (by Theorem 2). Let u ∈

C∞(R3 \Γ)∩Ẇ1,1(R3) be a competitor in (1). By (78), we have curl(2πµ−u∧∇u)= 0 in D ′(R3;R3),
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and thus there exists some ψ ∈ ḂV(R3;R) such that 2πµ= u∧∇u+Dψ. By Lemma 2, there exists
a sequence (ψn)⊂ C∞(R3;R)∩Ẇ1,1 such that

2πM0(Γ)= 2π‖µ‖M = lim
n→∞

ˆ

R3
|u∧∇u+∇ψn|. (80)

Set un = u eıψn , which is clearly a competitor in (1). We thus have (using (80))

lhs of (1)≤ lim
n→∞

ˆ

R3
|∇un| = lim

n→∞

ˆ

R3
|un ∧∇un| = lim

n→∞

ˆ

R3
|u∧∇u+∇ψn| = 2πM0(Γ).

Remark 2. There is an alternative proof of Theorem 1 (presented in Brezis [5, 7]) which avoids
completely Birkhoff, Krein-Milman and Hahn-Banach; it is totally self-contained (and reminds of
the original proof of Kantorovich [22]). The heart of the matter is the construction of an explicit

function ζ such that |ζ(x)−ζ(y)| ≤ d(x, y), ∀ x, y ∈ Z, and
∑

i ζ(Pi)−
∑

j ζ(N j)≥ M.

It would be very interesting to perform a similar construction in the framework of Theorem
2. More precisely, given Γ, can one find an explicit ζ ∈ C∞

c (R3;R3) such that ‖curlζ‖L∞ ≤ 1 and
´

Γ
τ ·ζdH 1 ≥ M(Γ)−ε (with ε> 0 arbitrarily small)?

Finally, we turn to the auxiliary results used in the proof of Theorem 2.

Proof of Lemma 1, item 1. Let S ⊂R
3 be a smooth compact oriented surface with boundary Γ. Let,

for x ∈ Γ, X (x) denote the outward unit normal to S at x. Let τ(x) be the orienting unit tangent
vector at x ∈ Γ. Let Y (x) ∈ R

3 be the unique unit vector such that (X (x),Y (x),τ(x)) is a direct
orthonormal basis of R

3. Clearly, X and Y are smooth and, for each x ∈ Γ, we have X (x),Y (x) ∈
Nx. By the inverse function theorem and the properties of the nearest point projection on Γ, for
sufficiently small ε> 0 the map

Φ(x, (y1, y2)) := x+ y1 X (x)+ y2 Y (x), x ∈Γ, 0≤ |(y1, y2)| ≤ ε

has all the required properties.

Proof of Lemma 1, item 2. When v ∈ C∞(R3 \Γ;S1), we may define the « degree of v around Γ »,
deg(v,Γ), as follows. Let x ∈ Γ and let Nx be the normal plane to Γ at x. On Nx, we have a natural
orientation induced by the orientation of Γ (such that a direct basis of Nx, completed with τ(x),
forms a direct basis of R3). Let, for small δ, C(x,δ) = {y ∈ Nx; |y− x| = δ}. This circle inherits an
orientation from Nx and does not intersect Γ. We let deg(v,Γ) = deg(v,C(x,δ)). By a homotopy
argument, this definition does not depend on x or on small δ. One can define similarly deg(v,Γ)
when v is merely defined on Φ(Γ×D(0,ε)).

We now invoke the existence of some v ∈ C∞(R3 \Γ;S1) such that deg(v,Γ) = 1. Moreover, we
may choose such v satisfying ∇v ∈ L1

loc
(R3); see [1, Section 4]. We next modify v at infinity as

follows. Let R > 0 be such that Φ(Γ×D(0,ε)) ⊂ B(0,R). On R
3 \ B(0,R), we may write v = eıϕ for

some smooth ϕ. By replacing ϕ with an appropriate smooth function ϕ̃ which agrees with ϕ near
S(0,R), we may assume that v = 1 at infinity, and thus ∇v ∈ L1(R3).

Define, for x ∈ Γ, 0< r ≤ ε and θ ∈R, w(Φ(x, reıθ))= eıθ.

We now note the following straightforward result, whose proof is left to the reader.

Lemma 3. Let g ∈C∞(Γ× (D(0,ε)\{0});S1) be such that deg(g(x, ·),C(0,ε))= 0, ∀ x ∈ Γ.

Set f (x) = g(x,ε), ∀ x ∈ Γ. Then there exists some smooth function ψ : Γ× (D(0,ε) \ {0})→ R such

that g(x, z)= f (x) eıψ(x,z), ∀ (x, z) ∈Γ× (D(0,ε)\{0}).

Clearly, the above lemma applies to g = (vw)◦Φ :Γ×D(0,ε)→S
1.

Set U = Γ× (D(0,ε1) \ {0}). Consider some η ∈ C∞(U ;R) such that η(x, z)=ψ(x, z) if |z| > ε/2 and
η(x, z)= 0 if 0< |z| < ε/3.
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Define h(x, z)= f (x) eıψ(x,z) and set, for y ∈R
3 \Γ,

u(y)=

{
h(Φ−1 y)w(y), if 0< dist(y,Γ)< ε

v(y), if dist(y,Γ)≥ ε
.

It is easy to see that u has all the required properties.

Proof of Lemma 1, item 3. See [8, equation (8.30)].

Proof of Lemma 2. When F = 0, the existence of a sequence (ψn) satisfying items 1 and 2 and such
that ψn → 0 in L1

loc
(RN ) when n → ∞ is classical; see e.g. [19, Theorem 1.17]. The case of an

arbitrary F ∈ L1(RN ;RN) is established in an appendix of [9].

Item 3 follows from the fact that the W1,1-capacity of K is zero (see e.g. [12, Section 4.7.1,
Theorem 2]).

4 Generalizations of Theorem 2

We first discuss the generalization of Theorem 2 to R
N with N ≥ 4. It will be more convenient

to adapt the terminology of GMT. In this language, (7) asserts that ∂S = Γ, where this time ∂

stands for the boundary operator (not the geometric boundary). Let us recall the definition of ∂

(which coincides with d∗, the formal adjoint of d acting on forms), first in 3D. By definition, ∂S

(i.e., ∂ acting on the 2-current S) is the 1-current satisfying

〈∂S,ζ〉 = 〈S, dζ〉 =

ˆ

S

ν ·curlζ= 〈curlS,ζ〉, ∀ζ ∈C∞
c (R3;Λ1)≃ C∞

c (R3;R3). (81)

More generally, if T ∈D ′(RN ;Λk) for some 1≤ k ≤ N, then ∂T ∈D ′(RN ;Λk−1) is defined by

〈∂T,ζ〉 = 〈T, dζ〉, ∀ζ ∈C∞
c (RN ;Λk−1). (82)

This applies in particular to the case where S ⊂R
N is an oriented k-dimensional manifold with

(geometric) boundary Γ. Then S defines a k-current (still denoted S) through the formula

〈S,ξ〉 =

ˆ

S

ξ, ∀ξ∈ C∞
c (RN ;Λk),

and

〈∂S,ζ〉 = 〈S, dζ〉 =

ˆ

S

dζ=

ˆ

Γ

ζ (by Stokes) = 〈Γ,ζ〉, ∀ζ ∈C∞
c (RN ;Λk−1),

where Γ is viewed as a (k−1)-current.

We now return to the higher dimensional version of Theorem 2. Let N ≥ 3 and let Γ⊂R
N be a

smooth compact connected oriented (N −2)-manifold (without boundary).

Remark 3. In 3D, Γ is a curve and its orientability is not an issue. However, when N ≥ 4 we have
to assume Γ orientable, since this « does not come with Γ ». (Think of the Klein bottle.)

Given such Γ, there exists a smooth compact oriented hypersurface S ⊂ R
N with (geometric)

boundary Γ; see e.g. [23, Theorem 3, p. 50]. We may thus associate with Γ the finite quantities

M0(Γ)= inf{|S|; S ⊂R
N is a smooth oriented hypersurface with boundary Γ}, (83)

M(Γ) = inf{|S|; S is an (N −1)-rectifiable current in R
N such that ∂S =Γ}, (84)

K (Γ)=min{‖µ‖M ; µ ∈M (RN ;ΛN−1) is a measure such that ∂µ=Γ}, (85)

D(Γ)= sup

{ˆ

Γ

ζ; ζ ∈C∞
c (RN ;ΛN−2) and ‖dζ‖L∞ ≤ 1

}
. (86)
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Here, |S| is the mass of S; it coincides with the H N−1(S) when S is smooth.

Consider also the (possibly empty) set

R = {S; S is a minimizer in (84)} (87)

and the non empty set

Q = {µ∈M (RN ;ΛN−2); µ is a minimizer in (85)}. (88)

We have the following result.

Theorem 4. Let Γ⊂R
N be a smooth compact connected oriented (N −2)-manifold. Then

M0(Γ)= M(Γ)= K (Γ)= D(Γ). (89)

Moreover,

every extreme point of Q is a minimizer in (84), (90)

and consequently

convR
weak∗

=Q. (91)

The proof of Theorem 4 is very similar to the one of Theorem 2; see [9, Chapter 4] for the full
proofs and more general results. We mention below the main adaptations required.

1. If S is a competitor in (84) and µ is a competitor in (85), then ∂(µ−S)= 0 and thus ∗µ=∗S+dψ

for some ψ ∈ ḂV(RN ). Here, ∗ stands for the Hodge operator, and thus ∗µ is a 1-current with
coefficients finite measures, that we may identify with a vector field. Same for ∗S.

2. If u ∈ C(RN \Γ;S1), then we may define the integer deg(u,Γ), thanks to the fact that the (two-
dimensional) normal plane Nx at some x ∈ Γ has a natural orientation (such that a direct basis
of Nx completed with a direct basis of Tx(Γ) forms a direct basis of RN).

3. Lemma 1, items 1 and 2, holds (with the same proof) in any dimension.

4. If u is as in the previous item, then (see e.g. [21, Section 3, Example 4])

∂(∗(u∧du))= 2πΓ in D
′(RN ). (92)

5. Let u be as above and let ψn be as in Lemma 2 (with K = Γ). Set un = u eıψn Then, for a.e.
α∈S

1, the set [un =α]∪Γ is a smooth hypersurface with boundary Γ.

We next go beyond smooth Γ’s. Set

F = {Γ; Γ is an (N −2)-current in R
N such that Γ= ∂S for some

(N −1)-rectifiable current S in Ω}.
(93)

Given Γ∈F , we define

M(Γ) = inf{|S|; S is an (N −1)-rectifiable current in R
N such that ∂S =Γ}, (94)

K (Γ)= inf
{
‖µ‖M ; µ ∈M (RN ;ΛN−1) is a measure such that ∂µ=Γ

}
, (95)

D(Γ)= sup
{
〈Γ,ζ〉; ζ ∈C∞

c (RN ;ΛN−2), ‖dζ‖L∞ ≤ 1
}

, (96)

R = {S; S is a minimizer in (94)} (97)

and

Q = {µ∈M (RN ;ΛN−2); µ is a minimizer in (95)}. (98)

Then we have the following straightforward extension of Theorems 2–4 (without M0).
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Theorem 5. Let N ≥ 2. Then

M(Γ) = K (Γ)= D(Γ), ∀Γ∈F . (99)

Moreover,

every extreme point of Q is a minimizer in (94), (100)

and consequently

convR
weak∗

=Q. (101)

The proof of Theorem 5 is essentially the same as the one of Theorem 2.

Remark 4. 1. The condition K (Γ) < ∞ does not imply M(Γ) < ∞ (and, in particular, the above
theorem does not hold under the weaker assumption K (Γ) <∞.) Indeed, consider for example
N = 2 and Γ= (1/2) (δP−δN ), where P, N ∈R

2 are distinct points. Then Γ= divF =−∂F for some
vector field F ∈ L1

c(R
2;R2). However, there exists no 1-rectifiable current S such that Γ = ∂S.

For otherwise, by Federer and Fleming’s boundary rectifiability theorem [13, Theorem 4.2.16
(2), p. 413], Γ would be a finite sum of Dirac masses with integer multiplicities.

2. With more work (see [9, Chapter 4]), one may prove that

F =

{∑

j

∂S j in D
′(RN ); S j ⊂R

N is a compact oriented hypersurface with boundary

and
∑

j

|S j| <∞

}
.

(102)

Remark 5. One may consider, more generally, for 0≤ k ≤ N −2, the class

F
k
= {Γ; Γ is a k-current such that Γ= ∂S for some (k+1)-rectifiable current S in R

N }, (103)

and define, for Γ∈F k, the quantities

Mk(Γ)= inf{|S|; S is a (k+1)-rectifiable current in R
N such that ∂S =Γ}, (104)

K k(Γ)= inf{‖µ‖M ; µ ∈M (Ω;Λk+1) is a measure such that ∂µ=Γ} (105)

and

Dk(Γ)= sup{〈Γ,ζ〉; ζ ∈C∞
c (Ω;Λk) and ‖dζ‖L∞ ≤ 1}. (106)

1. Theorem 5 asserts that Mk(Γ) = K k(Γ) = Dk(Γ) when k = N −2 and Γ ∈F k. An easy argument
(based on Theorem 1) shows that the same holds when k = 0.

2. In the remaining cases 1≤ k ≤ N −3, we still have K k(Γ)= Dk(Γ). However, in general we have
Mk(Γ)> K k(Γ); see, for N = 4 and k = 1, Young [33], White [32] and Morgan [26].

3. We may also introduce a smooth analogue of Mk(Γ). More precisely, assume that 0 ≤ k ≤ N −2
and

Γ is the (geometric) boundary of some smooth compact oriented

(k+1)-manifold S0 ⊂R
N .

(107)

Set

Mk
0 (Γ)= inf{|S|; S ⊂R

N is a smooth compact oriented (k+1)-manifold with boundary Γ}.

Theorem 4 asserts that, when k = N −2 and Γ is connected, we have Mk
0 (Γ)= Mk(Γ). The same

holds without assuming Γ connected (see [9, Chapter 4]). This equality also holds when k = 0;
see e.g. [9, Chapter 4]. This led us to raise the question whether

Mk
0 (Γ)= Mk(Γ), ∀1≤ k ≤ N −3 (assuming (107))? (108)

Very recently, F.H. Lin [25] informed us that he gave a positive answer to (108).
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