
HAL Id: hal-02197052
https://hal.science/hal-02197052

Preprint submitted on 29 Jul 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Comparing partitions through the Matching Error
Mathias Bourel, Badih Ghattas, Meliza González

To cite this version:
Mathias Bourel, Badih Ghattas, Meliza González. Comparing partitions through the Matching Error.
2019. �hal-02197052�

https://hal.science/hal-02197052
https://hal.archives-ouvertes.fr


Comparing partitions through the Matching Error

Mathias Bourel∗, Badih Ghattas†, Meliza González ‡
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Abstract

With the aim to propose a non parametric hypothesis test, this paper carries out a study
on the Matching Error (ME), a comparison index of two partitions obtained from the same
data set, using for example two clustering methods. This index is related to the misclassifica-
tion error in supervised learning. Some properties of the ME and, especially, its distribution
function for the case of two independent partitions are analyzed. Extensive simulations show
the efficiency of the ME and we propose a hypothesis test based on it.

1 Introduction

Most clustering approaches result in a partition of the data set and often a partition of the space
where the data lie. Several indices may be used to compare partitions coming from a same data set,
among which the Rand index (Rand (1971)), the Adjusted Rand Index (Hubert and Arabie (1985)),
the Jaccard Index (Hultsch (2004)), etc. They can be also used to assess the performance of a
clustering approach over a supervised dataset. Most of these existing indices lack real mathematical
analysis, and almost no information exists about their distribution.

We consider here the Matching Error (ME) introduced by Meila (Meilă and Heckerman (2001),
Meilă (2005)) and inspired by the classification error rate used in supervised learning. This index
has been used in few works ( for example and recently in Fraiman et al. (2013)) because its
computation for large number of clusters is quite complex. We wish to derive in this paper a
hypothesis test to compare two partitions, based on the ME statistic. For that, we focus on the
theoretical properties of the ME, in particular to derive its distribution and show its efficiency in
various experimental designs.

This paper is organized as follows. In Section 2, we present a state of the art of some classical
indices for comparison of two partitions and their properties. Section 3 is devoted to the study
of the ME where we establish some theoretical results, in particular its distribution in case of
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independence of partitions and balanced clusters. Several properties are proved for the general case.
In Section 4, we show many simulations varying the experimental designs (sample size, number of
groups, dependence of the partitions) to compare the ME with other indices. This section ends
with our proposal of an hypothesis test for the independence of two partitions, designed from the
theoretical results on ME, and its performance.

2 Related works

We denote by L = {x1, . . . , xn} ⊆ Rp a sample of n independent realizations of a multivariate
random variable X = (X1, . . . , Xp). Clustering seeks to form disjoint subgroups of observations
such that individuals within the same cluster are similar to each other and relatively different from
those of the other clusters. Let C be a partition of L obtained by a cluster analysis, that is C
is a collection of disjoint subsets {C1, . . . , CJ} such that their union is L. The set of all possible
partitions of L is denoted P(L). Let C ′ = {C ′1, . . . , C ′L} ∈ P(L) be a second partition of L. The
number of clusters of partitions C and C ′ (J and L respectively) may be different.

Following work of Wagner and Wagner (2007), there exist three kind of similarity (or dissimi-
larity) measures between two partitions; we give a brief review of such measures.

• Measures based on counting pairs

A natural way to compare partitions is by counting pairs of observations belonging to a same
cluster in both partitions. The set of all (unordered) pairs of L is the disjoint union of the
following sets:

– A={pairs of observations that are in the same cluster in C and C ′}
– B={pairs of observations that are in different clusters in C and C ′}
– C={pairs of observations that are in the same cluster in C but in different clusters in

C ′}
– D={pairs of observations that are in the same cluster in C ′ but in different clusters in

C }

Sets A,B,C and D are disjoint and if a = |A|, b = |B|, c = |C| and d = |D|, where | · | stands

for the cardinal) we have a+ b+ c+ d = n(n−1)
2

.

A very common index based on counting pairs is the Rand index (Rand (1971)) defined by:

R (C ,C ′) =
a+ b

a+ b+ c+ d
=

2(a+ b)

n(n− 1)

It counts the proportion of pairs classified in a same way by the two clusterings. It is equal to
zero when there exist no pairs of observations classified in the same way by both clustering,
and it is equal to one when the two partitions are identical. Because the expected value of
the Rand index of two random partitions is not constant, Hubert and Arabie (1985) proposed
an adjustment based on the hypothesis that the clusterings are generated randomly subject
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to a fixed number of groups and fixed cluster size. The Adjusted Rand index is a normalized
version of the Rand index and is defined as:

Radj (C ,C ′) =
R (C ,C ′)− E(R (C ,C ′))

max(R (C ,C ′))− E(R (C ,C ′))

which is equivalent to:

Radj (C ,C ′) =
a− ((a+ d)(a+ c)/(a+ b+ c+ d))

(a+d)+(a+c)
2

− (a+d)(a+c)
a+b+c+d

Another indices are Fowlkes-Mallows index (Fowlkes and Mallows (1983)), Mirkin metrix (Mirkin
(1998)), Partition Difference (Li et al. (2004)) and Jaccard index (Hultsch (2004)) . The
latter measures the similarity between two partitions. It is very similar to the Rand index,
but it dismisses the pairs of elements that are in different clusters in the compared partitions.
It is defined as

J(C ,C ′) =
a

a+ c+ d

However, many of these measures have undesirable properties such as sensitivity to the
number of clusters, the number of observations and the relative size of clusters.

• Measure based on set overlaps

Measurements based on set overlaps are in general computed from the confusion matrix
between the two partitions C and C ′. The matrix N = (nij) ∈ J × L is such that nij =∣∣Ci ∩ C ′j∣∣, 1 ≤ i ≤ J , 1 ≤ j ≤ L. We will suppose that J ≤ L.

Meilă and Heckerman (2001) introduced an index called the classification error inspired from
the misclassification error used in supervised learning. Consider that one of the two compared
clusterings (C for instance) corresponds to the true labels of each observation and the other
clustering (C ′) to the predicted ones. The supervised classification error may be computed
for all the possible permutations of the predicted labels (in C ′), and the maximum error
over all the permutations may be taken. Thus the classification error for comparing both
partitions may be written as

CE(C ,C ′) = 1− 1

n
max
σ

J∑
i=1

niσ(i) (1)

where σ is an injective mapping of {1, . . . , J} into {1, . . . , L} (Meilă (2005)). The ME
index may be complex to compute when the number of clusters is large. A polynomial time
algorithm has been proposed by Fraiman et al. (2013) to compute it efficiently. We will study
the distributional properties of this index in the next section.
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• Measures based on mutual information

The entropy of a partition C is defined by H(C ) = −
J∑
i=1

p(i) log2 p(i) where p(i) = |Ci| /n is

the estimate of the probability that an element is in cluster Ci ∈ C . The mutual informa-
tion can be used to measure the independence of two partitions C and C ′. It is given by:

I(C ,C ′) =
J∑
i=1

L∑
j=1

p(i, j) log2
p(i,j)
p(i)p(j)

, where p(i, j) is the estimate of the probability that an

element belongs to cluster Ci of C and C ′j of C ′. Mutual information is a metric over the
space of all clusterings, but its value is not bounded which makes it difficult to interpret. As
I(C ,C ′) ≤ min (H(C ), H(C ′)), other bounded indices have been proposed such as Normal-
ized Mutual Information (Strehl and Ghosh (2002), Fred and Jain (2003)) where I(C ,C ′)
is divided either by the arithmetic or the geometric mean of the clustering entropies. Meila
(Meilă (2003)) has also proposed an index based on Mutual information called Variation of
Information.

In de Souto et al. (2012) and Rezaei and Fränti (2016) several indices are compared on artificially
simulated partitions with various configurations; partitions are either balanced or unbalanced, de-
pendent or independent, varying number of clusters. They show that the indices based on set
overlaps have better performance than those based on counting pairs and mutual information.
Besides, most indices are not relevant when the clusters in the partitions are imbalanced.

Milligan and Cooper (1986) study the behavior of the Rand, Adjusted Rand, Jaccard and
Fowlkes Mallows indices. They compare the partitions produced by hierarchical algorithms with
the true partitions, varying the number of groups with a sample of 50 observations and conclude
that the adjusted Rand index seems to be more appropriate for clustering validation in this con-
text. Similar simulations and results are given in Brun et al. (2007) and Wu et al. (2009) using
k-means.

The works cited above give some experimental conclusions with no theoretical framework. In
Saporta and Youness (2002), Youness and Saporta (2004) and Youness and Saporta (2010), the
authors propose methods to study the empirical distribution of partition comparison indices, in
particular the Rand and the Jaccard indices, among others. By a latent class mode to generate the
data, they estimate their empirical distribution under the hypothesis that the two partitions come
from the same underlying mixture model. Distributions of these indices depend on the number of
clusters, their proportions and their separation so it is impossible to derive a general result.

Indices for comparing partitions should have some desirable properties, like being bounded,
interpretable, independent of the number of clusters and sample size, and complying with properties
of a metric. In Meilă (2005), the author makes an axiomatic characterization of Variation of
information, Mirkin, Rand and Van Dongen indices and some properties of the ME are discussed,
in particular that it is a metric in some subspaces of the clusterings sets. In Meilă (2007) numerous
theoretical properties on the variation of information index are proved. Also, it is shown that the
normalized Mirkin metric and the Adjusted Rand index satisfy the properties of a metric.

With respect to the theoretical distribution of the indices, Idrissi (2000) established the fol-
lowing statement: for two independent partitions, with J balanced clusters, the asymptotic dis-
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tribution of the Rand Index is normal with expectation E (R (C ,C ′)) = 1 − 2
J

+ 2
J2 and variance

V (R (C ,C ′)) = 1
n2

(
1− 1

n

) (
1− 2

J
+ 2

J2

) (
2
J
− 2

J2

)
. But this result is not true for small J , in par-

ticular when J = 2, and is only approximately valid only for large samples. This is, to our best
knowledge, the only theoretical result about the distribution of the Rand index and under some
conditions. Our work intends to analyze the distribution of the ME index.

3 The ME properties

We now study the distributional properties of the classification error introduced in (1) that we
formulate in an equivalent way. More precisely, let us consider a data set L = {x1, . . . , xn} ⊆ Rp

and C and C ′ ∈ P(L) two partitions of L. The labels of each observation in the first partition
are denoted {y1, . . . , yn} and those of the second partition {ŷ1, . . . , ŷn}, so yi ∈ {1, . . . , J} and
ŷi ∈ {1, . . . , L} ∀i = 1, . . . , n.

If SJ is the set of permutations of {1, . . . , J} and A is the set of arrangements of J elements
taken from L, we define the Matching Error (ME) as:

τ = ME(C ,C ′) =


min
σ∈SJ

1
n

n∑
i=1

1{yi 6=σ(ŷi)} if J ≤ L

min
σ∈A

1
n

n∑
i=1

1{σ(yi)6=ŷi} otherwise
(2)

For simplicity, we assume that the two compared partitions have the same number of clusters,
that is J = L. Observe that ME(C ,C ′) is another formulation of CE(C ,C ′) used in the works
of Meilă and we are going to analyze its distribution.

3.1 Distribution function of τσ

Let denote τσ = 1
n

n∑
i=1

1{yi 6=σ(ŷi)}. To derive the distribution of the ME we need to know the

distribution of the different classification errors τσ where σ ∈ SJ . For yi and ŷi two independent
realizations of a discrete random variable Y taking values in {1, . . . , J}, let:

• pj = P[yi = j], p̂j = P[ŷi = j], and

• θ = P[yi 6= σ(ŷi)] = 1− P[yi = σ(ŷi)]

= 1−
J∑
j=1

P[yi = j, σ(ŷi) = j] = 1−
J∑
j=1

pj p̂j

Assuming that Y is uniform on {1, . . . , J}, then pj = p̂j = 1/J and θ = 1 − 1
J

. Therefore the
random variable nτσ is binomial with parameters n and θ, and:

E(τσ) = 1− 1

J
; and V(τσ) =

1

n

1

J

(
1− 1

J

)
For large values of n: nτσ ∼ N (nθ, nθ(1− θ)).
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Proposition 1. 1. As
J !∑
j=1

nτσj = n(J − 1)!(J − 1), the random variables nτσ1 , nτσ2 , . . . , nτσJ!

are not independent.

2. The ME is bounded:

0 ≤ τ ≤ J − 1

J

Let σl and σk be two permutations of SJ . We say that σl and σk share a point j ∈ {1, . . . , J}
if σl(j) = σk(j). Note that two permutations of SJ can share at most J − 2 points.

Proposition 2. If σj and σl share s points, then

COR(nτσl , nτσk) =
s− 1

J − 1

where s = 0, . . . , J − 2

In Figure 1 we show the distribution of τ for different values of J and for n = 1000.
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Figure 1: Distribution of τ for n = 1000 and different values of J for two independent and balanced
partitions.

3.2 The case J = 2

Proposition 3. The distribution function Fnτ (z) of nτ = min {nτσ1 , nτσ2} is:
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Table 1: Correlation between ME(C ,C ′) and R(C ,C ′) over N = 1000 repetitions of the indices,
where C and C ′ are partitions with J = 2, . . . , 10 groups and n = 1000 observations in the four
scenarios explained above.

J=2 J=3 J=4 J=5 J=6 J=7 J=8 J=9 J=10 mean

Dependence
Unbalanced groups -1 -0,93 -0,89 -0,83 -0,81 -0,79 -0,73 -0,74 -0,70 -0,83

Balanced groups -1 -1 -1 -1 -0,99 -0,99 -0,99 -0,99 -0,98 -0,99

Independence
Unbalanced groups -0,94 -0,28 -0,43 -0,21 -0,21 -0,12 -0,14 -0,13 -0,05 -0,28

Balanced groups -0,93 -0,86 -0,83 -0,81 -0,8 -0,79 -0,78 -0,78 -0,77 -0,82

P(nτ ≤ z) =


z∑
i=0

2
(
n
i

) (
1
2

)n
= 2Bn,1/2(z) if z + 1 ≤ n

2

1 if z > n
2

where Bn,1/2 is the binomial distribution function with parameters (n, 1
2
).

Proposition 4.

E(nτ) =

{
n
2
−
(
1
2

)n ( n
n/2

)
n
2

if n is even
n
2
−
(
1
2

)n (n−1
n−1
2

)
n if n is odd

Hence the distribution of ME is explicit for J = 2.

4 Simulations and hypothesis test

We first show how the ME behaves in different experimental situations and derive a hypothesis
test for independence of two partitions.

4.1 Empirical performance of the ME

In this section we study the empirical distribution of ME between two partitions C and C ′. The
results are considered and compared in various experimental conditions: different number of groups
(J ∈ {2, 3, 4, 5, 6, 7, 8, 9, 10}), different number of observations (n ∈ {50, 100, 200, 300, 400, 500, 1000}),
independent partitions, different degrees of dependence between partitions, balanced and imbal-
anced clusters.
For each configuration of these parameters, we directly generate the partition vectors, that is,
each observation’s label for both partitions. These could be the result of two clustering analysis.
For each value of J and n, we generate N = 1000 independent partition pairs and the index
τ = ME(C ,C ′) is computed. This produces 1000 values of the index for each configuration.

To simulate dependent partitions, we start with two equal vectors Y and Ŷ and modify at
random a proportion γ ∈ {0.1, 0.4, 0.6, 0.9} of labels of Ŷ .
We check first the correlations between the ME, and both the Rand and Jaccard indices. Tables
1 and 2 give the obtained results for the four scenarios, for γ = 0.4.

In the case of balanced clusters, the correlation is high (it is negative as ME is a dissimilarity
measure between partitions, whereas Rand and Jaccard indices are similarity measures). For
dependent partitions the correlation is almost perfect (close to minus one), while with independent
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Table 2: Correlation between ME(C ,C ′) and Jaccard(C ,C ′) over N = 1000 repetitions of the
indices, where C and C ′ are partitions with J = 2, . . . , 10 groups and n = 1000 observations in
the four scenarios explained above.

J=2 J=3 J=4 J=5 J=6 J=7 J=8 J=9 J=10 mean

Dependence
Unbalanced groups -0,99 -0,95 -0,91 -0,87 -0,85 -0,82 -0,78 -0,77 -0,75 -0,86

Balanced groups -1 -1 -1 -1 -1 -1 -1 -1 -1 -0,99

Independence
Unbalanced groups -0,58 -0,45 -0,6 -0,52 -0,56 -0,59 -0,57 -0,63 -0,54 -0,56

Balanced groups -0,93 -0,86 -0,83 -0,81 -0,8 -0,79 -0,78 -0,78 -0,77 -0,82

partitions it is still high but smaller (between −0.77 and −0.93). Correlation between the indices
decreases when the number of clusters J increases.
For unbalanced partitions results are quite different. For dependent partitions, the correlations
-although decreasing with respect to the cluster size- have a coefficient between −0.7 and −0.99.
However, when the partitions are independent, the correlation is smaller and, except for the case
J = 2, it is much weaker with the Rand index than with the Jaccard index.

4.2 Hypothesis Test

Our main purpose when analysing the distribution of the ME index is to design a hypothesis test
to decide whether two partitions are statistically independent. The properties proved above were
derived under some assumptions and may be used to compare partitions at least for J = 2 groups
equally distributed. We present this test and analyse its performance on simulated data.

Given two partitions C and C ′, the test proposal is:
(H0): Partitions C and C ′ are independent.
(H1): Partitions C and C ′ are not independent.
The test statistic is τ and, as we know its distribution for J = 2 under H0 it is straightforward

to derive decision.
For J > 2, we propose the following reasoning. For two partitions C and C ′ we compute

τ0 = ME(C ,C ′) and then take B “perturbations” of C ′ denoted C ′1,C
′
2, . . . ,C

′
B, changing at

random a proportion π of its labels. To estimate the p-value P(τ ≤ τ0) of the independence
hypothesis (null hypothesis) we take the proportion of values of τb = ME(C ,C ′b) which are less
than τ0. We give two examples of the use of this test, for J = 15. First we consider two independent
balanced partitions of n = 1000 observations with J = 15 groups and fix B = 1000. In this case
τ0 = 0.881 and the estimated p−value is 0.464, which is coherent with not rejecting the hypothesis
of independence of the two partitions. In Figure 2 we show the histogram of the B different values
of τ . In the second case and for the same values of n and J , we consider two dependent partitions
where the second is constructed from the first by changing 20% of the labels randomly. In this
case τ0 = 0.186 and the estimated p-value equals 0 so we reject the hypothesis of dependence. In
Figure 3 we show the histogram of the B different values of τ .

To evaluate the performance of the test, we calculate the error averaging over N = 1000
simulations. We take B = 1000 and proportion π equals 0.2. At level α = 0.1, we estimate the
number of times we make type I and type II error using the empirical values of the p-value. As it
was expected, taking proportion of values of p-value less than 0.1, the estimation of doing a type
I error is small, less than 8%, when we compare two independent partitions. We give in Table 3
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Figure 2: Histogram of the B = 1000 values of τ obtained by changing 20% of the labels randomly
with two independent partitions.
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Figure 3: Histogram of the B = 1000 values of τ with two dependent partitions.

the individual values for some n and varying J ∈ {3, . . . , 10} .

Table 3: At level 0.1, proportion of times a type I error is made obtained by averaging N = 1000
comparisons of independent partitions with balanced classes.

J=3 J=4 J=5 J=6 J=7 J=8 J=9 J=10
n=50 1.1 1.6 3.3 3.1 4.3 6.1 7.9 7.1

n=100 0.3 1.2 1.6 3.1 3.6 3.1 4.0 4.5
n=200 0.2 0.8 1.2 1.5 1.7 2.5 2.8 3.0
n=300 0.4 0.7 1.1 1.3 1.6 1.1 2.4 2.3
n=400 0.2 0.4 0.6 1.3 1.8 1.3 1.4 1.7
n=500 0.0 0.2 1.1 0.9 1.2 1.7 1.4 2.8

n=1000 0.0 0.1 0.8 0.9 0.8 1.4 1.4 2.2

On the other hand, with dependent partitions, to estimate the proportion of type II errors over
the N simulations, we take the proportion of p-values larger than 0.1. As described in the previous
section, partitions with balanced clusters and different degrees of dependence are simulated where
dependency strength γ varies in {0.1, 0.4, 0.6, 0.9}. This estimation equals zero when γ = 0.1 and
γ = 0.4 accordingly with a high dependence of the partitions. For γ = 0.6 it is null except for
n = 50: for J = 3 it equals 17.8%, and it is less than 3% only for 4 ≤ J ≤ 10. When γ = 0.9, which
is a scenario very close to independence, it has high values for n = 50, 100 an 200 but decreases to
0 when n and J grow as we can see in Table 4.
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Table 4: At level 0.1, proportion of times a type II error is made obtained averaging N = 1000
comparisons of dependent partitions with γ = 0.9, with balanced classes.

J=3 J=4 J=5 J=6 J=7 J=8 J=9 J=10
n=50 98.3 97.4 96.0 95.3 94.4 93.3 92.2 91.9

n=100 97.7 96.4 95.1 93.6 91.1 91.3 90.4 91.8
n=200 94.3 89.0 87.7 83.0 83.1 82.5 79.2 82.8
n=300 89.5 78.9 72.7 65.9 67.5 63.9 63.2 62.7
n=400 81.8 63.0 53.4 46.1 43.1 40.8 40.5 38.1
n=500 73.1 46.5 35.0 27.9 21.5 23.4 20.3 17.3

n=1000 22.2 3.7 1.6 0.2 0.2 0.0 0.0 0.0

The experimental evaluation shows a good performance of the partition independence test
with balanced clusters. The proportion of times for which a type I error occurs is in the expected
environment for a level test with α = 0.1. In the evaluation of type II error, the test proved
to be powerful when the dependence between the partitions is relatively high and that it loses
precision when the compared partitions have conditions that approximate the null hypothesis of
independence.

5 Conclusions

We have suggested an hypothesis test for comparing two partitions, useful for comparing the results
of two clustering approaches over a same dataset. Our test is based on the mismatch error inspired
from the misclassification error in supervised learning. We have analyzed the properties and the
distribution of this index in several conditions and compared it to other common indices. A closed
form of the statistic distribution under the null hypothesis was given for two clusters under mild
conditions. For more than two clusters, the simulations show that the test is quite robust and
reliable in various experimental conditions, but the statistic distribution under the null hypothesis
is still unavailable.

Appendix

Proof of Proposition 1

1. n
J !∑
j=1

τσj = n 1
n

n∑
i=1

(
1{yi 6=σ1(ŷi)} + · · ·+ 1{yi 6=σJ!(ŷi)}

)
=

n∑
i=1

|{σ ∈ SJ : σ(ŷi) 6= yi}|

For fixed yi and ŷi we have: |{σ ∈ SJ : σ(a) 6= b}| =
|SJ | − |{σ ∈ SJ : σ(a) = b}| = J !− (J − 1)! = (J − 1)!(J − 1)

it follows that n
J !∑
j=1

τσj = n(J − 1)!(J − 1).

2. It is straightforward, because if τ was greater than J−1
J

, then
J !∑
j=1

τσj > J !J−1
J

= (J−1)!(J−1),

10



which contradicts part 1.

Proof of Proposition 2

COV(nτσk , nτσl) = E(nτσk , nτσl)− E(nτσk)E(nτσl)

=E

(
n∑
i=1

1{yi 6=σk(ŷi)}

n∑
j=1

1{yj 6=σl(ŷj)}

)
− E

(
n∑
i=1

1{yi 6=σk(ŷi)}

)
E

(
n∑
j=1

1{yj 6=σl(ŷj)}

)

=
n∑
i=1

n∑
j=1

P
(
yi 6= σk(ŷi), yj 6= σl(ŷj)

)
− n2

(
1− 1/J

)2
Using De Morgan equalities and basic probability properties, it is easy to show that, by indepen-
dence P (yi = σk(ŷi), yj = σl(ŷj))

=


1/J2 if i 6= j
J∑
j=1

P (yi = j)P (σk(ŷi) = j, σl(ŷi) = j)︸ ︷︷ ︸
(∗)

if i = j

If σk and σl share s points, (∗) = s
J2 and therefore

COV(nτσk , nτσl) =
n(s− 1)

J2

and

COR(nτσk , nτσl) =
n(s−1)
J2

n 1
J

(
1− 1

J

) =
s− 1

J − 1

Proof of Proposition 3 As nτσ1 + nτσ2 = n, if nτσ1 = x and nτσ2 = y, it is easy to establish
that:

P(nτσ1 = x, nτσ2 = y) =


0 if x+ y 6= n(
n
x

) (
1
2

)n
if x+ y = n

and the joint probability table for nτσ1 and nτσ2 has the following shape:

nτσ1/nτσ2 0 1 2 · · · n− 2 n− 1 n

0 0 0 0 0 0 0
(
n
0

) (
1
2

)n
1 0 0 0 0 0

(
n
1

) (
1
2

)n
0

2 0 0 0 0
(
n
2

) (
1
2

)n
0 0

... 0 0 0 · · · 0 0 0
n− 2 0 0

(
n
n−2

) (
1
2

)n
0 0 0 0

n− 1 0
(
n
n−1

) (
1
2

)n
0 0 0 0 0

n
(
n
n

) (
1
2

)n
0 0 0 0 0 0

.

11



Using this table, we have;

P(nτ = z)

=P(nτσ1 = z, nτσ2 = n− z) + P(nτσ2 = z, nτσ1 = n− z)

=2P(nτσ1 = z, nτσ2 = n− z)

=2

(
n

z

)(
1

2

)n
, if z 6= n

2
.

If n is even:

P
(
nτ =

n

2

)
= P

(
nτσ1 =

n

2
, nτσ2 =

n

2

)
=

(
n

n/2

)(
1

2

)n
So we can conclude that

P(nτ = z) =


(
n
n/2

) (
1
2

)n
if z = n

2
and n is even

2
(
n
z

) (
1
2

)n
otherwise

Then, the distribution function of nτ is:

Fnτ (z) =P(nτ ≤ z) = P(min {nτσ1 , nτσ1} ≤ z)

=1− P(min {nτσ1 , nτσ1} ≥ z + 1)

=1− P(nτσ1 ≥ z + 1, nτσ2 ≥ z + 1)

=P(nτ ≤ z) =


z∑
i=0

2
(
n
i

) (
1
2

)n
= 2Bn,1/2(z) if z + 1 ≤ n

2

1 ifz > n
2

Proof of Proposition 4

• Based on the table of joint probability, if n is even

E(nτ) =
n/2−1∑
k=0

2
(
1
2

)n
k
(
n
k

)
+ n

2

(
1
2

)n ( n
n/2

)
.

The first term is:

2
(
1
2

)n n/2−1∑
k=1

k
(
n
k

)
=
(
1
2

)n−1 n/2−1∑
k=1

kn
(n−1
k−1)
k

=
(
1
2

)n−1
n
n/2−1∑
k=1

(
n−1
k−1

)
=
(
1
2

)n−1
n
n/2−2∑
k=0

(
n−1
k

)
=
(
1
2

)n−1
n
(

2n−1

2
−
(
n−1
n/2−1

))
,

as
n−1∑
k=0

(
n−1
k

)
=

n/2−1∑
k=0

(
n−1
k

)
+

n−1∑
k=n/2

(
n−1
k

)
= 2n−1

and
n/2−1∑
k=0

(
n−1
k

)
=

n−1∑
k=n/2

(
n−1
k

)
= 2n−1

2
.

We have now,

E(nτ) =
(
1
2

)n−1
n
(

2n−1

2
−
(
n−1
n/2−1

))
+ n

2

(
1
2

)n ( n
n/2

)
=

12



n
2
−
(
1
2

)n−1
n
(
n−1
n/2−1

)
+ n

2

(
1
2

)n ( n
n/2

)
=

n
2
−
(
1
2

)n−1 ( n
n/2

)
n
2

+
(
1
2

)n ( n
n/2

)
n
2

= n
2
−
(
1
2

)n ( n
n/2

)
n
2
.

• Similarly if n is odd:

E(nτ) =

n−1
2∑

k=0

2
(
1
2

)n
k
(
n
k

)
=
(
1
2

)n−1 n−1
2∑

k=0

k
(
n
k

)
=
(
1
2

)n−1 n−1
2∑

k=0

n
(
n−1
k−1

)
=
(
1
2

)n−1
n

n−1
2
−1∑

k=0

(
n−1
k

)
=
(
1
2

)n−1
n
[
2n−2 − 1

2

(
n−1
n−1
2

)]
, as

n−1∑
k=0

(
n−1
k

)
=

n−1
2
−1∑

k=0

(
n−1
k

)
+
(
n−1
n−1
2

)
+

n−1∑
k=n−1

2
+1

(
n−1
k

)
=

2

n−1
2
−1∑

k=0

(
n−1
k

)
+
(
n−1
n−1
2

)
= 2n−1 Then:

n−1
2
−1∑

k=0

(
n−1
k

)
= 2n−2 − 1

2

(
n−1
n−1
2

)
.

Hence,

⇒ E(nτ) =

{
n
2
− (1

2
)n
(
n
n/2

)
n
2

if n is even
n
2
− (1

2
)n
(
n−1
n−1
2

)
n if n is odd
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