Boltzmann Machines for signals decomposition. Application to Parkinson’s Disease control
Rémi Souriau, Vincent Vigneron, Jean Lerbet, Hsin Chen

To cite this version:
Rémi Souriau, Vincent Vigneron, Jean Lerbet, Hsin Chen. Boltzmann Machines for signals decomposition. Application to Parkinson’s Disease control. XXVIIème Colloque francophone de traitement du signal et des images (GRETSI 2019), Aug 2019, Lille, France. hal-02197049

HAL Id: hal-02197049
https://hal.science/hal-02197049
Submitted on 29 Jul 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Introduction

The Parkinson’s Disease (PD) is a progressive neurodegenerative disease. The depletion of the dopamine in the basal ganglia network leads to several symptoms like rigidity, posture instability, slow motion or pain for example. Applying an electronic periodic signal to the subthalamic nucleus in the deep brain is an efficient treatment for advanced PD patient. However open-loop Deep Brain Stimulation (DBS) leads to side effects like psychiatric ones. Another consequence of applying permanently the DBS is the need to replace batteries which requires surgery. Recent studies show that the arrival of symptoms can be predicted by detecting the presence of High-Voltage Spindles (HVS) (see Fig.1b) in Local Field Potentials (LFPs) [3]. The HVS are synchronous spike-and-wave patterns oscillating in the 5-13 Hz frequency band. Suppresing HVS signals is found useful for delaying the progress of PD and deleting symptoms.

The detection of the HVS is a challenging problem for two reasons. First, symptoms of the PD appear some milliseconds after the first HVS. Second, PD is a progressive disease: signals depend on the patient, on the location of recording probes or on the advanced state of the disease. A fast and robust model capable to learn automatically from the data on real time is then required. A previous work on Gaussian Process leads to satisfying results [6]. However, the absence of ground truth for the training step makes results highly variable among individuals due to major differences in signals recording between different people. In this article, we focus on an unsupervised graphical model, the Boltzmann Machine.

The seminal works of Hopfield [4] lead to the emergence of a large family of models, in particular to the Boltzmann Machine [9] and to the Diffusion Network (DN), a continuous stochastic neural network, studied by Movellan [5]. Chen and Murray [1, 2] first proposed a continuous Restricted Boltzmann Machine (cRBM) architecture based on the DN and its VLSI implementation. The cRBM is used in this paper for the first time for signal decomposition. The paper is organized as follows. Section 1 presents the principles of the DN and the cRBM. The convergence properties of the cRBM for the signal decomposi-
tion is detailed in section 2. Finally, we discuss about the application of the detection of HVS using the cRBM.

1 Principles of the Diffusion Network

1.1 Diffusion Network

The DN is a continuous stochastic model described by a Stochastic Differential Equation (SDE) [5]. The aim of the DN is to model the dynamic dependencies between signals. We note \(X(t) = (x_1(t), \ldots, x_n(t))^T \) the signal at instant \(t \), where \(^T \) is the transpose operator. For all neurons \(j \), the SDE is given by:

\[
\text{d}x_j(t) = \mu_j(X(t))\text{d}t + \sigma \text{dB}_j(t).
\]

(1)

The first term in the right member of Eq.1 is the drift term and the second term is the diffusion term. \(\text{d}B_j(t) \) is a Brownian motion and \(\sigma \) is the noise standard deviation. Training the DN consists to find the parameters of the drift \(\mu_j(\cdot) \). The formulation of the drift term of neuron \(j \) is:

\[
\mu_j(X(t)) = \kappa_j \left(-\rho_j x_j(t) + \xi_j + \sum_{i=1}^{n} W_{ij} \phi_i(x_i(t)) \right) \tag{2}
\]

\(\kappa_j, \rho_j, \xi_j \) and \(\phi_i(x_j) \) are resp. the inverse capacitance, the inverse resistor, the bias and the state of the neuron \(j \). \(W_{ij} \) is the weight between input \(i \) and neuron \(j \). \(\phi_j \) is a sigmoid function (see Fig.2a).

\[
s_j = \phi_j(x_j) = \theta_L + (\theta_H - \theta_L) \frac{1}{1 + \exp(-a_j x_j)} \tag{3}
\]

\(\theta_L \) and \(\theta_H \) are respectively the lower and the upper bounds of the function and \(a_j \) is the slope parameter of the activation function. The influences of the parameter \(a_j \) are double as illustrated in Fig.2.

1.2 Continuous Restricted Boltzmann Machine

In a cRBM [1] using the structure of neurons of a DN, we suppose we have the following equality for all the neurons \(\rho_j \kappa_j \Delta t = 1 \). Links in a cRBM are symmetric and there are no connection between neurons in the same layer. The structure of the neuron \(j \) is given in Fig.3. Each input is weighted and summed with a bias. The added noise in the neuron structure explains the stochastic behavior of the model and helps the cRBM to not fall in a local minimum during the training step.

\[
E_{cRBM}(s = \{v, h\}) = -h^T W v - v^T \xi_v - h^T \xi_h + \sum_i \int_0^{s_i} \phi_i^{-1}(s') \text{d}s'
\]

(4)

where \(h, v \) are resp. the hidden and the visible unit values. The continuous integration term \(\phi_i^{-1} \) between 0 and \(s_i \) in Eq.4 makes sense only if 0 is in the range of variation of the neurons. The lower bound 0 in the integral term ensures that \(E_{cRBM}(0) = 0 \). Note that the bounds \(\theta_L \) and \(\theta_H \) can be different between layers. We choose specific bounds for visible units to force neurons to cover the range of variation. Learning the cRBM consists to estimate the set of parameters \(\lambda = \{W_{ij}, \xi_i, a_i\} \) which maximize the log-likelihood:

\[
\mathcal{L}(\lambda) = \sum_{v, h} \log P_{cRBM}(v, h) = \sum_{v, h} -E_{cRBM}(v, h) + c
\]

(5)

\(c \) being a constant. Contrastive Divergence rule proposed by Hinton [9] is used to train the cRBM. The update law for the transfer matrix and the bias remains the same as the RBM. The update rules for the weights and the activation function parameters are:

\[
\Delta W_{ij} \sim <s_i s_j >_0 - <s_i s_j >_1
\]

\[
\Delta \xi_i \sim <s_i >_0 - <s_i >_1
\]

\[
\Delta a_i \sim \frac{1}{a_i} \int_{<s_i >_0}^{<s_i >_1} \phi_i^{-1}(s') \text{d}s'
\]

(6)

with \(<\cdot>_0\) the expected value over the training set and \(<\cdot>_1\) the expected value after one step of Gibbs Sampling.
2 Unsupervised signal decomposition

Suppose a short time window \(v = (v(t_1), \ldots, v(t_m))^T \). In a cRBM composed of \(n \) hidden neurons bounded between \(\theta_H = +\theta \) and \(\theta_L = -\theta \), we note \(h_i \), the \(i \)-th component of the hidden layer defined as \(h_i = \phi_i(x_i) \) where \(x_i \sim N(z_i, \sigma) \) with:

\[
z_i = \xi^h_i + \sum_{j=1}^m W_{ij} v(t_j)
\]

Eq. (7)

Let \(W_i \) the \(i \)-th line vector of the transfer matrix \(W \). \(W_i \) can be seen as a temporal vector \(W_{ij} = W_{i}(t_j) \). For a signal without offset the hidden bias vector \(\xi^h \) tends to zeros during the training and \(z_i \) becomes:

\[
z_i = \sum_{j=1}^m W_i(t_j) v(t_j) = \Gamma_{W_i} v(0)
\]

Eq. (8)

The sum over \(i \) of the correlation function \(\Gamma_{W_i} \) is also present in the energy function:

\[
-h^T W v = -\sum_{i=1}^n h_i z_i = -\sum_{i=1}^n h_i \Gamma_{W_i} v(0)
\]

Eq. (9)

The hidden units \(h_i \) are bounded. Then the log-likelihood \(L \) (Eq.5) requires to maximize all the \(z_i \), \(z_i \) is a scalar product, the Cauchy–Schwartz inequality tell us us:

\[
z_i = W_i v \leq \|W_i\| \times \|v\|
\]

Eq. (10)

The equality between the visible units and the line vector of transfer matrix are co-linear, \(i.e. W_i^T = \alpha v \). Intuitively, we could think the components of \(W \) will continuously augment during the learning because the bigger \(\alpha \) is, the more the cross-correlation increases and the energy decreases. But for \(\alpha \rightarrow \infty \), hidden and visible unit values become binary which makes the model unable to reconstruct data.

The learning step of the cRBM in Eq.6 captures successfully the frequencies of the signal. Unfortunately, the phase \(\psi \) of the visible layer with vector \(W_i \) changes when we shift the visible layer in time : \(W_i \) and \(v \) can be correlated \((\psi = 0 \), non-correlated \((|\psi| = \pi/2) \) or anti-correlated \((|\psi| = \pi) \). Eq.11 gives the interpretation of the variation of \(h_i \) in function of \(\psi \):

\[
\begin{aligned}
&h_i \rightarrow +\theta \quad \text{if} \quad \psi \rightarrow 0 \\
&h_i \rightarrow -\theta \quad \text{if} \quad |\psi| \rightarrow \pi \\
&h_i \rightarrow 0 \quad \text{if} \quad |\psi| \rightarrow \pi/2
\end{aligned}
\]

Eq. (11)

For a given short time window \(v \), each hidden units \(h_i \) gives an expected image of the correlation between the visible layer and the \(i \)-th line of the transfer matrix \(\Gamma_{W_i} v(0) \). The product \(h_i \Gamma_{W_i} v(0) \) tends to stay positive and to decrease the energy according to Eq.9. In the non-correlated case \((\Gamma_{W_i} v(0) = 0) \), the energy component of the \(i \)-th hidden unit is set back to zero. Fig.4 gives the evolution in time of the energy term \(h^T W v \) for a cRBM trained with a sinusoidal signal. The upper plot is the original signal, the three last ones are the \(h^T W v \) terms with, resp. 1 \(\leq n \leq 3 \) hidden units. We note for a cRBM with two or three hidden units, all hidden neurons capture the same frequency but with a delay of \(\pi/2 \) and \(\pi/3 \) for the cRBM with resp. two and then three hidden units. The introduced delay between hidden units allows the cRBM to keep the energy as stable as possible.

Once the cRBM is trained, weights of the transfer matrix capture the principle components of signals. Multiple hidden units allow to reconstruct learned frequencies with the corresponding phase and intensity.

3 Experiment

In this section, we use the cRBM model to detect the HVS in LFPs. The process of data extraction is described in Vigneron et al. [8]. The LFPs were recorded from 4 or 8 different brain regions. Several sessions of 60s with 1 kHz sampling rate were recorded on PD rats. The data were then standardized by subtracting the mean and dividing by the standard deviation of each channel.

We defined a ground truth only for the result evaluation. The presence of HVS is characterized by a burst of spike-and-wave patterns with a fundamental frequency between 5 and 13 Hz. The cosine wavelet transform (CWT) is computed for each channel. HVS is detected from the sum of the CWT coefficients between 5 and 13 Hz (see Fig.5a) and it is simultaneously present on at least \(3/4 \) of all channels.

The first stage consists to train the cRBM with 6 hidden units : at each iteration, a short time window is randomly selected to update the parameters. Choosing a 200 ms windows with 20 ms between each observation as visible units of the cRBM is sufficient to capture the fundamental frequency and first’s harmonics of the HVS. The non-stationary offsets are removed by centering each visible neurons. Once the model is trained, we
compute the $h^T W v$ term (Fig.5b) and apply Otsu’s method to define a threshold. On the testing set, we use a hysteresis filter to cancel the noise during the transition between the two states of the signal (±50% of the threshold). This method is applied to all PD rats and provides the results given in Tab.1.

4 Discussion

The cRBM successfully learns a representation of deep cortical signals. For most rats the sensitivity of the detection is close to 1, i.e. we (almost) never miss the HVS pattern. For some patient, cRBM model successfully detects HVS before the ground truth; the decrease of the specificity means a faster detection of the HVS. The quality of data can be very different from a rat to another due to the signal-to-noise ratio per channel or the presence of HVS. Our ground truth definition may be too simple to evaluate properly the models. A comparison with more robust methods like in [7] may be fruitful. Properties of the cRBM provide various advantages and possible approaches of improvement are currently available. The cRBM is an unsupervised generative model capable to learn optimal frequencies to be detected and can be used as a predictor. The cRBM can extract non-correlated components but the separability depends on the data. A study of the architecture of the model is required to help hidden units to extract different components. To remove the time lag introduced by the use of an observation window, working directly on the Diffusion Network is another possible path of improvement.

Références

