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A modulo p equivalence of Categories

In this paper equivalence of categories of char 0 and char p is shown by a humble mod p functor without using Witt vectors or Teichm uller lifts.

Introduction

This paper introduces a modulo p analogue of the tilting functor of Scholze as given in [Scholze, 2012]. The mod p functor works in the rings with fractional powers of the form

Z p [p 1/d ∞ ][X 1/d ∞ ] and F p [p 1/d ∞ ][X 1/d ∞ ].
More generally, it follows the philosophy of eka d rings (introduced in [Bedi, 2019]) where fractional powers of the ideal of denition are added to avoid destruction of neighborhood of zero when the ring is modded out with the ideal of denition.

The paper constructs equivalence between the category of ring Z p [p 1/d ∞ ][X 1/d ∞ ] of char 0 and the category of ring

F p [p 1/d ∞ ][X 1/d ∞ ] of char p.
The rst result under very restrictive conditions is Lemma 2.1 and Theorem 3.1. The problems of perfection are avoided in these results by restricting the morphisms in the category with char p. These problems of perfection are discussed in section 4. The restrictive conditions are removed in Lemma 4.1 by assuming p d. Finally all restrictions are removed by considering completions in section 5.

The relationship is further extended to eld algebras of the form

Q p (p 1/d ∞ )[X 1/d ∞ ] and F p (p 1/d ∞ )[X 1/d ∞ ] in section 6.
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Evaluation Map and Direct Limit

A ring homomorphism φ : A[X] → B is called is called an evaluation in b ∈ B if and only if (2.1) φ(X) = b and φ • i = κ, where i : A → A[X] and κ : A → B is a unital ring homomorphism. This ring homomorphism can now be considered for fractional powers, φ : A[X 1/p ] → B where now X 1/p → b , which would then imply that X → b p .

The above example leads us to consider the following direct system of ring homomorphisms with vertical arrows as evaluation homomorphisms X 1/p i → b 1/p i , i ∈ Z i 0 .

(2.2)

A[X] A[X 1/p ] • • • A[X 1/p i ] • • • lim -→i A[X 1/p i ] B B[b 1/p ] • • • B[b 1/p i ] • • • lim -→i B[b 1/p i ]
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A special case worth mentioning is the mapping X → 0, then X 1/p i → b 1/p i , i ∈ Z >0 where b = 0 and b 1/p i represent nilpotents. In particular if we consider the mapping A[X] → B → B mod b then the kernel is generated by b and X → 0, X → b get mapped to kernel, but fortunately it is no longer true in lim

-→i A[X 1/p i ] → lim -→i B[b 1/p i ].
This fact has a topological interpretation, the neighborhoods of zero are formed by the nilpotents. Notation

(2.3) A[X 1/p ∞ ] := lim -→ i A[X 1/p i ] = i A[X 1/p i ] and B[b 1/p ∞ ] := lim -→ i B[b 1/p i ] = i B[b 1/p i ] A[X 1/d ∞ ] := lim -→ i A[X 1/d i ] = i A[X 1/d i ] and B[b 1/d ∞ ] := lim -→ i B[b 1/d i ] = i B[b 1/d i ] 2.1 Comparing Z p [p 1/p ∞ ][X 1/p ∞ ] to F p [p 1/p ∞ ][X 1/p ∞ ]
Inspired by [Scholze, 2012], we give a new construction relating Char 0 and Char p. Consider the following mapping

(2.4) Mor(Z p [X], Z p [X]) mod p -----→ Mor(F p [X], F p [X]) X → 0 and X → p mod p -----→ X → 0 Z p [X] X and Z p [X] X -p mod p -----→ F p [X] X
which is not one to one. The problem comes from the fact that X → 0 and X → p i , i ∈ Z >0 will mapto X → 0 in Mor(F p [X], F p [X]), and this arises precisely because the neighborhood of zero generated by the ideal (p) ∈ Z p has been glued together by the mod p map, or completely destroyed.

To avoid destruction of neighborhood by mod p mapping, neighborhood elements that are not destroyed have to be introduced, that is (p 1/p , p 1/p 2 , . . .), this is precisely the eka p approach (introduced in [Bedi, 2019]). First attach the pth power roots of p to Z p to get the ring Z p [p 1/p ∞ ] and then consider the polynomial ring

Z p [p 1/p ∞ ][X]. Now, attach pth power roots of X to get Z p [p 1/p ∞ ][X 1/p ∞ ].
The recipe to attach p power roots is given in (2.2).

The elements of

Z p [p 1/p ∞ ][X 1/p ∞ ] look like polynomials with degree in Z[1/p] and coecients in Z p [p 1/p ∞ ],
for example, X 2 + p 1/p 2 X 1/p + X 1/p 3 . In particular the number of terms are nite. The elements of

F p [p 1/p ∞ ][X 1/p ∞ ] have a similar description. (2.5) Mor(Z p [p 1/p ∞ ][X 1/p ∞ ], Z p [p 1/p ∞ ][X 1/p ∞ ]) mod p -----→ Mor(F p [p 1/p ∞ ][X 1/p ∞ ], F p [p 1/p ∞ ][X 1/p ∞ ])
(X, X 1/p , X 1/p 2 , . . .) → (0, 0, 0, . . .) mod p -----→ (X, X 1/p , X 1/p 2 , . . .) → (0, 0, 0, . . .) (X, X 1/p , X 1/p 2 , . . .) → (p, p 1/p , p 1/p 2 , . . .) mod p -----→ (X, X 1/p , X 1/p 2 , . . .) → (0, p 1/p , p 1/p 2 , . . .)

The mapping X → 0 and X → p are dierent maps modulo p.

Categories and Morphisms

Recall that a functor F : A → B gives equivalence of categories A ≡ B if it is full, faithful and essentially surjective [Hazewinkel and Kirichenko, 2005, pp. 250 Proposition 10.6.2].

The idea is to make minimal possible changes to get an equivalence of categories between Char 0 and Char p.

Let A be the category with a single object Z p [p 1/p ∞ ][X 1/p ∞ ] and morphisms are obtained from the mapping X → t where t ∈ Z p [p 1/p ∞ ][X 1/p ∞ ]. These morphisms are required to be homomorphisms and will be denoted as Mor(

Z p [p 1/p ∞ ][X 1/p ∞ ], Z p [p 1/p ∞ ][X 1/p ∞ ]).
Notice, that a morphism X → t is a compatible tuple of pth power roots.

(2.6) (X, X 1/p , X 1/p 2 , . . . , X 1/p i , . . .) → (t, t 1/p , t 1/p 2 , . . . , t 1/p i , . . .)

The category B is obtained from category A by simply applying the functor F which is mod p. Hence, all the morphisms in category B are obtained from A, thus there are no extra morphisms in B. There is only one object

F p [p 1/p ∞ ][X 1/p ∞ ].
The morphisms are obtained from A by reduction mod p where s 1/p i = t 1/p i mod p for i ∈ Z 0 .

(2.7)

(X, X 1/p , X 1/p 2 , . . . , X 1/p i , . . .) → (s, s 1/p , s 1/p 2 , . . . , s 1/p i , . . .)
In the mapping F : A → B, the functor is essentially surjective and surjective by construction. The only thing that needs to be checked is injectivity of F. Lemma 2.1. Let A, B, F be dened as above. Then F gives an equivalence of categories.

Proof. The equivalence follows from the fact that F satises the following.

Essential Surjectivity The functor mod p maps the object of A to B.

F is surjective The category B has been constructed so that F is surjective.

F is injective The injectivity follows from the fact that the kernel of modulo p map is generated by p i , i ∈ Z >0 (and of course zero), and for any

X 1/p j → p i , i ∈ Z >0 , there is X 1/p i+j → p i/p i a non zero element of Mor(F p [p 1/p ∞ ][X 1/p ∞ ], F p [p 1/p ∞ ][X 1/p ∞ ]).
Thus, the only element in the ideal pZ p which maps to zero is zero under the evaluation map.

Remark 2.2. The above process can be again carried out by considering the rings

Z p [p 1/d ∞ ][X 1/d ∞ ]
and its modulo p avatar

F p [p 1/d ∞ ][X 1/d ∞ ]. (2.8) Mor(Z p [p 1/d ∞ ][X 1/d ∞ ], Z p [p 1/d ∞ ][X 1/d ∞ ]) mod p -----→ Mor(F p [p 1/d ∞ ][X 1/d ∞ ], F p [p 1/d ∞ ][X 1/d ∞ ]) (X, X 1/d , X 1/d 2 , . . .) → (0, 0, 0, . . .) mod p -----→ (X, X 1/d , X 1/d 2 , . . .) → (0, 0, 0, . . .) (X, X 1/d , X 1/d 2 , . . .) → (p, p 1/d , p 1/d 2 , . . .) mod p -----→ (X, X 1/d , X 1/d 2 , . . .) → (0, p 1/d , p 1/d 2 , . . .)
The Lemma can be recast as equivalence between the category of rings

Z p [p 1/d ∞ ][X 1/d ∞ ] and category of rings F p [p 1/d ∞ ][X 1/d ∞ ].
Furthermore, notice the following isomorphism (2.9)

F p [p 1/p ∞ ] = F p [p 1/p ∞ ] p = F p [T 1/p ∞ ] T
The last equality is simply interchanging p ↔ T .

General Result

Let R be an admissible ring, with a principal ideal of denition a . Adjoining dth power roots of R gives the ring R[a 1/d ∞ ] which will be denoted as R .

Let C be the category with object R [X 1/d ∞ ] and morphisms in this category are homomorphisms from the object to itself denoted as Mor

(R [X 1/d ∞ ], R [X 1/d ∞ ]) given by the evaluation map X → t ∈ R [X 1/d ∞ ]. This is equivalent to giving a tuple (X, X 1/d , . . .) → (t, t 1/d , . . .).
Let D be the category obtained from category C by application of functor G = mod a and R /a is denoted by R. There is only one object in D given as R[X 1/d ∞ ] morphisms in this category are homomorphisms from the object to itself denoted as Mor(

R[X 1/d ∞ ], R[X 1/d ∞ ])
given by the evaluation map

X → t ∈ R[X 1/d ∞ ].
This map is obtained from C by applying the functor mod a.

Theorem 3.1. Let C, D, G be dened as above. Then G gives an equivalence of categories.

Proof. The equivalence follows from the fact that G satises the following.

Essential Surjectivity Functor mod a maps the object of C to D.

G is surjective The category D has been constructed so that G is surjective.

G is injective The injectivity follows from the fact that the kernel of modulo a map is generated by a i , i ∈ Z >0 (and of course zero), and for any

X 1/d j → a i , i ∈ Z >0 , there is X 1/d i+j → a i/d i a non zero element of Mor( R[X 1/d ∞ ], R[X 1/d ∞ ]
). Thus, the only element in the ideal aR which maps to zero is zero under the evaluation map.

Problems of Perfection

Recall that a + b = (a 1/p + b 1/p ) p mod p, assuming that pth roots makes sense re writing gives (a + b) 1/p = a 1/p + b 1/p mod p or inductively (a + b) 1/p j = a 1/p j + b 1/p j mod p. For example, (1 + X) 1/p j = 1 + X 1/p j mod p.

The ring

F p [p 1/p ∞ ][X 1/p ∞ ]
is perfect and contains evaluation morphisms, for example, X → X + 1 or the tuple (4.1)

(X, X 1/p , X 1/p 2 , . . .) → (1 + X, (1 + X) 1/p , (1 + X) 1/p 2 , . . .) = (1 + X, 1 + X 1/p , 1 + X 1/p 2 , . . .)
In order to lift this map to

Z p [p 1/p ∞ ][X 1/p ∞ ],
the analogue of the tuple (4.2)

(1 + X, (1 + X) 1/p , (1 + X) 1/p 2 , . . .)
is needed, which does not exist in the ring

Z p [p 1/p ∞ ][X 1/p ∞ ]. Since, Z p [p 1/p ∞ ][X 1/p ∞
] is not a power series. This defect can be xed by considering the power series obtained by p adic completion of Z p [p 1/p ∞ ][X 1/p ∞ ] (see section 5). This is precisely why the morphisms in B are strictly derived from A.

Avoiding Perfection

Fortunately, the problem disappears if p d, since then a + b = (a 1/d + b 1/d ) d mod p. Thus, the compatible evaluation maps are X → t where t ∈ F p [p 1/d ∞ ] (and has all dth power roots) or t = X. Hence, the tuple from

F p [p 1/d ∞ ] (4.3) (t, t 1/d , t 1/d 2 , . . .), t 1/d i ∈ F p [p 1/d ∞ ]
lifts directly to the tuple (4.4)

(t, t 1/d , t 1/d 2 , . . .), t 1/d i ∈ Z p [p 1/d ∞ ].
This resolves the surjectivity problem for the rings at hand.

Category and Morphisms for dth roots

Let A be the category with one object

Z p [p 1/d ∞ ][X 1/d ∞ ]
with p d and morphisms as evaluation homomorphisms given by X → T where

T ∈ Z p [p 1/d ∞ ][X 1/d ∞ ].
In particular this map is a compatible tuple.

(4.5)

(X, X 1/d , X 1/d 2 , . . .) → (T, T 1/d , T 1/d 2 , . . .)
Therefore, the only elements under consideration are elements with all the dth roots.

Let B be the category with one object

F p [p 1/d ∞ ][X 1/d ∞ ]
with p d and morphisms as evaluation homomorphisms given by X → t where t

∈ F p [p 1/d ∞ ][X 1/d ∞ ].
In particular this map is a compatible tuple.

(4.6)

(X, X 1/d , X 1/d 2 , . . .) → (t, t 1/d , t 1/d 2 , . . .)
Therefore, the only elements under consideration are elements with all the dth roots. The injectivity follows from the proofs given previously.

Let the functor F : A → B be mod p.

Lemma 4.1. Let A, B, F be dened as above. Then F gives an equivalence of categories.

Proof. The equivalence follows from the fact that F satises the following.

Essential Surjectivity The mod p mapping maps the object of A to B.

F is surjective Every map in B is given by X → t which can be lifted to A as X → t where

t ∈ F p [p 1/p ∞ ][X 1/p ∞ ] ⊂ Z p [p 1/p ∞ ][X 1/p ∞ ].
F is injective The kernel of the functor mod p is generated by p i and zero. But, as shown in previous proofs X 1/d i prevents X → p to be mapped to X → 0.

Completion and Equivalence

The ring

Z p [p 1/p ∞ ][X 1/p ∞ ]
can be p adically completed to get the ring of restricted power series Z p [p 1/p ∞ ] X 1/p ∞ . The elements of this ring are power series are of the form (5.1)

n∈Z[1/p] 0 a n X n where |a n | p → 0 as n → 0 Furthermore, Z p [p 1/p ∞ ] X 1/p ∞ mod p = F p [p 1/p ∞ ][X 1/p ∞ ]
Let C be the category consisting of a single object Z p [p 1/p ∞ ] X 1/p ∞ , and the morphisms are given as evaluation maps (and are homomorphisms) determined by the compatible tuple.

(5.2)

(X, X 1/p , X 1/p 2 , . . .) → (T, T 1/p , T 1/p 2 , . . .) T 1/p i ∈ Z p [p 1/p ∞ ] X 1/p ∞ .

The set of morphisms is denoted as Mor

(Z p [p 1/p ∞ ] X 1/p ∞ , Z p [p 1/p ∞ ] X 1/p ∞ ).
Let D be the category consisting of a single object

F p [p 1/p ∞ ][X 1/p ∞ ],
and the morphisms are given as evalaution maps (and are homomorphisms) determined by the compatible tuple.

(5.3)

(X, X 1/p , X 1/p 2 , . . .) → (t, t 1/p , t 1/p 2 , . . .) t 1/p i ∈ F p [p 1/p ∞ ][X 1/p ∞ ].

The set of morphisms is denoted as Mor

(F p [p 1/p ∞ ][X 1/p ∞ ], F p [p 1/p ∞ ][X 1/p ∞ ]).
The functor F : C → D is given by mod p.

Surjectivity

The entire story now comes down to constructing the lift of (t, t 1/p , t 1/p 2 , . . .).

(5.4)

F p [p 1/p ∞ ][X 1/p ∞ ] Z p [p 1/p ∞ ] X 1/p ∞ (t, t 1/p , t 1/p 2 , . . .) (T, T 1/p , T 1/p 2 , . . .)

Algorithm for lifting

In this section the algorithm for lifting t to a compatible tuple of T is given. It is probably more instructive to go through the example 5.1 rst and its pictorial version (5.11). The rst step is to lift t to T , this is given by the following algorithm.

(5.5)

• • • mod p 3 ------→ (t 1/p 2 ) p 2 mod p 2 ------→ (t 1/p ) p mod p -----→ t thus T = lim n→∞ (t 1/p n ) p n
Similarly, T 1/p can be determined by the following algorithm (5.6)

• • • mod p 3 ------→ (t 1/p 3 ) p 2 mod p 2 ------→ (t 1/p 2 ) p mod p -----→ t 1/p thus T 1/p = lim n→∞ (t 1/p n+1 ) p n
or more generally, T 1/p i can be determined by the following algorithm (5.7)

• • • mod p 3 ------→ (t 1/p i+2 ) p 2 mod p 2 ------→ (t 1/p i+1 ) p mod p -----→ t 1/p i thus T 1/p i = lim n→∞ (t 1/p n+i ) p n
The compatibility of the roots can be seen by a change of variable n → n -1.

(5.8)

T = lim n→∞ (t 1/p n ) p n T 1/p = lim n→∞ (t 1/p n+1 ) p n = lim n→∞ (t 1/p n ) p n-1
. . . = . . .

T 1/p i = lim n→∞ (t 1/p n+i ) p n = lim n→∞ (t 1/p n ) p n-i . . . = . . . Example 5.1. Consider the following tuple in F p [p 1/p ∞ ][X 1/p ∞ ]
(5.9) (t, t 1/p , t 1/p 2 , . . . , t 1/p i , . . .) → (1 + X, 1 + X 1/p , 1 + X 1/p 2 , . . . , 1 + X 1/p i , . . .)

This tuple can be lifted to (T, T 1/p , T 1/p 2 , . . .) in Z p [p 1/p ∞ ] X 1/p ∞ , where T 1/p i is given in the rst column and the third column is simple change of variable to show the compatibility of 1/p i roots.

(5.10)

T = lim n→∞ (1 + X 1/p n ) p n T 1/p = lim n→∞ (1 + X 1/p n+1 ) p n = lim n→∞ (1 + X 1/p n ) p n-1 . . . = . . . T 1/p i = lim n→∞ (1 + X 1/p n+i ) p n = lim n→∞ (1 + X 1/p n ) p n-i . . . = . . .
The above is represented more graphically in (5.11).

A more graphic representation of p adic approximation is given below. Each row gives successive terms approximating T 1/p i , for example the rst row gives the approximations for T . The gray lines represent pth power roots of the approximations. The rst column is the tuple in

F p [p 1/p ∞ ][X 1/p ∞ ] and the last column is the lift in Z p [p 1/p ∞ ] X 1/p ∞ .
(5.11)

(1 + X) (1 + X 1/p ) p (1 + X 1/p 2 ) p 2 (1 + X 1/p 3 ) p 3 • • • lim n→∞ (1 + X 1/p n ) p n = T (1 + X 1/p ) (1 + X 1/p 2 ) p (1 + X 1/p 3 ) p 2 (1 + X 1/p 4 ) p 3 • • • lim n→∞ (1 + X 1/p n+1 ) p n = T 1/p (1 + X 1/p 2 ) (1 + X 1/p 3 ) p (1 + X 1/p 4 ) p 2 (1 + X 1/p 5 ) p 3 • • • lim n→∞ (1 + X 1/p n+2 ) p n = T 1/p 2 . . . . . . . . . . . . • • • . . . (1 + X 1/p i ) (1 + X 1/p i+1 ) p (1 + X 1/p i+2 ) p 2 (1 + X 1/p i+3 ) p 3 • • • lim n→∞ (1 + X 1/p n+i ) p n = T 1/p 2 . . . . . . . . . . . . • • • . . .

Finite Field Equivalence

Notice that change of varible p → s gives the following isomorphism (6.1)

F p [p 1/d ∞ ] = F p [p 1/d ∞ ] p = F p [s 1/d ∞ ] s
Let E be the category with one object

F p [s 1/d ∞ ][X 1/d ∞ ]
and the morphisms are compatible evaluation maps. Let F be the category with one object

(F p [s 1/d ∞ ]/s)[X 1/d ∞ ]
and the morphisms are compatible evaluation maps. Let G be the mod s map G : E → F. Lemma 6.1. Let E, F, G be dened as above. Then G gives an equivalence of categories.

Proof. The equivalence follows from the fact that G satises the following.

Essential Surjectivity The functor mod s maps the object of E to F.

G is surjective Every morphism in category F can be lifted to E as such.

G is injective The injectivity follows from the fact that the kernel of modulo s map is generated by s i , i ∈ Z >0 (and of course zero), and for any

X 1/d j → s i , i ∈ Z >0 , there is X 1/d i+j → s i/d i a non zero element of Mor((F p [s 1/d ∞ ]/s)[X 1/d ∞ ], (F p [s 1/d ∞ ]/s)[X 1/d ∞ ]).
Thus, the only element in the ideal sF p [s 1/d ∞ ] which maps to zero is zero under the evaluation map.

Remark 6.2. Notice that perfection causes no problems here, because the underlying elds in both the categories have char p.

Field Equivalence

In this section p d.

Consider the evalaution maps from

Q p (p 1/d ∞ )[X 1/d ∞ ] → Q p (p 1/d ∞ ) where X → a/b ∈ Q p (p 1/d ∞ ). The fraction a/b can be considered as a tuple (a, b) ∈ (Z[p 1/d ∞ ], Z[p 1/d ∞ ]\{0}).
Similarly, consider evaluation maps

F p (s 1/d ∞ )[X 1/d ∞ ] → F p (s 1/d ∞ ) where X → a/b ∈ F p (s 1/d ∞ ). The fraction a/b can be considered as a tuple (a, b) ∈ (F[s 1/d ∞ ], F[s 1/d ∞ ]\{0}).
But there is one to one correspondence below.

(7.1)

Z p [p 1/d ∞ ][X 1/d ∞ ] × Z p [p 1/d ∞ ][Y 1/d ∞ ] F p [s 1/d ∞ ][X 1/d ∞ ] × F p [s 1/d ∞ ][Y 1/d ∞ ] (X, Y) → Z p [p 1/d ∞ ] × Z p [p 1/d ∞ ] (X, Y) → F p [s 1/d ∞ ] × F p [s 1/d ∞ ]
The above can be reinterpreted in terms of one to one correspondence in elds and their evaluation maps.

(7.2)

Q p (p 1/d ∞ )[X 1/d ∞ ] → Q p (p 1/d ∞ ) X → a/b ∈ Q p (p 1/d ∞ ) F p (s 1/d ∞ )[X 1/d ∞ ] → F p (s 1/d ∞ ) X → a/b ∈ F p (s 1/d ∞ )
8 Ideal correspondence

Let a be an ideal of ring R, then each ideal of the ring R/a is of the form b/a where b ⊇ a and b is unique, see [Sharp et al., 2000, pp 31]. In other words, each ideal of R/a can be lifted uniquely to an ideal of ring R which contains a. This fact will be used in the next lemma.

Lemma 8.1. Each ideal of

Z p [p 1/d ∞ ][X 1/d ∞ ] containing p corresponds uniquely to an ideal of the ring F p [s 1/d ∞ ][X 1/d ∞ ] containing s.
Proof. The mod p mapping gives one to one correspondence between ideals of

Z p [p 1/d ∞ ][X 1/d ∞ ]
containing p and the ideals of

F p [p 1/d ∞ ][X 1/d ∞ ].
Similarly, there is one to one correspondence between ideals of

F p [s 1/d ∞ ][X 1/d ∞ ] containing s and ideals of (F p [s 1/d ∞ ]/s)[X 1/d ∞ ].
Since, the ring

(F p [s 1/d ∞ ]/s)[X 1/d ∞ ] is isomorphic to the ring F p [p 1/d ∞ ][X 1/d ∞ ], the result holds. (8.1) Z p [p 1/d ∞ ][X 1/d ∞ ] F p [s 1/d ∞ ][X 1/d ∞ ]
ideals containing p ←→ ideals containing s

The correspondence is obtained as follows. Let a be an ideal of

Z p [p 1/d ∞ ][X 1/d ∞ ] con- taining p, and b an ideal containing s in F p [s 1/d ∞ ][X 1/d ∞ ],
then they are in one to one correspondence if (8.2) a mod p = b mod s replace s with p These ideals lift back to their respective rings as a + p and b + s .

Topologically, for an ideal I ⊂ R there is a homeomorphism Spec(R/I) and V(I) in R. Hence, the above results lead to a homeomorphism between V(p) and V(s) for the two rings.

The following version of the above lemma would be useful later.

Uniformizers and Ideals

In this section I = ∪ i p 1/d i and J = ∪ i s 1/d i where i ∈ Z 0 . The uniformizers are p and s for the rings Z p [p 1/d ∞ ] and F p [s 1/d ∞ ] respectively. These uniformizers are invertible in the corresponding eld of fractions Q p (p 1/d ∞ ) and F p (s 1/d ∞ ) and thus cannot be in an ideal in the corresponding algebras. Hence, the uniformizers need to be isolated. 1. The maximal ideal m in the ring

Q p (p 1/d ∞ )[X 1/d ∞ ] corresponds to the unique maximal ideal (m c , I) in the ring Z p [p 1/d ∞ ][X 1/d ∞ ], where m c is contraction of the ideal m to the ring Z p [p 1/p ∞ ][X 1/d ∞ ].

The maximal ideal m in the ring

F p (s 1/d ∞ )[X 1/d ∞ ] corresponds to the unique maximal ideal (m c , I) in the ring F p [s 1/d ∞ ][X 1/d ∞ ],
where m c is contraction of the ideal m to the ring

F p [s 1/d ∞ ][X 1/d ∞ ].
Proof. 1. Consider the maximal ideal m in the ring

Q p (p 1/p ∞ )[X 1/d ∞ ], then m ∩ I = ∅ (it does not contain invertible element). Contract it to Z p [p 1/p ∞ ][X 1/d ∞ ]
and denote it again by m, and observe that m (m, I). The ideal (m, I) is maximal in

Z p [p 1/p ∞ ][X 1/d ∞ ].
If not, there is an ideal n such that (m, I) n. The generators of the ideal n can be isolated as I and n\I, the latter being denoted by n . Hence, n = (n , I) (m, I) or n m, and thus n would generate a bigger ideal than m in Q p (p 1/p ∞ )[X 1/d ∞ ] contradicting the maximality of m.

Same as above.

Proposition 8.4. The maximal ideals of the rings Q p (p 1/p ∞ )[X 1/d ∞ ] and F p (s 1/d ∞ )[X 1/d ∞ ] are in one to one correspondence.

Proof. Let m be a maximal ideal of the ring Q p (p 1/d ∞ )[X 1/d ∞ ], then it cannot contain an invertible element, or m ∩ I = ∅. The ideal can be contracted back to the ring Z p [p 1/p ∞ ][X 1/d ∞ ] and is again denoted by m, it is now contained in (m, I) a maximal ideal with the property that m ∩ I = ∅. Applying the mod I map to the ideal (m, I) gives the maximal ideal m in F p [X 1/d ∞ ] which in turn translates to the maximal ideal ( m, J) in the ring

F p [s 1/d ∞ ][X 1/d ∞ ] such that m ∩ J = ∅.
This ideal again extends to a maximal ideal in

F p (s 1/d ∞ )[X 1/d ∞ ] again denoted as m.
Inversely, let n be an ideal of F p (s 1/d ∞ )[X 1/d ∞ ], then it cannot contain an invertible element, or n ∩ J = ∅. Pulling the ideal back to the ring F p [s 1/d ∞ ][X 1/d ∞ ] and denoting as n, it is now contained in (n, J) a maximal ideal with the property that n ∩ J = ∅. Applying the mod J map to the ideal (n, J) gives the maximal ideal n in F p [X 1/d ∞ ] which in turn translates to the maximal ideal ( n, I) in the ring

F p [p 1/d ∞ ][X 1/d ∞ ] such that n ∩ I = ∅.
This ideal again lifts to a maximal ideal (n , J) in the ring Z p [p 1/d ∞ ][X 1/d ∞ ] such that n mod I = n and the ideal n can be lifted as a maximal ideal in

Q p (p 1/d ∞ )[X 1/d ∞ ].