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Abstract—Sparse signal reconstruction is performed by mini-
mizing the sum of a least-squares fit regularized with a piecewise
rational approximation of `0. We show the benefit of an oracle
that yields the sign of the signal when using a recent methodol-
ogy for global polynomial or semi-algebraic minimization. The
computational time and memory cost are both decreased.

I. INTRODUCTION

With the exponential growth of numerical data acquisition
and storage requirements, compressive sensing has become
a fundamental tool. The standard approach to promote sparse
solutions consists in adding an `0 penalization to a data-fit cost
function [1]. Since this yields NP hard optimization problems,
surrogates for `0 that are continuous, exact and that do not add
undesirable bias were proposed [2]–[7]. Nevertheless, they are
non convex and lead to intricate optimization problems which
can be solved only approximately [5], [8]–[13]. Fortunately,
many criteria are piecewise rational and the problem can then
be reformulated in terms of polynomial optimization problems
before being solved exactly following a recent approach [14]–
[16]. In this work, we explore the advantage provided by an
a priori knowledge on the sign of the estimated signal.

II. PROBLEM MODELLING AND METHODOLOGY

We consider the reconstruction of an unknown sparse
discrete-time signal x ∈ RT from observations y ∈ RT given
by the following linear degradation model y = Hx+w, where
w ∈ RT is a zero-mean white Gaussian noise and H ∈ RT×T
is a Toeplitz band matrix associated to a convolution filter
of length L. We estimate x as a minimizer of the following
regularized criterion

(∀x ∈ RT ) J (x) =
1

2
‖y −Hx‖2 +

T∑
t=1

Ψλ(|xt|) , (1)

where Ψλ is a piecewise rational regularization that promotes
sparsity and depends on a parameter λ ∈]0,+∞[. Many
continuous exact relaxations of `0 can be expressed in the
above form [2]–[7]. In particular, the penalization is generally
an even separable function which depends on |xt| only and
can be written Ψλ(|xt|). The minimization of (1) is first
reformulated as a polynomial optimization problem and then
solved using Lasserre’s method [16]. Our methodology is
applicable to any piecewise rational function. Since x is a
real-valued signal, in our previous work, we used additional
variables u ∈ RT such that u2 = |x|2 , u ≥ 0 as a substitute
for the absolute value in Ψλ.

Lasserre’s method constructs a hierarchy of convex SDP
problems indexed by the relaxation order k. Solving each SDP
problem yields both a lower bound J ∗k on the criterion J
and a minimizer x̂ [17]. (J ∗k )k∈N is an increasing convergent
sequence whose limit is the true optimal value of (1) [14].

III. USE OF AN ORACLE ON THE SIGN OF x

For real-valued signals, convergence is observed for orders
k for which building and solving the corresponding SDP
problems is highly demanding in terms of computation and
memory storage. However, when x is a positive signal, we
observe [16] convergence at a lower order k. This thus sug-
gests a method yielding similar results for real-valued signals
using an oracle. Instead of (1), we minimize

(∀v ∈ RT+) J̃ (v) =
1

2

∥∥∥y − H̃v
∥∥∥2 +

T∑
t=1

Ψλ(vt) ,

where v ∈ RT+, H̃ = HDiag(ε), ε ∈ {−1, 1}T is the
sign vector of x provided by the oracle, and Diag(ε) is the
scalar matrix with diagonal elements ε. We build our oracle
by solving (1) with lasso [18], i.e. Ψλ = λ Id. The availability
of an oracle allows us to restrict the minimization of (1) to
positive signals thanks to the new convolution matrix H̃. An
exact solution is thus retrieved by solving a SDP problem
of fair dimension. Moreover, the use of an oracle decreases
significantly the computation time since additional variables
u are no longer required.

IV. NUMERICAL SIMULATIONS

We generate 100 Monte-Carlo realizations of the signal
x with size T = 50 and 100 and 10% non-zero ele-
ments drawn randomly from the uniform distribution on
[−1,−2/3] ∪ [2/3, 1]. The length L of the filter is set to
3. We use the penalization SCAD [5]. We solve the SDP
corresponding to relaxation orders 2, 3, and 4.

Figure 1 shows the value of the criterion at the minimizer
and the lower bound for different cases. When the oracle is
available, we observe that the convergence is reached at k = 3
since J̃ ∗k = J̃ (x̂our oracle). Conversely, when no information
on the sign of x is available, there is still a gap between J ∗k
and J (x̂no oracle) at k = 4. Figure 2 shows the quality of our
oracle relative to the original criterion (1). Table I shows the
corresponding average computational times. Using our oracle
secures convergence for a lower relaxation order and thus leads
to a significant decrease of computational time. Table II shows
the relative error for the different estimated signals x̂.
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(a) With our oracle: in red J̃ (x̂our oracle), in blue J̃ ∗k
for k = 2 (top), 3 (bottom)
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(b) Without oracle: in red J (x̂no oracle), in blue J ∗k
for k = 2 (top), 3 (middle), and 4 (bottom)

Fig. 1. Comparison between the lower bound and the optimal value of the
criterion for 100 tests with T = 50. The superposition of the two curves
indicates the convergence of Lasserre’s hierarchy. For the sake of clarity, the
cases are ordered by increasing value of the lower bound.
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Fig. 2. Value of the original criterion J (x̂) for the different estimates x̂
on 100 tests with T = 50 and k = 3. For the sake of clarity, the cases are
ordered by increasing value of J ∗3 .
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Fig. 3. Comparison of the different estimates of x (T = 100 and k = 3)

TABLE I
AVERAGE COMPUTATIONAL TIMES

T = 50 T = 100

Our oracle No oracle Our oracle No oracle

k = 2 9s 9s 15s 16s
k = 3 19s 25s 46s 1min
k = 4 15min53s 27min38s 2h11s 3h18min43s

TABLE II
AVERAGE RELATIVE RECONSTRUCTION ERROR

‖x̂−x‖
‖x‖ No oracle Our oracle Perfect oracle Lasso

k = 2 0.765 0.694 0.545 0.809
k = 3 0.710 0.710 0.564
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