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ABSTRACT

For dealing with sparse models, a large number of continuous
approximations of the `0 penalization have been proposed.
However, the most accurate ones lead to non-convex opti-
mization problems. In this paper, by observing that many
such approximations are piecewise rational functions, we
show that the original optimization problem can be recast as a
multivariate polynomial problem. The latter is then globally
solved by using recent optimization methods which consist
of building a hierarchy of convex problems. Finally, exper-
imental results illustrate that our method always provides a
global optimum of the initial problem for standard `0 approx-
imations. This is in contrast with existing local algorithms
whose results depend on the initialization.

Index Terms— polynomial and rational optimization,
global optimization, `0 penalization, sparse modeling

1. INTRODUCTION

When rich statistical or variational models are employed, it
is often necessary to select the most economical one (i.e. in-
volving the fewest parameters) so as to avoid overfitting. In
this context, compressive sensing has become a key solution
to represent data in a sparse form in order to compress them
efficiently and extract the salient information.

To promote sparse solutions and estimators, a common
approach consists of adding an `0 penalization to a data-fit
cost function [1]. Nevertheless, this is known to lead to NP
hard optimization problems. Consequently, several surrogates
to the `0 penalization have been suggested, the simplest one
being the `1 norm. The latter has the enjoyable property of
being convex, which simplifies the optimization task [2, 3],
but it also strongly penalizes high values of the variables and
thus introduces a bias in the solutions. Therefore further re-
laxations of `0 function have been investigated (see [4]). A
major drawback is that those relaxations are non-convex and
result in optimization problems which are difficult to solve
globally. Most of the current available algorithms are lim-
ited in the sense that they only converge to local solutions
due to the non-convexity of the cost function and they are

therefore highly dependent on their initialization. The itera-
tive hard thresholding [5] is a well-known example of such an
algorithm that provides a local minimum for an `0 penalized
cost function. The work in [6] suggests stronger optimality
conditions to provide local minima close to the global one.
Non-convex approximations to the `0 function that maintain
the convexity of the overall cost function have also been pro-
posed [7] to tackle this issue but they require specific assump-
tions to be met.

In this work, we propose a method to find the global mini-
mum of a wide class of criteria involving non-convex approx-
imations to `0 function [4, 8–12]. We show that such crite-
ria are leading to optimization problems which are actually
piecewise rational. We use the framework of Lasserre’s hi-
erarchy [13] which allows polynomial optimization problems
to be globally solved. This framework has been extended to
rational optimization problems in [14, 15]. Here, we further
extend the method to find the global extrema of a piecewise
rational optimization problem. We compare the obtained so-
lutions with the ones provided by classical algorithms in the
literature [4, 16–18]. In contrast with existing methods, we
are able to find and certify the global optimum.

Our paper is organized as follows: Section 2 introduces
the problem and gives examples of widely used approxima-
tions to `0 function. Section 3 explains how to recast a piece-
wise rational problem into a rational problem and how to ap-
ply it on our optimization problem. Simulation results are
presented in Section 4. Finally, some concluding remarks are
drawn in Section 5. In the following, the characteristic func-
tion of a given set X is denoted by 1{·∈X} with 1{x∈X} = 1
if x ∈ X and 0 otherwise.

2. PROBLEM STATEMENT

We tackle the minimization problem of the following com-
posite criterion J :

(∀x ∈ RT ) J (x) = fy(x) +Rλ(x) .

The optimization variable is thus a real-valued vector of di-
mension T , fy is a fitting function depending on a vector of
observations y and assumed to be rational. Rλ is a regu-
larization that promotes sparsity and depends on a parameter



λ ∈]0,+∞[. Ideally, we would like Rλ to be the sparsity
measure `0 but, in order to derive computationally efficient
optimization techniques, a suitable separable approximation
is substituted for it:

Rλ(x) =

T∑
t=1

Ψλ(xt) .

The function Ψλ : R → R then requires the following three
properties [4]: unbiasedness for large values, sparsity to re-
duce the complexity of the model, and continuity to ensure the
stability of the model. Those conditions lead to non-convex
functions. Indeed, the unbiasedness condition implies that the
penalization is constant for large values of the variable and the
sparsity and continuity conditions lead to a null value at zero.
Below and displayed in Figure 1, we give examples of some
of the most famous penalizations that satisfy the above three
properties.

• Capped `p [8, 10, 11]:

(∀p ∈ N\{0}) Ψλ(x) = |x|p 1{|x|≤λ}+λp1{|x|>λ} .

• Smoothly clipped absolute deviation (SCAD) [4]:

Ψλ(x) = λ |x|1{|x|≤λ}

− λ2 − 2γλ |x|+ x2

2(γ − 1)
1{λ<|x|≤γλ}

+
(γ + 1)λ2

2
1{|x|>γλ} ,

where γ is a parameter taking values in ]2,+∞[.

• Minimax concave penalty (MCP) [9]:

Ψλ(x) =

(
λ |x| − x2

2γ

)
1{|x|≤γλ} +

γλ2

2
1{|x|>γλ} ,

where γ ∈]0,+∞[.

• Continuous exact `0 (CEL0) [12]:

Ψλ(x) = λ− γ2

2

(
|x| −

√
2λ

γ

)2

1{
|x|≤

√
2λ
γ

} ,
where γ ∈]0,+∞[.

Note that the lower the parameter γ, the closer the approx-
imation to `0 function but the stronger also the non-convexity.
Since those functions are non-convex, the existing first or
second-order optimization algorithms are only guaranteed to
deliver a local minimizer of the criterion J [4, 9]. However,
these methods do not exploit the fact that the previous penal-
izations are all piecewise polynomial functions. We show in
Section 3 that the minimization of a piecewise rational func-
tion like J can reformulated as the minimization of a poly-
nomial function under polynomial constraints. Then, the lat-
ter is relaxed into a hierarchy of semi-definite programming
(SDP) problems that yields the global minimizers of the orig-
inal function.
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Fig. 1. Examples of continuous relaxation of `0 penalization
(λ = 1, γSCAD = 2.5, γMCP = 2, γCEL0 = 1).

3. RATIONAL FORMULATION

3.1. Reformulation of the considered class of penalties

Let us first show how to recast into a constrained rational opti-
mization problem, the minimization of any piecewise rational
function. Assume that this function reads

(∀x ∈ R) Ψ(x) =

I∑
i=1

gi(x)1{σi−1≤x<σi} , (1)

where (gi)1≤i≤I are rational functions, I is a nonzero integer
and (σi)0≤i≤I is an increasing sequence of real values. The
function Ψ is our basic block for building the class of piece-
wise rational approximation to `0 function. All the functions
discussed in the previous section can be rewritten under this
form.

We introduce the binary variables z(i) such that

(∀i ∈ J0, IK) z(i) = 1{σi≤x} .

Note that we can possibly set σ0 = −∞, z(0) = 1 and σI =
+∞, z(I) = 0 to define Ψ on the whole real line R. From the
definition of z(i), we deduce that

1{σi−1≤x<σi} = z(i−1)(1− z(i)) . (2)

Finally, the constraint z(i) = 1{σi≤x} is equivalent to two
polynomial constraints

z(i) = 1{σi≤x} ⇔

{
(z(i))

2 − z(i) = 0(
z(i) − 0.5

)
(x− σi) ≥ 0 .

(3)

Indeed, the polynomial equality constraint enforces z(i)

to be a binary variable while the polynomial inequality con-
straint ensures that it takes the same values as 1{σi≤x}.
Therefore, by combining (1)-(3), we obtain the minimization
of a rational function depending on x and

(
z(i)
)
0≤i≤I under

polynomial constraints. In turn, it has been shown in [14, 15]
how rational problems can be reduced to polynomial ones.



3.2. Reformulation of our optimization problem

By applying the previous reasoning to penalization Rλ, we
reformulate the original minimization of J . By introducing
the binary variables z = (z

(i)
t )0≤i≤I,0≤t≤T , the optimization

problem becomes

minimize
x,z

fy(x) +

T∑
t=1

I∑
i=1

gi(xt)z
(i−1)
t (1− z(i)t )

s.t. (∀(i, t) ∈ J0, IK× J1, T K)

(z
(i)
t )

2
− z(i)t = 0(

z
(i)
t − 0.5

)
(xt − σi+1) ≥ 0 .

(4)

Problem (4) is a rational optimization problem since fy
and (gi)1≤i≤I are rational by assumption and the constraints
are polynomial. To find the global minimizers, we can thus
exploit the problem structure and use the technique detailed
in [15] which is based on Lasserre’s method. It consists in
relaxing a polynomial problem into a hierarchy of convex
SDP problems indexed by an integer k corresponding to the
relaxation order. Solving each SDP problem yields a lower
bound J ∗k on the optimal value J ∗ of the criterion J . Fur-
thermore, the higher the order k, the tighter the bound J ∗k
but the higher also the dimensions of the SDP problem. It
has been proved [13] that (J ∗k )k∈N is an increasing conver-
gent sequence whose limit is J ∗. Finally, the solution x̂ of
the polynomial problem is extracted from the solution of the
SDP problem [19] and we can theoretically certify that x̂ is a
global minimizer by comparing J (x̂) to J ∗k .

3.3. Examples

To clarify the previous reformulation, we demonstrate it on
the regularizations given in Section 2. Note that since the con-
sidered penalizations are even, we can use the resulting sym-
metry to decrease the number of variables and hence reduce
the computations. Absolute values can be handled with an
additional variable constrained to be nonnegative and whose
square is equal to the square of the absolute value of the orig-
inal variable [15]. Since SCAD has three pieces, it requires to
introduce variables z(1)t and z(2)t so leading to

minimize
x,z

fy(x) +

T∑
t=1

(1− z(1)t )λ |xt|

− z(1)t (1− z(2)t )
λ2 − 2γλ |xt|+ x2t

2(γ − 1)

+ z
(2)
t

(γ + 1)λ2

2

s.t. (∀(i, t) ∈ {1, 2} × J1, T K) (z
(i)
t )

2
− z(i)t = 0

(∀t ∈ J1, T K)
(
z
(1)
t − 0.5

)
(|xt| − λ) ≥ 0

(∀t ∈ J1, T K)
(
z
(2)
t − 0.5

)
(|xt| − γλ) ≥ 0 .

A similar approach applies to Capped `p, MCP, and
CEL0; the details are omitted for conciseness.

4. NUMERICAL SIMULATIONS

4.1. Simulation scenario

We consider the following degradation model:

y = Hx + w ,

where w is a zero-mean white Gaussian noise and H is a
Toeplitz band matrix corresponding to a Gaussian convolution
filter. For each test, coefficients of the vector x were randomly
drawn according to a uniform distribution on [0.6, 1]. We set
the size T of the vectors to 200. We defined the ideal criterion
J`0 as

J`0(x) =
1

2
‖y −Hx‖2 + λ`0(x) ,

where λ is set to 0.1.
Our goal is to approximate this criterion using Capped

`1, SCAD, MCP, and CEL0 instead of `0 penalization. For
each regularization, we compared out method to Forward-
Backward (FB), Iteratively Reweighted `1 (IRL1) [16,17] and
Coordinate Descent (CD) [18] algorithms. IRL1 minimizes
iteratively the fitting function penalized with a weighted `1
norm whose weights are computed by linearizing the non-
convex penalization function. CD solves a sequence of single-
dimensional problems by fixing all the variables except one in
the original problem.

We used GloptiPoly [20] to relax rational problems
into SDP problems which are then solved with the solver
SDPT3 [21]. The relaxation was performed at order k equal
to 2 or 3. The parameter γ was set to 0.5 for MCP and 2.1 for
SCAD. Following [12], we used the norm of the t-th column
of H as parameter γ for the input variable xt in CEL0.

4.2. Local methods and initial points

We first show that FB, IRL1 and CD can get trapped in local
minima whereas our method is guaranteed to provide a global
minimizer. We ran the algorithms using different initial points
xinit: a random point, zero, and the true value x (which is not
available in practice). Notice that our method does not need
any initial point. Table 1 compares the criterion value at the
solutions returned by the different algorithms.

We observe that all the local algorithms have different
estimated optimal criterion values and thus return different
minimizers depending on the starting point xinit. Further-
more, it can be observed that local optimization algorithms
often are not reliable. Hence for Capped `1, CD yields a bet-
ter minimizer than IRL1 when using a random starting point,
whilst the converse holds when 0 is the starting point. With-
out a global method, we cannot assess the quality of the ob-
tained solution. Interestingly, our method provides the lowest



criterion value; the next section confirms the validity of the
method.

Table 1. Optimal criterion value depending on initial point.

Alg.
Ψλ Capped `1 SCAD MCP CEL0

Proposed (k = 3) 3.725 3.506 2.749 4.425
Random xinit

FB 4.372 3.759 3.194 4.638
IRL1 7.052 4.632 3.381 6.926
CD 4.099 3.927 3.520 4.638

xinit = 0
FB 4.208 3.763 3.149 4.638

IRL1 4.839 4.566 3.013 6.879
CD 5.455 4.371 3.717 5.316

xinit = x
FB 3.867 3.639 2.871 4.637

IRL1 4.766 4.567 2.914 6.874
CD 4.093 3.639 3.015 5.365

4.3. Global vs local algorithms

We now compare the different values of the criterion at the so-
lutions returned by each algorithm as well as the lower bound
J ∗k . Figure 2 shows the values of the criterion for the SCAD
regularization. We ran 200 tests on randomly generated data
but, for the sake of clarity, only 100 are plotted. The results
are ordered according to the value of the criterion at the min-
imizer x̂ obtained with our approach. We observe that our
method always yields a better minimizer of the criterion while
the other methods are sensitive to local minimizers.

Moreover, we compare the estimated optimal value of the
criterion J (x̂) given by our method with the lower bounds
J ∗2 and J ∗3 . Table 2 shows statistics over the 200 tests about
the difference between these values. Up to a numerical preci-
sion of 10−4, Ĵ ∗ reaches the lower bound with a relaxation
order of 2 for Capped `1 and 3 for the three other regulariza-
tions. The global optimality is therefore theoretically certified
in these cases. It is remarkable that Lasserre’s hierarchy con-
verges for a low value of k.

Table 2. Statistics on J (x̂)− J ∗k for positive signals.

(200 runs) Capped `1 SCAD MCP CEL0

J (x̂)− J ∗2
Avg 2.0e−4 3.4e−2 5.0e−2 2.3e−3
Med 2.0e−4 3.3e−2 5.0e−2 9.0e−4

J (x̂)− J ∗3
Avg 2.0e−4 4.0e−5 1.0e−4 2.0e−4
Med 2.0e−4 <1e−5 1.0e−4 <1e−5
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Fig. 2. Optimal criterion values with SCAD regularization.

4.4. Case of real-valued signals

We provide additional simulation results concerning real-
valued signals x. In the case of positive signals, we could
naturally drop the absolute values since |x| = x. In contrast,
the case of real-valued signals is more intricate due to the
introduction of additional variables to handle this absolute
value. As a consequence, the convergence of Lasserre’s hier-
archy does not occur as fast as in the positive case. However,
we can use the solution obtained with an order of relaxation
k = 3 as an initial point of a local method and improve both
solutions as pointed out by Table 3. The latter shows the
statistics on J (x̂) for FB and FB initialized with Lasserre’s
solution (FBwL) using the SCAD and MCP regularizations.

Table 3. Statistics on J (x̂) for real-valued signals.

(200 runs) FB FBwL

SCAD
Average 4.317 3.977
Median 4.301 3.969

MCP
Average 3.936 3.426
Median 3.920 3.419

5. CONCLUSION

We study the global optimization of cost functions penalized
by classic non-convex continuous approximations to `0 reg-
ularization. By showing that the original optimization prob-
lem can be reformulated as a polynomial problem, we obtain
sparse solutions through convex relaxation techniques. Fi-
nally our simulation results illustrate that the main benefit of
our approach is to secure a global optimum of the criterion in
contrast with state-of-the-art local methods.
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tiPoly 3: moments, optimization and semidefinite pro-
gramming,” Optim. Methods Softw., vol. 24, no. 4-5, pp.
761–779, Oct. 2009.

[21] K. C. Toh, M. J. Todd, and R. H. Tütüncü, “SDPT3 — a
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