
HAL Id: hal-02196805
https://hal.science/hal-02196805v1

Submitted on 29 Jul 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

RACOON++: A Semi-Automatic Framework for the
Selfishness-Aware Design of Cooperative Systems

Guido Lena Cota, Sonia Ben Mokhtar, Gabriele Gianini, Ernesto Damiani,
Julia L. Lawall, Gilles Muller, Lionel Brunie

To cite this version:
Guido Lena Cota, Sonia Ben Mokhtar, Gabriele Gianini, Ernesto Damiani, Julia L. Lawall, et
al.. RACOON++: A Semi-Automatic Framework for the Selfishness-Aware Design of Coopera-
tive Systems. IEEE Transactions on Dependable and Secure Computing, 2019, 16 (4), pp.635-650.
�10.1109/TDSC.2017.2706286�. �hal-02196805�

https://hal.science/hal-02196805v1
https://hal.archives-ouvertes.fr


IEE
E P

ro
of

1 RACOON++: A Semi-Automatic Framework
2 for the Selfishness-Aware Design
3 of Cooperative Systems
4 Guido Lena Cota, Sonia Ben Mokhtar, Gabriele Gianini, Ernesto Damiani,

5 Julia Lawall, Gilles Muller, and Lionel Brunie

6 Abstract—A challenge in designing cooperative distributed systems is to develop feasible and cost-effective mechanisms to foster

7 cooperation among selfish nodes, i.e., nodes that strategically deviate from the intended specification to increase their individual utility.

8 Finding a satisfactory solution to this challenge may be complicated by the intrinsic characteristics of each system, as well as by the

9 particular objectives set by the system designer. Our previous work addressed this challenge by proposing RACOON, a general and

10 semi-automatic framework for designing selfishness-resilient cooperative systems. RACOON relies on classical game theory and a

11 custom built simulator to predict the impact of a fixed set of selfish behaviours on the designer’s objectives. In this paper, we present

12 RACOON++, which extends the previous framework with a declarative model for defining the utility function and the static behaviour of

13 selfish nodes, along with a new model for reasoning on the dynamic interactions of nodes, based on evolutionary game theory. We

14 illustrate the benefits of using RACOON++ by designing three cooperative systems: a peer-to-peer live streaming system, a load

15 balancing protocol, and an anonymous communication system. Extensive experimental results using the state-of-the-art PeerSim

16 simulator verify that the systems designed using RACOON++ achieve both selfishness-resilience and high performance.

Ç

17 1 INTRODUCTION

18 IN recent years, the importance of cooperative systems
19 such as peer-to-peer (P2P) networks and collaborative
20 computing has rapidly grown, driven by multiple factors.
21 First, the ever-increasing demand for video content [1]
22 poses serious challenges to the operational and economic
23 sustainability of traditional content delivery networks [2],
24 paving the way for more scalable, robust and cost-effective
25 P2P-assisted solutions [3]. Second, cooperative systems are
26 the key enablers of new and emerging technologies, includ-
27 ing the blockchain ecosystem [4] and the Internet of
28 Things [5]. Finally, the decentralised nature of cooperative
29 systems can address the increasing privacy concerns of their
30 users [6], by avoiding control and potential misuse of sensi-
31 tive data by a centralised server.
32 Crucial to the success of cooperative systems is that
33 nodes are willing to collaborate with each other by sharing
34 part of their resources—e.g., network bandwidth, storage

35space, CPU time. However, in practice [7], [8], [9], real sys-
36tems often suffer from selfish nodes that strategically with-
37draw from cooperation to satisfy their individual interests
38at the expense of the system reliability and efficiency. In
39fact, several studies have shown that selfishness in coopera-
40tive systems results in substantial degradation of perfor-
41mance, unpredictable or limited availability of resources,
42and may even lead to a complete disruption of the system
43functionalities [13], [23], [25]. For example, Guerraoui
44et al. [14] observed experimentally that if 25 percent of
45nodes in a P2P live streaming system download a given
46video file without sharing it with other nodes, then half of
47the remaining nodes are not able to view a clear stream.
48Different solutions have been proposed to deal with self-
49ishness in cooperative systems [22], [23], [24], [25], [26], [27],
50[28]. Most of these solutions rely on Game Theory (GT), a
51theoretical framework to model and study selfish behav-
52iours [31]. The typical approach to design selfishness-
53resilient systems using GT requires first creating an analyti-
54cal model of the system (the game) and then proving mathe-
55matically that the cooperative behaviour is the best strategy
56for selfish nodes (a Nash Equilibrium), with respect to a
57known utility function. However, carrying out this process
58is complex, error-prone, and time-consuming [30].
59Detecting and punishing selfish behaviours at runtime is
60an alternative, more practical approach. Diarra et al. [13]
61showed that making nodes accountable for their actions can
62be a strong incentive for selfish nodes to cooperate. In an
63accountable system, each node maintains a secure log to
64record its interactions with other nodes. Also, each node is
65associated with a set of witness nodes that periodically check
66whether the log entries correspond to a correct execution of
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67 the system. If any deviation is detected, then the witnesses
68 build a proof of misbehaviour that can be verified by any
69 correct node, and punishment is inflicted on the misbehav-
70 ing one. Although accountability mechanisms have been
71 successfully applied to cooperative systems [12], [13], [14],
72 the additional work required at each node (e.g., crypto-
73 graphic operations, log auditing) can significantly increase
74 computation, bandwidth, and storage requirements. More-
75 over, the fine tuning of these mechanisms for building a
76 selfishness-resilient and cost-effective cooperative system
77 could be a challenging task [19].
78 Configuring accountability mechanisms requires that a
79 system designer select values for a number of parameters
80 (e.g., number of witnesses, audit frequency) that directly
81 affect the system performance (e.g., bandwidth usage,
82 delay). In the literature [12], [13], [14], no indication is pro-
83 vided for the setting of these parameters, leaving entirely to
84 designers to find a configuration that achieves the desired
85 level of resilience to selfish behaviours while imposing min-
86 imal overhead. Finding this critical trade-off involves the
87 systematic evaluation of a large number of experiments, to
88 investigate the impact of the value of each parameter on the
89 system performance. Moreover, such experiments require
90 the ability to create and inject selfish behaviours, which is
91 not supported by state-of-the-art experimental environ-
92 ments, such as Splay [41], NS-3 [39], and PeerSim [10].
93 To address the design challenges discussed above, our
94 previous work [19] proposed RACOON, a general frame-
95 work for designing efficient P2P systems resilient to selfish
96 nodes in a semi-automatic manner. To begin, the designer
97 provides the functional specification of the system (i.e.,
98 communication protocols) and a set of performance objec-
99 tives. RACOON uses this information to mostly automate

100 the following steps: (i) enforce practical mechanisms to fos-
101 ter cooperation (i.e., distributed accountability and reputa-
102 tion mechanisms), (ii) identify possible selfish deviations
103 from the functional specification; (iii) develop a behavioural
104 model of the system participants as a non-cooperative
105 game [31], to predict the strategic choices of selfish nodes;
106 and (iv) tune the accountability and reputation parameters
107 to meet the designer’s objectives, using GT-based simula-
108 tions. Each step is carried out by a distinct module of the
109 framework, which can be replaced or extended with a new
110 definition (e.g., different models for selfishness). RACOON
111 results in a complete design of the system, which includes
112 finely tuned mechanisms to meet selfishness-resilience and
113 performance objectives. This output serves as a reference to
114 developers for the eventual implementation of the system.
115 In this paper, we describe RACOON++, which extends the
116 previous version of our framework by addressing a number
117 of limitations and introducing new features. First, we provide
118 the designerswith a simple yet expressive specificationmodel
119 to define the utility function and the behaviour of selfish
120 nodes, which in RACOON were predefined and fixed for all
121 application scenarios. This model shapes the utility function
122 of a node by assigning costs and benefits to specific actions of
123 the communication protocols, and parametrises some aspects
124 of selfish behaviours (who deviates, from which action, with
125 what type of deviation). Second, we model the behaviour of
126 selfish nodes using Evolutionary Game Theory (EGT) [32]
127 instead of the classical GT used in RACOON. Using EGT, we

128can relax the assumption of perfect rationality of the nodes,
129and consider them as active learners who adjust their strategy
130over time in response to repeated observations of their own
131and others’ utilities. Such learning and adaptation processes
132better reflect with the computational and decisional capabili-
133ties of real nodes [28], [29]. Furthermore, as noted by Palomar
134et al. [27], an evolutionary approach is more appropriate for
135modelling the dynamic behaviour of cooperative systems.
136Third, we integrate the RACOON++ functionalities with the
137P2P simulator PeerSim [10]. To the best of our knowledge, the
138simulator we developed in RACOONwas the first tool able to
139dynamically simulate selfish strategic behaviours. However,
140like all custom built simulators, it had neither the maturity
141nor the acceptance of state-of-the-art tools like PeerSim [39].
142In summary, we present the following contributions:

143� Selfishness-aware design of cooperative systems. We
144define simple declarative models for specifying
145cooperative protocols as well as for describing
146nodes’ selfishness.
147� Automatic (evolutionary) game-theoretic reasoning. We
148define the system under design as an evolutionary
149game, in order to describe how successful behav-
150iours spread in a population of selfish individuals.
151We also provide an automatic methodology to gen-
152erate the game using the information contained in
153the declarative models. Finally, we extend the Peer-
154Sim simulator with the ability to conduct EGT analy-
155sis to simulate selfish behaviours.
156� Objective-oriented configuration. We propose an auto-
157matic configuration method for an accountability and
158reputation mechanism in a cooperative system,
159which canmeet the resilience and performance objec-
160tives set by a system designer in a reasonable time for
161a design-time activity (18minutes on average).
162� Generality, simplicity and performance. We assess the
163design effort and effectiveness of using RACOON++
164on three use cases: a P2P live streaming system [14], a
165P2P load balancing protocol [10], and an anonymous
166communication system based onOnion Routing [15].
167The rest of the paper is organised as follows. Section 2
168reviews the related work. Section 3 presents an overview of
169RACOON++, followed by a detailed description of its two
170phases: the design phase (Section 4) and the tuning phase
171(Section 5). Section 6 summarises the operation of the frame-
172work from the designer’s point of view. Section 7 presents a
173performance evaluation of RACOON++. Finally, the paper
174concludes in Section 8.

1752 RELATED WORK

176Game Theory is a mathematical framework to model and
177predict the interactions among selfish and strategic individu-
178als [31]. Much work on GT as a tool for system designers has
179been carried out in the context of content dissemination [24],
180[25], [26], [27], wireless and mobile networking [20], [21],
181cryptography, anonymity and privacy mechanisms [16],
182[17], [18], [23]. The objective of these works is to make coop-
183eration the best choice for all nodes, i.e., a Nash Equilibrium.
184Most of the GT solutions are not readily applicable to cooper-
185ative systems [30], mainly due to simplifying assumptions to
186make the model tractable, e.g., assuming that nodes have
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188 [25]. Evolutionary Game Theory (EGT) relaxes these
189 assumptions by considering nodes with limited rationality
190 that adapt their behaviours dynamically, by learning from
191 experience [32]. However, most applications of EGT to sys-
192 tem design are only suitable for toy systems [27], [28], [29],
193 because of the difficulty of modelling a complex system in a
194 formal way. RACOON++ provides means for transforming
195 models familiar to system designers (state machines) into
196 games, thus making the power of EGT reasoning accessible
197 to non-game theory experts.
198 Another common limitation of GT models is that they are
199 tailored to a specific system problem and are difficult to
200 adapt to a changing environment. A notable example is the
201 BAR Model for designing systems robust to selfish and Byz-
202 antine participants [22]. Besides the difficulties in the man-
203 ual design of a BAR-tolerant system [22], [23], [24], [25], the
204 resulting solution suffers from poor flexibility and main-
205 tainability. Every change to the system parameters requires
206 a full revision of the design, hindering the reuse of a suc-
207 cessful solution in other systems. On the contrary, the gen-
208 eral approach of RACOON++, as well as its application-
209 independent mechanisms to enforce cooperation, are reus-
210 able by construction. Furthermore, RACOON++ supports a
211 semi-automatic design flow that greatly facilitates the
212 refinement of system requirements and specification.
213 Yumerefendi and Chase [34] advocate accountability as a
214 viable solution for dealing with non-cooperative behaviours.
215 Distributed accountability mechanisms [12], [13], [14], nota-
216 bly FullReview [13], have been proven effective in systems
217 populated by selfish nodes, making them an ideal and gen-
218 eral component for supporting cooperation in RACOON++.
219 However, enforcing accountability incurs a substantial cost
220 on the system, mainly due to the high message overhead and
221 the intensive use of cryptography. This poses a significant
222 configuration problem, requiring designers to carefully
223 look for a trade-off between performance and selfishness-
224 resilience. Since no guidelines are given in the studies cited
225 above, tuning the accountability mechanisms is manual and
226 time-consuming. In contrast, RACOON++ mostly automates
227 this task.
228 Accountability systems usually address selfishness by
229 isolating or evicting selfish nodes [13], [14]. A complemen-
230 tary approach is to introduce incentives to make coopera-
231 tion more profitable for selfish nodes. The vast body of
232 literature on incentives for cooperative systems can broadly
233 be divided into trust-based and trade-based incentive
234 schemes. A trust-based scheme associates each node with a
235 level of trust, which can serve as a guide for distributing
236 incentives. For example, nodes with a high trust level can

237benefit from a higher quality of service. Reputation is the
238principal mechanism to evaluate and maintain trust in
239dynamic large-scale environments like cooperative sys-
240tems [37]. Reputation mechanisms offer high flexibility and
241scalability, and can be implemented in a fully decentralised
242manner. Because of these features, RACOON++ uses a dis-
243tributed reputation mechanism to foster cooperation, which
244complements the trust-enabling approach of its accountabil-
245ity system. Specifically, the reputation of nodes is updated
246based on verifiable evidence and linked to a unique and
247permanent identity, thereby inhibiting the dissemination of
248false information (e.g., bad mouthing, unfair praise) [38].1

249In trade-based incentive schemes, nodes pay for obtain-
250ing services or resources (as consumers) and get paid for
251sharing (as providers). In schemes such as barter and tit-for-
252tat [11], [20], [25], the trade is direct and symmetric: each
253unit of resource is reciprocated with a unit of resource.
254Although very robust and easy to implement, these schemes
255require that trading nodes need something from each other
256(a condition known as double coincidence of wants) and
257that they establish long duration relationships to ensure
258adequate opportunities for reciprocation. These require-
259ments can be too restrictive or inefficient in some coopera-
260tive systems, such as opportunistic networks [20] and real-
261time constrained applications [24]. To overcome this limita-
262tion, credit-based mechanisms [35], [36] use virtual currency
263as the commodity for trading resources and allowing its
264later expenditure. On the downside, these approaches intro-
265duce economic issues in the system (e.g., price negotiation,
266inflation, deflation) [36], and may require a trusted author-
267ity (bank) to issue and certify the currency [35]. By contrast,
268RACOON++ uses fully distributed mechanisms that are not
269affected by economic factors.
270Several frameworks and domain-specific languages have
271been proposed to ease the task of designing and evaluating
272dependable distributed systems (e.g., [40], [41]). Although
273these solutions yield good results in terms of system perfor-
274mance anddesigner effort, none of themaddresses the specific
275threat of selfish deviations in cooperative distributed systems.

2763 RACOON++: OVERVIEW

277RACOON++ is a design and simulation framework aimed
278at supporting system designers in building a selfishness-
279resilient cooperative system that meets desired performance
280objectives. As depicted in Fig. 1, the operation of RACOON++

Fig. 1. Overview of the RACOON++ framework.

1. Although out of the scope of our present work, it is worth noting
that strong identities are the prerequisite for preventing other strategic
misbehaviours against reputation systems, such as whitewashing and
Sybil attacks [34], [38].
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281 consists of two phases: the assisted design of the system and
282 the objective-oriented tuning of its parameters. The dark boxes
283 in Fig. 1 are the input provided by the designer. We give an
284 overview of these phases here, and more details in Sections 4
285 and 5.
286 The design phase is initiated by the system designer
287 (hereafter “Designer”, for brevity), who provides a state-
288 machine specification of the communication protocols com-
289 posing the cooperative system. In Step (1) of Fig. 1,
290 RACOON++ integrates the system specification with mech-
291 anisms to encourage nodes to cooperate. Specifically,
292 RACOON++ uses two general and configurable Coopera-
293 tion Enforcement Mechanisms (CEM): an accountability
294 system to audit nodes’ behaviour and a reputation system
295 to assign rewards or punishments depending on the audit
296 results. Then, the framework extends the state machine
297 representation of the system by adding new states and tran-
298 sitions that represent selfish behaviours (Step (2)). For a bet-
299 ter control over the process, the Designer can describe the
300 preferences and capabilities of selfish nodes using the Self-
301 ishness Model. The result is an Extended Specification of the
302 cooperative system, which includes selfish behaviours and
303 cooperation enforcement mechanisms.
304 The goal of the tuning phase is to find a configuration set-
305 ting for the CEM that makes the Extended Specification meet
306 a list of Design Objectives set by the Designer. Tuning is an
307 iterative refinement process consisting of a sequence of two
308 steps: game-based evaluation and configuration exploration
309 (Steps (3) and (4) in Fig. 1). The evaluation is done using
310 game theory-driven simulations, carried out automatically
311 by our framework. More precisely, RACOON++ transforms
312 the Extended Specification into a game model, which it uses
313 to simulate the strategic behaviour of selfish nodes given an
314 implementation of the system specification by the Designer.
315 The framework uses the results of the evaluation to traverse
316 the configuration space and evaluate new configuration can-
317 didates for the CEM. The output of RACOON++ is a new
318 specification of the cooperative system that includes finely
319 tuned accountability and reputation mechanisms to achieve
320 the selfishness-resilience and performance objectives set by
321 the Designer. This output provides a reference guide for
322 developers to use when implementing the system.

323 4 RACOON++ DESIGN PHASE

324 The design phase helps the Designer in specifying a cooper-
325 ative system that embeds mechanisms for fostering cooper-
326 ation as well as in defining a behavioural model of the
327 system participants. The output is a new artefact called the
328 Extended Specification of the system.
329 In this section, we introduce the inputs of the phase, we
330 describe the accountability and reputation mechanisms
331 used in RACOON++, and, finally, we present the algorithm
332 used to generate selfish deviations. To support the descrip-
333 tion of the framework, we use the simple communication

334protocol Search, Request & Response (S-R-R) shown in Fig. 2.
335In the S-R-R protocol, a node r0 queries other nodes for
336some desired resources (e.g., files). To this end, r0 sends a
337query message g0 to a set of nodes collectively named R1

338(the capital letter denotes a set of nodes). Each node in R1

339processes the query and replies with the list of available
340resources (message g1). Upon receiving the list, r0 sends a
341new message g2 to R1, requesting (a subset of) the resources
342listed in g1. Finally, each node in R1 sends the requested
343data (message g3).

3444.1 Input of the Design Phase

345The inputs of the design phase are the functional specification
346of the protocols of the system that should be made resilient
347to selfish behaviours, and the selfishness model adopted by
348selfish nodes.

3494.1.1 Functional Specification

350The functional specification describes the correct, cooperative
351behaviour of nodes by means of communication protocols.
352Like many other approaches [12], [22], [40], notably the
353accountability system [13] that we plan to adapt for our
354framework, each communication protocol is specified using
355a notation based on deterministic finite state machines, called
356a Protocol Automaton. A Protocol Automaton PA is a tuple
357R;S; T;M;G;Ch i, with each component described below.
358Roles (R). The parties involved in the protocol execution.
359A role determines the responsibilities of a party (a node or a
360group of nodes) and constrains the actions that the party is
361allowed to execute in a protocol run. Every PA has at least
362two types of roles: the requester of a resource or service,
363and the provider. Other types are also possible (e.g.,
364brokers, auditors, recommenders). For example, the S-R-R
365protocol has two roles: the requester r0 and the set of poten-
366tial providers R1. Formally, a role r 2 R is a tuple
367rId; cardinality; rTypeh i, where cardinality denotes the
368number of nodes represented by r, and rType is either
369requester, provider, or other.
370States (S). The set of states that the system goes through
371when implementing the communication protocol. A state
372s 2 S is a tuple sId; roleId; sTypeh i, where roleId identifies
373the role r 2 R that triggers a change of state or terminates
374the protocol execution, and sType is either initial, final, or
375intermediate.
376Transitions (T). A transition represents a protocol step,
377i.e., the set of method calls that determine the next protocol
378state. The PA supports three types of transition: abstract,
379communication, and computation. An abstract transition
380groups many method calls into a single “black box” transi-
381tion, which may simplify the protocol representation by
382hiding some implementation details. The remaining transi-
383tion types allow to define the (communication or computa-
384tion) method that triggers the transition. Formally, a
385transition t 2 T is a tuple tId; state1Id; state2Id;methodIdh i,

Fig. 2. The S-R-R protocol between nodes r0 and R1.
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386 where state1Id and state2Id identify the source and target
387 states in S, and methodId identifies the method executed in
388 t (null, for abstract transitions). In the S-R-R protocol, the
389 transitions are search (abstract), request and response
390 (communication).
391 Methods (M). The set of actions that can trigger a protocol
392 transition. A communication method represents the deliv-
393 ery of a message from one role to another, whereas a com-
394 putation method performs local computations. A method
395 m 2 M is a tuple mId;messageIdh i, where messageId is
396 defined only for communication methods, and null other-
397 wise. For instance, request is the communication method of
398 the S-R-R protocol that sends a message g2 to R1. Note that
399 the methods called during an abstract transition (e.g., search)
400 are not inM.
401 Messages (G): A message g 2 G sent by a communication
402 method is a tuple gId; senderId; receiverId; contentIdh i,
403 where senderId and receiverId identify the interacting roles
404 in R, and contentId refers to the content c 2 C carried by g.
405 Contents (C): A content c 2 C is a collection of data units
406 (e.g., integers, binary files), formalised as the tuple
407 cId; cType; cLengthh i, which defines the data type cType2 and
408 the number cLength of data units comprising the content.
409 Fig. 3 shows the state diagram of the S-R-R protocol. The
410 labels on each transition indicate the role and the method
411 that trigger the transition, along with the message sent (if
412 any). For example, the label between states s1 and s2 indi-
413 cates that role r0 invokes the communication method request
414 to send the message g2 to R1. The label of an abstract transi-
415 tion indicates the role that executes the first method encap-
416 sulated in it.

417 4.1.2 Selfishness Model

418 The selfishness model carries the information about the eco-
419 nomic drivers of a party, by specifying the utility that a node
420 obtains in participating in the system. Also, it defines the
421 possible deviations from the functional specification. For-
422 mally, a selfishnessmodel is a tuple V;Dh i, detailed below.
423 Valuations (V). The set of contributions to the overall util-
424 ity of a certain behaviour. The utility that a node receives by
425 participating in the system is given by the benefit obtained
426 by consuming resources and the cost of sharing resources.
427 A valuation v 2 V specifies this information at the granular-
428 ity of transitions and messages of a Protocol Automaton.
429 Formally, v is a tuple vId; vScope; roleId; benefit; costh i,
430 where vScope is the identifier of the PA element (transition
431 or message) that brings some benefit and cost (numeric val-
432 ues) to the role in R identified by roleId.
433 If the vScope of a valuation vt refers to a transition t 2 T ,
434 then vt defines the utility that the role with identifier
435 vt:roleId obtains by executing t. We denote by yðvtÞ the func-
436 tion to evaluate the contribution of vt to the overall utility,
437 and we define it as: yðvtÞ ¼ vt:benefit� vt:cost. As an exam-
438 ple, consider the search transition of the S-R-R protocol. It is

439reasonable to expect that role r0 receives more benefit than
440cost from the transition, because the node will eventually
441receive useful information. This consideration can be
442expressed by the valuation hv0; search; r0; 10; 1i, which
443results in a contribution to the utility of yðv0Þ ¼ 9. Note that
444another system designer may value the same transition dif-
445ferently, according to her expertise and knowledge of the
446system.
447Conversely, if the vScope of a valuation vg refers to a mes-
448sage g 2 G, then vg defines the utility obtained by the role
449identified in vg when g is sent or received. The contribution
450of vg to the overall utility accounts for the cardinality of the
451receiver role of the message as well as the number of data
452units comprising the delivered content. This is based on the
453observation that the costs and benefits of a message are typi-
454cally proportional to the number of data units transmitted
455or received (e.g., the communication costs of a message
456depends on its length and number of recipients). Consider,
457for instance, the request transition of the S-R-R protocol,
458which involves the transmission of a message g2 to role R1.
459Let c2 be the content transmitted by g2, and let
460hv1; g2; r0; 5; 1i be the valuation associated with g2. In this
461case, the contribution that v1 makes to the utility of the node
462playing the role of r0 is given by: yðv1Þ ¼ ð5� 1Þ�
463c2:cLength �R1:cardinality. Note that it is also possible to
464define a valuation associated to g2 that specifies benefits
465and costs of the receiver R1 of the message; for instance,
466v2 ¼ hv2; g2; R1; 1; 0i.
467Selfish Deviations (D). The set of deviations from the cor-
468rect execution of the system, made by selfish nodes to
469increase their utility. In the context of a cooperative system,
470a selfish node can increase its utility by reducing the cost of
471sharing resources. Concretely, a deviation can reduce the
472bandwidth consumption by sending fewer and shorter mes-
473sages [7], [8], [14], [23], or interrupt resource contribution by
474refusing to execute some methods [9], [13], [23]. Based on
475the study of these and other examples from the literature,
476we have selected the three generic types of selfish deviation
477supported by RACOON++, namely: (1) timeout deviation: a
478node does not implement the prescribed transition within
479the time limit; (2) subset deviation: a node sends a subset of
480the correct message content; and (3) multicast deviation: a
481node sends a message to a random subset of the legitimate
482recipients. Some other types of selfishness, notably collusion
483and provision of false or misleading information, have been
484investigated in our recent work [42].
485Formally, a selfish deviation d 2 D from a transition
486t 2 T is a tuple dId; dScope; dType; degreeh i, where dScope
487identifies t, dType indicates whether d is a timeout, subset or
488multicast deviation, and degree 2 ½0; 1� specifies the inten-
489sity of the deviation. Note that the timeout deviation can
490affect all types of transitions, whereas the subset and multi-
491cast deviations affect only communication transitions, as
492they interfere with the delivery of a message. For instance,
493d0; response; timeout; 1h i describes selfish nodes that never
494reply to a request. Note that timeout deviations only occur to
495the maximum degree. As another example, suppose the
496Designer wants to account for selfish nodes that only send
497half of the content in any message exchange of the S-R-R
498protocol (e.g., half of the requested resources). The selfish
499deviation d1; �; subset; 0:5h i represents this behaviour,

Fig. 3. The protocol automaton of the S-R-R protocol.

2. Defined by the XML Schema type system.
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500 where the wildcard value “*” indicates that all communica-
501 tion transitions in the PA are subject to d1.

502 4.2 Cooperation Enforcement

503 The first automatic step of the design phase of RACOON++
504 is the integration of the Cooperation Enforcement Mecha-
505 nisms into the functional specification provided by the
506 Designer. The CEM includes accountability and reputation
507 protocols to make cooperation the most profitable behav-
508 iour for all nodes. In practice, the quality of service received
509 by nodes depends on their reputation values, which are
510 updated based on accountability audits. To this end, the
511 CEM imposes an allocation regime such that the probability
512 of a node receiving a service or a resource in the future is
513 proportional to its current reputation. If the reputation of a
514 node hits the lower bound, no other node will accept its
515 requests, thus preventing the node from receiving any bene-
516 fit from the system. The advantage of such a flexible incen-
517 tive scheme is twofold. First, and with respect to rigid
518 punishment strategies such as direct eviction [13], it allevi-
519 ates the impact of false-positive detection of selfish
520 nodes [19]. Second, all nodes are evaluated based on the
521 quality of their contribution (cooperative or selfish) rather
522 than on the quantity of the shared resources, so as not to
523 penalise nodes suffering from persistent resource shortage
524 (e.g., battery-powered devices).
525 The CEM is a key component for the Designer, as it pro-
526 vides general and off-the-shelf mechanisms for fostering
527 cooperation in a wide range of settings, without the need to
528 devise ad-hoc solutions for the particular system at hand.
529 Hereafter, we discuss the CEM used in RACOON++.

530 4.2.1 Accountability Mechanism

531 RACOON++ uses accountability techniques for detecting
532 misbehaviours and assigning nodes non-repudiable respon-
533 sibility for their actions. Specifically, we propose the R-acc
534 mechanism, based on the FullReview [13] protocols and
535 architecture. R-acc also shares some assumptions with Full-
536 Review about nodes’ behaviours (i.e., no collusion) and the
537 system (i.e., a Public Key Infrastructure is available to create
538 trusted identities by means of digital signatures), whereas it
539 differs on other assumptions (e.g., nodes are not risk averse).
540 RACOON++ can automatically integrate R-acc into the
541 functional specification provided by the Designer. To begin,
542 R-acc requires each node to maintain a tamper-evident
543 record of all its observable actions (i.e., message exchanges).
544 Further, each node is assigned to a set of other nodes, called
545 its witness set. A witness is in charge of auditing the log of

546its monitored nodes, generating provable evidence of their
547behaviours and assigning punishments or rewards accord-
548ingly. Such operations are defined by the protocols
549described below.
550Commitment Protocol. Ensures that the sender and the
551receiver of a message have provable evidence that the other
552party has logged the exchange. Fig. 4 shows the integration
553between the PA of the S-R-R protocol and the commitment
554protocol. Consider for example the node with role r0 in state
555s1. Before sending the request message g2 to R1, r0 records
556the action in its local log, creating a new entry ew. Then, r0
557generates a signed statement ar0

w , called an authenticator,
558indicating that it has logged ew. Next, r0 sends ar0

w to R1

559along with the message. Upon receiving the message (state
560f0 in Fig. 4), each node in R1 logs this event in a new log
561entry ez, and generates the corresponding authenticator aR1

z .
562Finally, R1 sends this authenticator to r0 to acknowledge the
563reception of g2.
564Audit Protocol. A proactive and periodic inspection of a
565node’s behaviour, based on the examination of its log. In
566contrast with FullReview, R-acc introduces the probability of
567audit parameter, which allows more control over the num-
568ber of audits, instead of auditing at every audit period.
569Fig. 5 shows the PA of the audit protocol between a moni-
570tored node rm and one of its witnesses rw. Upon receiving
571the audit request ga0, the witness requests and obtains a por-
572tion of the log of rm (messages ga1 and ga2). Then, rw verifies
573if rm’s log conforms to the correct behaviour making up the
574functional specification of the system (transition audit in
575Fig. 5). The witness sends the audit result back to the moni-
576tored node (message ga3). Finally, rm checks the correctness
577of its audit by forwarding the collected results to the witness
578set of each of its witnesses (indicated as wðrwÞ in the figure).
579If the witness does not receive the requested log from rm
580(state f7 in Fig. 5), then it will address the issue by using the
581challenge/response protocol.
582Consistency Protocol. Ensures that each node maintains a
583single and consistent linear log [13].
584Challenge/Response Protocols. Deal with nodes that do not
585respond to messages as provided in PA or in R-acc, allowing
586certain tolerance for correct nodes that are slow or suffering
587from network problems (e.g., message loss). Specifically, if a
588node i has been waiting too long for a given message from
589another node j, i indicates the suspect state for j, and creates
590a challenge for it. In FullReview, nodes communicate only
591with non-suspected nodes. R-acc adopts a more tolerant
592approach: while in the suspect state, the probability of j to
593communicate with i is locally decreased by a fixed amount,
594until j responds to the challenge and gets trusted again.

Fig. 4. The integration between the commitment protocol of R-acc with the S-R-R protocol shown in Fig. 3.

Fig. 5. The Protocol Automaton of the R-Acc audit protocol.
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595 R-acc does not include the evidence transfer protocol
596 used in FullReview [13]. The same goal of ensuring that
597 faulty nodes are eventually exposed by all correct nodes in
598 the system is accomplished by the reputation mechanism
599 described next.
600 The commitment protocol is the only R-acc protocol that
601 modifies the functional specification of the system. The
602 remaining protocols run in separate threads, scheduled to
603 execute periodically. RACOON++ includes a PA specifica-
604 tion for each protocol. The Designer can refer to these speci-
605 fications when writing the selfishness model, to define
606 valuations and deviations also for R-acc, and test whether
607 accountability still holds when this mechanism is enforced
608 by selfish nodes.

609 4.2.2 Reputation Mechanism

610 The reputation of a node is the summary of its history of
611 behaviours, which is used to assist nodes in choosing a
612 cooperative partner with which to interact. Cooperation
613 leads to a good reputation, whereas selfish behaviours lead
614 to a bad reputation. To provide this information, the CEM
615 includes a distributed reputation mechanism (R-rep) to
616 form, aggregate, and disseminate reputation values.
617 In order to reduce design complexity and to reuse avail-
618 able knowledge, R-rep shares some features with the R-acc
619 accountability mechanism described above. First, a witness
620 node plays the role of recommender in R-rep, as it can form
621 an opinion of a monitored node based on the audit result.
622 This solution keeps the computational overhead of the CEM
623 under control, as it avoids performing the same operation
624 twice (that is, the evaluation of a certain behaviour). Further-
625 more, basing feedback on provable evidence offers an effec-
626 tive defence against false feedback (e.g., bad mouthing, false
627 praising) [38]. Second, R-rep relies on R-acc for storing the
628 reputation data in a reliable manner. More precisely, nodes
629 store their own reputation locally. To preventmanipulations,
630 only witnesses—in their role of recommenders—can update
631 the reputation value. Also, the update must be recorded in
632 theR-acc secure log, so that any tampering can be detected.
633 In R-rep, the reputation r of a node is an integer value
634 between 0 and an upper limit rmax. The value of r is esti-
635 mated after every audit, and can be calculated as

r ¼ max frold � fpðrold; dp; ddÞ; 0g; if positive audit

min frold þ frðrold; drÞ; rmaxg; if negative audit

�
;

637637

638 where rold is the old reputation value, fp and fd are the
639 update functions in case of punishment or rewards, dp and dr
640 are two R-rep parameters that control the degree of punish-
641 ment and of reward, and dd is the degree of the deviations
642 detected by the audit. A punishment comes in the form of a
643 reputation decrease. The decrease value is proportional to dp
644 and to the degree dd of the detected deviation, and indirectly
645 proportional to the old reputation value rold, in such away as
646 to punish with greater severity nodes that already have a
647 bad reputation, in order to inhibit recidivism. In the case of a
648 negative audit, function fr rewards the cooperative node by
649 assigning a reputation increase, which is proportional to the
650 degree of reward dr and to the old reputation value.
651 Consider for example the following setting of R-rep: rmax

652 is 10, the dr is 0.2, and dp is 2. Also, let a currently

653cooperative node have the reputation value 5. After being
654audited, the node’s reputation value will be r ¼ minf5þ
655ð5 � 0:2Þ; 10g ¼ 6. Given the same R-rep setting, consider a
656selfish node that has deviated with degree 1 from the correct
657specification of the protocol. Assuming the current reputa-
658tion of the node be 6, then its new reputation after the audit
659will be: r ¼ maxf6� 2 � 1 � ð10� 6Þ; 0g ¼ 0. Note that the set
660up of the R-rep parameters can yield different results, with
661varying effects on the nodes’ behaviour. In Section 5.4, we
662will show how the tuning phase of RACOON++ can support
663the automatic configuration of these parameters to induce
664the desired behaviour.

6654.3 Selfishness Generation

666The last step of the design phase is the automatic generation
667of selfish deviations from both the functional specification of
668the system and the CEM. This is implemented by the Selfish
669Deviation Generation (SDG) algorithm given in Algorithm 1.
670The algorithm takes as input a Protocol Automaton and the
671Selfishness Model SM. Then, it extends the PA with new ele-
672ments (states, transitions, roles, etc.) representing deviations.
673Note that the SDG algorithm can generate the deviation
674types introduced in Section 4.1.2, namely, timeout, subset, and
675multicast deviations. For brevity, in the pseudo-code we use
676the notation getgetðelementIdÞ to refer to the element of the PA
677to which the elementId identifier is associated.
678A deviation point is a transition of the PA in which a
679deviation can take place. To determine if a transition t 2 T
680is a deviation point, the SDG algorithm first checks if the
681SM contains a selfish deviation d that affects t (line 3 in
682Algorithm 1). Then, it looks for deviation points in lines 4
683(timeout), 8 (subset), and 11 (multicast).
684Timeout Deviations. For each deviation point t 2 T , the
685algorithm generates a timeout deviation by calling the pro-
686cedure InjectTimeoutDev (line 5 in Algorithm 1). This proce-
687dure creates a new final state s0 and a new abstract
688transition connecting the source state of twith s0.
689Subset Deviations. For each deviation point t 2 T triggered
690by a communicationmethod, SDG checks if themessage con-
691tent c is a collection of data units (line 8). If so, line 9 calls the
692procedure InjectSubsetDev, which creates new elements to
693represent the deviation. In particular, the procedure creates
694a new content c0 (line 18) that shares the same data type as c,
695but has a shorter length, calculated using d:degree (line 17).
696Multicast Deviations. For each deviation point t 2 T trig-
697gered by a communication method, the algorithm checks if
698the receiver of the message sent during t has a cardinality
699greater than 1 (line 11). If so, line 12 calls the procedure Inject-
700MulticastDev to create the role r0 (line 30) with a smaller car-
701dinality than the correct one (calculated in line 29).
702Fig. 6 shows the result of executing the SDG algorithm on
703the Protocol Automaton of Fig. 3. Consider for example
704state s2. In the correct execution of the PA, the role R1 sends
705a response message (g3) to r0. However, if R1 is selfish, it
706may also timeout the protocol or send a message with a
707smaller payload (g03).

7085 RACOON++ TUNING PHASE

709The tuning phase of RACOON++ aims at configuring the
710accountability and reputation mechanisms according to a
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711 list of design objectives provided by the Designer. Tuning
712 involves an iterative two-step refinement process, which
713 alternates evaluation with the tuning of the configuration
714 parameters. The evaluation involves EGT analysis to study
715 the system dynamics in a given configuration setting. This
716 task is performed by the R-sim simulator integrated into the
717 framework. We have chosen EGT simulations as a model-
718 ling tool because in many practical settings the populations
719 of individuals participating in a system evolve towards
720 states of statistical equilibrium. After the evaluation, an
721 exploration algorithm uses the evaluation results to opti-
722 mise the parameters of the CEM. The tuning process ends
723 after a number of iterations, or when a configuration that
724 satisfies the Designer’s objectives is found.

725 5.1 Input of the Tuning Phase

726 RACOON++ provides a set of selfish-resilience and perfor-
727 mance objectives for the cooperative systems designed
728 within its framework. Each objective defines a predicate
729 over a system metric, which can be evaluated by the
730 RACOON++ evaluation tool, i.e., the R-sim simulator. The
731 possible predicates are at most and at least. Hereafter, we list
732 some of the application-independent objectives natively
733 supported by RACOON++.

734 � Cooperation level: the fraction of cooperative nodes in
735 the system;
736 � Audit precision: the number of correct positive audits
737 divided by the total number of positive audits;
738 � Audit recall: the number of correct positive audits
739 divided by the number of audits that should have
740 been positive;
741 � CEM bandwidth overhead: the additional bandwidth
742 consumed by the accountability and reputation
743 mechanisms;
744 � CEM message overhead: the costs of the accountability
745 and reputation mechanisms in terms of extra
746 messages.
747 Examples of design objectives are ‘‘cooperation level at
748 least 0:8’’ and ‘‘CEMmessage overhead at most 0:6’’RACOON
749 ++ allows specifying further objectives on application-spe-
750 cific metrics (e.g., throughput, jitter, anonymity). For each
751 custom objective, the Designer needs to implement the meth-
752 ods to collect and evaluate the related metrics in the evalua-
753 tion tool.
754 The second input of the tuning phase is an implementa-
755 tion of the functional specification for the R-sim simulator.

756 5.2 Evolutionary Game Model

757 EGT models how strategic individuals evolve their behav-
758 iours by learning and imitating [32]. Similarly to several
759 recentworks [27], [28], [29],RACOON++ applies this theoreti-
760 cal framework to model the dynamic behaviour of selfish
761 nodes in a P2P system. The components of an evolutionary

762game are: (i) a static representation of the system interactions,
763i.e., the Stage Game; (ii) one or more populations of players;
764(iii) a function to calculate the utility of a given behaviour;
765and (iv) the dynamics of the learning and imitation processes.
766We describe each component separately below.

767Algorithm 1. The Selfish Deviation Generation Algorithm

768Data: A Protocol Automaton PA, the selfishness model SM.
769Algorithm SDG (PA,SM)
7701 origT :¼ T // original transitions in PA

7712 foreach t 2 origT do
7723 if 9 d 2 D j d:dScope ¼ ft:tId; ‘‘�’’g then
7734 if d:dType ¼ ‘‘timeout’’ then
7745 InjectTimeoutDev(t)
775/* only for communication transitions */

7766 if getgetðt:methodIdÞ:messageId 6¼ null then
7777 c :¼ getgetðt:methodId:messageId:contentIdÞ
7788 if d:dType ¼ ‘‘subset’’ and c:cLength > 1 then
7799 InjectSubsetDev(t; c; d)
78010 r :¼ getgetðt:state2Id:roleIdÞ // recipient role

78111 if d:dType ¼ ‘‘multicast’’ and r:cardinality > 1
782then
78312 InjectMulticastDev(t; r; d)
784Procedure InjectTimeoutDev(t)
78513 s0 :¼ hnew sId; null; finali
78614 sourceState :¼ getgetðt:state1IdÞ
78715 t0 :¼ hnew tId; sourceState:sId; s0:sId; nulli
78816 add s0 and t0 to PA
789Procedure InjectSubsetDev (t, c, d)
79017 length0 :¼ bc:cLengthð1� d:degreeÞc
79118 c0 :¼ hnew cId; c:cType; length0i
79219 g :¼ getgetðt:methodId:messageIdÞ
79320 g0 :¼ hnew gId; g:senderId; g:receiverId; c0:cIdi
79421 m0 :¼ hnew mId; g0:gIdi
79522 targetState :¼ getgetðt:state2IdÞ
79623 s0 :¼ hnew sId; targetState:roleId; targetState:sTypei
79724 t0 :¼ hnew tId; t:state1Id; s0:sId;m0:mIdi
79825 add c0, g0,m0, s0, and t0 to PA
79926 foreach ot 2 T j ot:state1Id ¼ targetState:sId do
80027 ot0 :¼ hnew otId; s0; ot:state2Id; ot:methodIdi;
80128 add ot0 to PA;
802Procedure InjectMulticastDev (t, r, d)
80329 cardinality0 :¼ br:cardinalityð1� d:degreeÞc
80430 r0 :¼ hnew rId; cardinality0i
80531 s0 :¼ hnew sId; r0:rId; s:sTypei
80632 message :¼ getgetðt:methodId:messageIdÞ
80733 g0 :¼ hnew gId;message:contentIdi
80834 m0 :¼ hnew mId; g0:gIdi
80935 t0 :¼ hnew tId; t:state1Id; s0:sId;m0:mIdi
81036 add r0, s0, g0,m0, and t0 to PA
81137 add out-transitions of s0"as in lines 26-28

8125.2.1 Stage Game

813Evolutionary games involve the repetition of strategic inter-
814action between self-interested individuals. We model this

Fig. 6. The protocol automaton of the S-R-R protocol, extended with selfish deviations.
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815 interaction as a sequential game called the Stage Game,
816 which we represent using the extensive form (or game
817 tree) [31]. Fig. 7 shows the game tree of the stage game
818 derived from the S-R-R protocol illustrated in Fig. 6.
819 RACOON++ provides an automatic tool to create the SG
820 using the information contained in the Extended Specifica-
821 tion resulting from the design phase. Specifically, the tool
822 translates the PA included in the Extended Specification
823 into the elements of a stage game as described hereafter.
824 Players. A player p represents a role of the PA. For exam-
825 ple, players p0 and p1 in Fig. 7 map to roles r0 and R1 of the
826 S-R-R protocol, respectively. For ease of notation, let pk:type
827 refer to the rType of the role mapped by player pk.
828 Nodes. A node of the stage game is derived from a state in
829 the PA, and is labelledwith the playerwho has to take action.
830 A leaf node of the SG corresponds to a final state of the PA,
831 and represents a possible outcome of the stage game. In Fig. 7,
832 each leaf k is labelledwith the corresponding outcome ok.
833 Actions. An action is a move of the player in the SG, and is
834 derived from a method in the PA. Note that an edge of the
835 game tree in Fig. 7 corresponds to a transition in the PA.
836 Strategies. A play is a path through the game tree from the
837 root to a leaf. It describes a particular interaction between
838 two (ormore) players. The ordered sequence of actions that a
839 player takes in a certain play constitutes her strategy. Con-
840 sider for instance the left-most play in Fig. 7, which repre-
841 sents the cooperative execution of the S-R-R protocol: Table 1
842 reports the strategies of players p0 and p1 to implement it.

843 5.2.2 Population of Players

844 A population is a group of individuals with common eco-
845 nomic and behavioural characteristics. Because of the sym-
846 metric nature of cooperative systems, in RACOON++ we
847 consider a single population of nodes, who can play the
848 strategies in the strategy space defined by the stage game.
849 In conformity with the previous works [27] and [28], we

850divide the strategy space into non-overlapping subsets,
851each representing a distinct combination of behaviours for
852the nodes (i.e., cooperative, selfishness of a certain type).
853We call these subsets strategy profiles s 2 S. RACOON++ cre-
854ates a strategy profile sk for each play k of the SG, such that
855sk includes the strategies carried out by all players partici-
856pating in that play. Thus, for example, and with reference to
857Fig. 7, the strategy profile s0 represents the behaviour of
858cooperative nodes and includes the strategies presented in
859Table 1.
860We partition the overall population into sub-populations,
861so as to establish a one-to-one mapping with the strategy
862profiles. A sub-population vk represents the group of nodes
863that adopt the behaviour defined by sk. In accordance with
864the EGT model, a member of vi participates in the system
865by repeatedly playing what specified by her strategy profile,
866regardless of the outcome of the play. However, a member
867of vi can join another sub-population vj if she expects to
868increase his utility by playing sj. Thus, the size of a sub-
869population reflects the success of the associated strategy
870profile. As the system evolves, the distribution of members
871across the sub-populations can vary. We call this informa-
872tion the population state of the system.

8735.2.3 Utility Function

874The utility function of a player assigns a value (i.e., the util-
875ity) to each outcome of a game. An outcome of the SG
876depends on the sub-populations of the interacting players,
877whose strategies determine the particular play that leads to
878o. For example, consider the stage game in Fig. 7, and let
879players p0 and p1 be played by members of sub-population
880v1 and v3, respectively. Table 2 lists the planned sequence
881of actions of the two players. The interaction starts with
882player p0 executing the search transition and then sending a
883request message to the other player. Player p1 will first
884acknowledge the reception of the message, and then she
885will terminate the protocol. The interaction described above
886corresponds to the play fa0:search, a1:request, a2:ack, a5:time-
887outg in Fig. 7, which leads to the outcome induced by the
888strategy profile s2. The outcomes of a stage game describe
889the interaction between every possible combination of play-
890ers from different sub-populations.
891In RACOON++, the utility received from playing a stage
892game has two terms: the protocol payoff, and the incentives
893introduced by the CEM. The protocol payoff gj evaluates
894the costs and benefits of a player when the outcome of SG is
895oj. To calculate this value, RACOON++ evaluates the valua-
896tion elements defined in the selfishness model by the
897Designer (see Section 4.1.2). Let us illustrate the procedure
898to evaluate the protocol payoff g0 in the stage game of
899Fig. 7, in the case of interaction between members of the
900cooperative sub-population v0. Consider the following
901valuations associated to role r0 and, thus, to player p0:

Fig. 7. The SG derived from the S-R-R protocol in Fig. 4. The label
besides each decision node indicates the player that takes action at that
node. The label on each edge denotes an action along with its corre-
sponding method in the PA. The labels beside each leaf denote the strat-
egy profile of that play.

TABLE 1
The Strategies of the Strategy Profile s0, Implementing
the Cooperative Execution of the Stage Game in Fig. 7

Player Strategy

p0 fa0:search, a1:request, a6:ackg
p1 fa2:ack, a3:responseg

TABLE 2
The Strategies Implemented in the SG of Fig. 7 When Play-

ers p0 and p1 are from Sub-Populations v1 and v3

Player Strategy profile Strategy

p0 s1 fa0:search, a1:request, a6:ackg
p1 s2 fa2:ack, a5:timeoutg

COTA ET AL.: RACOON++: A SEMI-AUTOMATIC FRAMEWORK FOR THE SELFISHNESS-AWARE DESIGN OF COOPERATIVE SYSTEMS 9
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902 hv0; search; r0; 10; 1i and hv1; g3; r0; 3; 1i, which refer to the a0:
903 search and a3:response edges in Fig. 7, respectively. Let the
904 content c 2 C carried by message g3 be a list of 10 data units.
905 Then, the protocol payoff of player p0 is

g0ðp0Þ ¼ yðv0Þ þ yðv1Þ
¼ 9þ 2 � r0:cardinality � c:cLength ¼ 29:907907

908

909 The protocol payoff is the expected utility that would be
910 received if no incentives for cooperation were attached to the
911 system. However, the CEM used in RACOON++ establishes
912 that the ability of a player to obtain a requested service is pro-
913 portional to her reputation value (see Section 4.2). Thus, the
914 utility uj 2 R obtained by a player pi depends on whether
915 she plays as a service requester in the stage game. Formally

ujðpiÞ ¼
gjðpiÞ � %ðpiÞ if pi:type ¼ ‘‘requester’’

gjðpiÞ otherwise

(
;

917917

918 where the function % : P ! ½0; 1� determines the probability
919 that player pi 2 P will receive the protocol payoff, calcu-
920 lated as the reputation of pi divided by the upper bound
921 rmax of reputation values. Following on the previous exam-
922 ple, let the reputation mechanism allow values between 0
923 and 10, and let the requester player p0 have reputation 6.
924 Then, her utility can be calculated as

u0ðp0Þ ¼ g0ðp0Þ � rðp0Þ ¼ 29 � 0:6 ’ 17:4 :926926

927

928 5.2.4 Evolutionary Dynamics

929 A common assumption in classical game theory is that play-
930 ers have the information and skills to assess and choose the
931 best strategy to play in the current system’s state [31]. How-
932 ever, as other works have highlighted [27], [28], [29], this
933 assumption places a heavy burden on nodes’ computational
934 and communication capabilities, which is infeasible in most
935 real-world cooperative systems. On the contrary, EGT
936 assumes that players are neither perfectly rational nor fully
937 informed about all the possible strategies, but tend to imple-
938 ment the most remunerative strategy through learning and
939 imitation [32].
940 In RACOON++, each node monitors the utility it has
941 obtained for playing the strategy profile of its sub-
942 population. If the utility decreases for more than a given
943 number of consecutive observations, or if a specified time
944 has elapsed, then the node will look for a fitter sub-
945 population to join. The accountability audits of R-acc pro-
946 vide the means to learn what are the fittest sub-populations
947 in the system. More precisely, we assume that a witness can
948 infer the sub-population and the utility of a node by audit-
949 ing its logs, as the recorded actions can be traced back to a
950 particular strategy profile (the space of strategy profiles, as
951 well as the costs and benefits of each action, are common
952 knowledge to all nodes, because we assume a single popula-
953 tion). After an audit, the witness compares its own utility
954 against that of the monitored node. If the witness has a
955 lower utility, it will join the sub-population of the moni-
956 tored node with a given probability [29]. This probability
957 determines the evolution rate: the smaller its value, the
958 slower the fittest sub-population in the system increases.

9595.3 Game-Based Evaluation

960The game-based evaluation step evaluates a configuration
961setting for the CEM. To this end, RACOON++ first creates
962an evolutionary game model of the system and then it simu-
963lates the game dynamics using the RACOON++ evaluation
964tool R-sim. The simulation results indicate whether the eval-
965uated CEM configuration has satisfied the list of design
966objectives set by the Designer or not.
967The RACOON++ simulation framework, R-sim, uses the
968evolutionary game model of the cooperative system to sim-
969ulate the system dynamics in the candidate configuration
970setting. The networking environment of R-sim consists of
971independent nodes that are able to send a message to any
972other node, provided that the address of the target node is
973known. Communication is assumed to be subject to arbi-
974trary message loss, controlled by a probability parameter.
975Nodes can leave and join the network at any time. The sim-
976ulation engine of R-sim supports a cycle-based model, in
977which time is structured into rounds. At each round, each
978node plays a certain strategy of the SG, according to the evo-
979lutionary dynamics described in Section 5.2. During the
980simulation R-sim collects statistics about such dynamics, to
981evaluate the design objectives.
982In contrast with RACOON, which includes a custom-built
983simulator for cooperative systems [19], RACOON++ relies
984on the state-of-the-art PeerSim simulator [10], thereby
985improving the usability, accuracy and performance of the
986framework. We have chosen PeerSim among other simula-
987tion tools (see [39] for a comprehensive review) because: (1)
988it meets the requirements of scalability and dynamicity
989imposed by the evolutionary model; (2) it supports integra-
990tion with RACOON++ thanks to its modular architecture; (3)
991it is an active project, with a good developer community and
992support. R-sim exploits the modular architecture of PeerSim
993extending it with new components to develop, simulate and
994evaluate the cooperative system resulting from the design
995phase of the RACOON++ framework. Also, R-sim includes a
996reference implementation of the accountability and reputa-
997tion systems used by RACOON++, along with an intuitive
998API to simulate their calls. The Designer can use these facili-
999ties to implement the functional specification of his system
1000for PeerSim. To the best of our knowledge, R-sim is the only
1001available software tool for the dynamic simulation of selfish
1002and strategic behaviours in distributed systems.
1003Other important R-sim parameters are listed below:

1004� Network: the network size; the message loss rate.
1005� Evolutionary game model: the initial population state
1006(e.g., equal-sized sub-populations, majority of coop-
1007erative nodes); the probability to join a fitter sub-
1008population.
1009� Monitoring: the duration of a simulation; the fre-
1010quency and the types of statistics to collect (e.g.,
1011nodes’ payoffs, amount of messages exchanged,
1012audit results).

10135.4 Design Space Exploration

1014The output of the RACOON++ framework is the design and
1015configuration of a cooperative system that achieves the
1016design objectives set by the Designer. Thus far, we have
1017described how RACOON++ fosters cooperation using
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1018 accountability and reputation mechanisms (Section 4.2), and
1019 how it evaluates the system performance using EGT and
1020 simulation (Section 5.3). The last step of the framework
1021 relies on the evaluation results to tune the configuration
1022 parameters of the CEM, aiming to achieve the desired
1023 design objectives. A configuration candidate is an assign-
1024 ment of the R-acc and R-rep parameters, i.e., the size of the
1025 witness set, the audit period, the audit probability, the
1026 degree of punishment, and the degree of reward.
1027 The exploration is an iterative process, which generates
1028 new candidates based on the evaluation of the previous
1029 ones until a configuration is found that satisfies all the
1030 Designer’s objectives. If no feasible solution is found after a
1031 pre-defined number of iterations (e.g., because the objec-
1032 tives were contradictory or too demanding), the framework
1033 stops the search, asking the Designer to improve the design
1034 manually or to relax the design objectives.
1035 RACOON++ explores the configuration space using a
1036 greedy constraint-satisfaction algorithm, which is guided
1037 by a set of observations derived from an empirical analysis
1038 of the CEM parameters and their impact on the design
1039 objectives natively supported by RACOON++.3 For
1040 instance, we observed that the higher the number of wit-
1041 nesses, the higher the CEM bandwidth overhead, because
1042 each witness increases the amount of log transmissions and
1043 checking. As another example, we observed that the shorter
1044 the audit period, the higher the cooperation level, because
1045 selfish nodes are detected earlier and punished more often.
1046 The exploration algorithm relies on these observations to
1047 generate the next configuration candidate. For instance, if
1048 the evaluation of a given configuration results in a band-
1049 width overhead larger than what required by a design
1050 objective, the exploration algorithm will not generate con-
1051 figuration candidates with a greater number of witnesses. If
1052 no guidelines are available for updating a particular config-
1053 uration, the exploration algorithm will create a random con-
1054 figuration candidate. In order to avoid the re-exploration of
1055 the regions of the configuration space, the algorithm records
1056 the previously generated candidates.

1057 6 USING THE RACOON++ FRAMEWORK

1058 RACOON++ is provided as a Java program, which is
1059 released under a free software licence and is publicly avail-
1060 able [33]. In the previous sections, we described the main
1061 steps and building blocks of the framework. Now we turn
1062 our attention to how RACOON++ is used by the Designer.
1063 The first step for the Designer is to decide what parts of
1064 the system should be included in the RACOON++ func-
1065 tional specification (i.e., the Protocol Automata). The
1066 selected parts should fulfil two criteria. On the one hand,
1067 these parts should represent system functionalities that are
1068 sensitive to selfish behaviours—specifically, to the deviation
1069 types described in Section 4.1.2. On the other hand, the
1070 selected parts should involve actions that can be observed
1071 by other nodes (e.g., a message exchange), to allow account-
1072 ability audits [12], [13].

1073Then, the Designer inputs the functional specification,
1074along with the selfishness model to study (Section 4.1.2) and
1075the design objectives to achieve (Section 5.1), to the frame-
1076work. In RACOON++, these specifications are encoded in
1077an XML-based format, and are provided as a single XML
1078document.4

1079To evaluate a configuration setting for the CEM,
1080RACOON++ simulates the system behaviour using the inte-
1081grated simulation framework R-sim, based on the PeerSim
1082simulator. To this end, the Designer has to produce a Java
1083implementation of the cooperative system, notably of its
1084functional specification. R-sim facilitates this task by provid-
1085ing a set of ready-to-use components and an intuitive
1086API for interfacing a standard PeerSim protocol with the
1087RACOON++ models and functionalities. In particular,
1088the framework includes an implementation of the CEM, the
1089algorithms to simulate the behaviour of selfish nodes, and
1090monitors to assess application-independent system perfor-
1091mance (e.g., audit precision and recall, bandwidth over-
1092head). These software facilities reduce the number of
1093functionalities to code, allowing the Designer to focus only
1094on implementing the application specific parts of her sys-
1095tem, such as the code to implement the correct execution of
1096the protocol and the selfish deviations from it.
1097Once all the inputs have been defined, the Designer can
1098run the RACOON++ framework and wait for the result of
1099its design and tuning phases (Fig. 1).

11007 EVALUATION

1101In this section, we demonstrate the benefits of using
1102RACOON++ to design selfishness-resilient cooperative sys-
1103tems. First, we introduce the three use cases considered in
1104the evaluation, namely, a live-streaming protocol, a load
1105balancing protocol, and an anonymous communication sys-
1106tem. Second, we assess the effort required by a Designer to
1107specify and implement the use cases. Third, we evaluate the
1108capability of RACOON++ to auto-configure the CEM, by
1109measuring the time needed to find a satisfactory configura-
1110tion in 90 different scenarios. Then, we evaluate the effec-
1111tiveness of the RACOON++ cooperation enforcement
1112mechanisms in withstanding the impact of selfish nodes on
1113a set of performance objectives. Finally, we compare the per-
1114formance of the CEM’s accountability mechanism with Full-
1115Review, showing that R-acc achieves better results while
1116imposing less overhead.
1117The implementation of the use cases, as well as the con-
1118figuration files related to the experiments reported in this
1119section, can be downloaded from the project website [33].

11207.1 Use Cases

1121We consider the following use cases.
1122Live Streaming. A P2P live streaming system consists of a
1123source node that disseminates video chunks to a set of
1124nodes over a network. Periodically, each node sends the
1125chunks it has received to a set of randomly chosen partners
1126and asks them for the chunks they are missing. Each chunk
1127is associated with a playback deadline, which, if missed,
1128would render a chunk unusable and the corresponding

3. The analysis involved the systematic evaluation of 250 configura-
tion candidates in three cooperative systems (i.e., the ones considered
for evaluating our work) for a total of 750 experiments. 4. The XML Schema for this document can be found in [33].
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1130 we use the gossip-based live streaming protocol studied by
1131 Guerraoui et al. [14]. Load Balancing. The heterogeneity of
1132 nodes and the high dynamics of P2P systems can lead to a
1133 load imbalance.5 We assume a P2P system in which nodes
1134 are allowed to transfer all or a portion of their load among
1135 themselves. The goal of a load balancing protocol is to regu-
1136 late these transfers in a way that evenly distributes the load
1137 among nodes, to optimise the use of node capabilities. The
1138 load balancing protocol considered as a use case is the one
1139 proposed by Jelasity et al. [10].
1140 Anonymous Communication. This system is based on a sim-
1141 plified version of the Onion Routing protocol for communi-
1142 cation channel anonymity [15]. In Onion Routing, when a
1143 source node wants to send a message to a destination node,
1144 the source node builds a circuit of voluntary relay nodes. Cir-
1145 cuits are updated periodically, and relays can participate in
1146 multiple circuits at the same time. To protect a message, the
1147 source encrypts it with the public key of the destination. Fur-
1148 thermore, to protect the communication channel, the source
1149 uses the public key of each relay node in the circuit to encrypt
1150 the address of the next relay node. The resulting message is
1151 called an onion. A relay uses its private key to decrypt one
1152 layer of the onion and contributes some of its bandwidth to
1153 forward the resultingmessage to the next relay until themes-
1154 sage eventually reaches its destination.

1155 7.2 Design and Development Effort

1156 To show the benefits of using RACOON++ in terms of design
1157 and development effort, we present the operations that allow
1158 the Designer to specify, develop, and test the use cases.
1159 To begin, the Designer specifies the communication proto-
1160 cols (i.e., Protocol Automata) to be included in the functional
1161 specification of the system. Figs. 8, 9, and 10 illustrate the Pro-
1162 tocol Automata defined for our use cases. The live streaming
1163 protocol (see Fig. 8) involves two roles and three protocol
1164 steps: the provider rp proposes the set of chunks it has
1165 received to a set of consumers rC , which in turn request the
1166 chunks they need. The protocol ends when rp sends the
1167 requested chunks to rC . In the load balancing protocol (see
1168 Fig. 9) each node starts with a certain amount of load. Periodi-
1169 cally, each node r0 is allowed to transfer all or a portion of its
1170 load to one of its neighbours R1, after a negotiation step. The
1171 negotiation is based on locally available information, obtained
1172 from past interactions or sample observations [10]. Lastly, in
1173 the anonymous communication protocol, every time a relay
1174 rr receives an onion message from its predecessors (rP ) in the

1175circuit, rr decrypts the external layer of the onion, and for-
1176wards the resulting onion to the next hops rN in the circuit. If
1177rr is the final destination of the onion, then the protocol will
1178end after the decrypt transition (state s2 of Fig. 10).
1179Once the Designer has provided the functional specifica-
1180tion of the system, she defines the selfishness model. For
1181example, consider the anonymous communication protocol.
1182A selfish relay rr that wants to save bandwidth may strate-
1183gically avoid to forward onions that are not intended for
1184itself. Concretely, rr could avoid to relay any onion to its
1185successors (timeout deviation) or relay onions only to a sub-
1186set of them (multicast deviation). As another example, con-
1187sider a selfish provider rp that wants to participate in the
1188live streaming protocol but limits its bandwidth consump-
1189tion. A possible strategy for rp is to propose fewer chunks
1190than it has available (subset deviation), or send proposals to
1191only a subset of its neighbours (muticast deviation), in such
1192a way as to reduce the number of chunks that could be
1193requested.
1194Finally, the Designer provides RACOON++ with a list of
1195design objectives that the system must satisfy. Recall from
1196Section 5.3 that an objective can be application-independent
1197or application-specific. Examples of application-specific
1198objectives related to our use cases are (i) a load distribution
1199with a Coefficient of Variation (CoV) close to zero, (ii) a low
1200fraction of onions that do not reach their final destination, or
1201(iii) a low fraction of video chunks that are not played in time.
1202The Designer provides the RACOON++ specification
1203inputs as an XML document. The “Specification” column of
1204Table 3 illustrates the conciseness of the XML representation
1205of the inputs, showing that the full specification of a use
1206case does not require many Lines of Code (LoC).
1207The RACOON++ framework requires the Designer to
1208implement the functional specification of the system in the
1209R-sim simulator. The “R-sim Program” columns of Table 3
1210shows the LoC of the use cases’ implementations, distin-
1211guishing the LoC needed to implement the standard opera-
1212tion (“Std” column) from those introduced to invoke the
1213R-sim functionalities (“RS” column). The results show that
1214the software facilities provided by R-sim allow adapting a
1215system implementation to be used in RACOON++ without
1216significant coding effort. More precisely, the RS LoC are in
1217the range 6.3-9.6 percent of the total implementation code,
1218which appears reasonable as it corresponds to only 28 addi-
1219tional LoC, at most.

Fig. 8. The PA of the live streaming protocol [14].

Fig. 9. The PA of the load balancing protocol [10].

Fig. 10. The PA of the anonymous communication protocol.

TABLE 3
Lines of Code Needed for the Use Cases

Specification R-sim Programa

Std RS TOT

Live Streaming protocol 51 384 28 444
Load Balancing protocol 48 232 28 290
Anonymous Comm. protocol 48 212 23 289

a

Std = standard operation, RS = R-sim functionalities, TOT = Std + RS.

5. The load can be measured in terms of different metrics, such as
the number of queries received per time unit.
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1221 To evaluate the capability of RACOON++ to find a satisfac-
1222 tory configuration for its cooperation enforcement mecha-
1223 nisms, we performed the following experiment. First, we
1224 defined 30 different scenarios for each use case, for a total
1225 of 90 scenarios, where a scenario is a unique combination
1226 of design objectives, system parameters (e.g., number of
1227 nodes, message loss rate), application-specific parameters
1228 (e.g., playback deadline, length of a circuit of relays, initial
1229 distribution of loads), and fraction of selfish nodes in the
1230 system.6 Second, we used RACOON++ to find a satisfactory
1231 configuration for each scenario, while measuring the num-
1232 ber of tested configurations and the duration of the process.
1233 In the experiment, RACOON++ tests an average of 7 config-
1234 urations before finding a satisfactory one (median 4, range
1235 1-56). The process takes less than 18 min on average to com-
1236 plete (median 6 min, range 10 s-208 min),7 which we con-
1237 sider reasonable, as RACOON++ runs offline at design time.
1238 Overall, the tuning process failed to meet all the design
1239 objectives in only three scenarios out of 90, which we con-
1240 sider as an acceptable result. The failures were due to too
1241 hard constraints on the efficiency and effectiveness of the
1242 CEM, which were expressed as cost overhead and custom
1243 performance objectives (such as low video chunk loss rate),
1244 respectively. In these cases, RACOON++ returns to the
1245 Designer the tested configuration that has obtained the best
1246 performance in terms of the design objectives. If not satis-
1247 fied with this outcome, the Designer can either relax the per-
1248 formance requirements or optimise some application-
1249 specific operation or parameter.

1250 7.4 RACOON++ Effectiveness

1251 In this section, we show that the cooperative systems
1252 designed using RACOON++ can effectively achieve cooper-
1253 ation as well as application-specific objectives in the pres-
1254 ence of an increasing proportion of selfish nodes. To this
1255 end, we evaluated three scenarios per use case, which were
1256 randomly selected from the scenarios generated for the pre-
1257 vious experiment.
1258 In the first experiment, we assess the effectiveness of the
1259 CEM in fostering cooperation in the tested systems. The
1260 experiment consists of a set of simulations, which monitor
1261 the dynamics of 2,000 nodes for 3,000 simulation cycles. We

1262initialize each simulation with an increasing proportion of
1263cooperative nodes (from 0.1 to 1), and we measure the coop-
1264eration level achieved at the end of the simulation. For each
1265use case, we calculated the median result from the three sce-
1266narios. Results in Fig. 11a show that the CEM succeeds in
1267making the nodes behave cooperatively in all use cases.
1268Even the worst result (in the live streaming use case) shows
1269a dramatic increase of the cooperation level, from 0.1 to 0.94.
1270We now focus on the correlation between cooperation
1271level and application-specific performance. Figs. 11b, 11c,
1272and 11d present the median results of our evaluation for the
1273three use cases.
1274The figures display a curve showing the impact of selfish
1275nodes when no cooperation enforcement mechanism is
1276adopted (curve no CEM), and another curve for the results
1277obtained when using RACOON++ (curve CEM). For exam-
1278ple, Fig. 11d shows that without any mechanism to prevent
1279selfishness the fraction of onions that do not reach destina-
1280tion in the anonymous communication use case increases
1281linearly with the number of selfish nodes in the system and
1282reaches very high values (e.g., 40 percent of selfish nodes
1283leads to a loss of almost half of the transmitted onions,
1284thereby making the system ineffective in practice). Similar
1285conclusions hold for the number of chunks in the live
1286streaming use case Fig. 11b. The initial cooperation level
1287also has an impact on the performance of the load balancing
1288protocol, which we measured in terms of CoV of the load
1289distribution (the lower the CoV, the better the performance).
1290As we can observe in Fig. 11b, when no mechanism to foster
1291cooperation is in place the CoV increases with the number
1292of nodes that refuse to participate in the balancing protocol.
1293In contrast, the results achieved by the systems designed
1294using RACOON++ show that the CEM can withstand the
1295impact of large populations of selfish nodes.

12967.5 RACOON++ versus FullReview

1297In this section, we present the benefits of using the
1298RACOON++ CEM instead of the original FullReview proto-
1299cols [13]. The main differences between these mechanisms,
1300already discussed in Section 4.2, are (i) the approach to pun-
1301ishing selfish and suspect nodes, which is more tolerant in
1302the CEM, (ii) the possibility in R-acc to control the probabil-
1303ity of auditing other nodes, (iii) the dissemination of proofs
1304of misbehaviour in the system, which in RACOON++ is
1305realized by R-rep. To compare the performance of the
1306RACOON++ CEM and of FullReview in our use cases, we
1307initialized the tested systems with a scenario randomly cho-
1308sen from the set created for the previous experiment. Then,

Fig. 11. Cooperation levels (a) and application-specific performance of the Live Streaming (LS) (b), Load Balancing (LB) (c), and Anonymous Com-
munication (AC) (c) use cases, when varying the initial fraction of selfish nodes.

6. For reasons of space, the full setting for this and the following
experiments is not reported here, but have been made available on the
project website [33].

7. Measures made on a 2.8 GHz machine with 8 GB of RAM.
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1310 one set we used the RACOON++ CEM to foster cooperation,
1311 and in the other set we used FullReview. Both the CEM and
1312 FullReview were optimised for the scenario. In particular,
1313 the CEM was automatically configured by the RACOON++
1314 tuning phase, whereas FullReview was tuned manually.
1315 The first important benefit of using CEM is shown in
1316 Fig. 12a, which represents the fraction of nodes that are par-
1317 ticipating in the cooperative system at the end of the simula-
1318 tion. This figure readily illustrates the opposite approaches
1319 adopted by RACOON++ and FullReview to deal with self-
1320 ishness: RACOON++ aims to motivate selfish nodes to
1321 change their strategy and behave cooperatively, while Full-
1322 Review operates by isolating non-cooperative nodes. We
1323 advocate our approach as the most appropriate for coopera-
1324 tive systems, for two reasons. First, it takes into account the
1325 high heterogeneity of nodes and allows low-resource nodes
1326 to occasionally behave selfishly because of resource short-
1327 ages (e.g., low battery in mobile devices). Second, it fits bet-
1328 ter with the cooperative design principles, which are based
1329 on participation and inclusion rather than on punitive
1330 restrictions.
1331 On the performance side, Fig. 12b shows that the CEM
1332 of RACOON++ can decrease the bandwidth overhead in
1333 the tested system, notably by 22 percent in the live stream-
1334 ing use case. This is mainly due to the replacement of
1335 the evidence transfer protocol of FullReview with a light-
1336 weight reputation system, in which reputation values are
1337 exchanged by piggybacking on the accountability protocols
1338 messages. Also, R-acc allows probabilistic audits, which
1339 further reduces the traffic and computation overhead asso-
1340 ciated with the audit activities.
1341 As shown in earlier work [19], FullReview is very sensi-
1342 tive to message loss, which can significantly increase the
1343 number of suspect nodes, and might even lead to the

1344wrongful eviction of a correct node. We evaluated the
1345robustness of the RACOON++ CEM against message loss by
1346assessing the performance of the tested systems when run-
1347ning over an unreliable network with up to 20 percent mes-
1348sage loss. Fig. 13a illustrates the cooperation levels achieved
1349by the tested systems at the end of the simulations when
1350using the RACOON++ CEM and FullReview. The curves
1351show that message loss has a small impact on the coopera-
1352tion, due to the mitigating effect of the challenge/response
1353protocol used by both mechanisms (see Section 4.2). Notice
1354that the FullReview curves in Fig. 13a confirm what already
1355discussed for Fig. 12a, that is the dramatic decrease of active
1356nodes because of the extreme punishment enforced by the
1357accountability mechanism. Such performance degradation
1358is much more severe for application-specific objectives, as
1359can be observed in Figs. 13b, 13c, and 13d. The main reason
1360is the FullReview suspicion mechanism, which prevents a
1361suspect node from interacting with others. Because tempo-
1362rary message loss can trigger node suspicion, the larger the
1363message loss rate, the longer a node could be stuck in a sus-
1364pect state. Conversely, in the RACOON++ CEM, a suspect
1365node can continue to interact with other nodes, though with
1366a lower probability. This gives the suspect node more
1367opportunities to get out of the suspect state by behaving
1368cooperatively, which is also beneficial for the system. The
1369Racoon++ curves in Figs. 13b, 13c, and 13d demonstrate that
1370this simple strategy is enough to guarantee resilience from
1371selfish nodes while being tolerant to message loss.

13728 CONCLUSIONS

1373In this paper we presented RACOON++, a model-based
1374framework for designing, configuring, and testing coopera-
1375tive systems that are resilient to selfish nodes. RACOON++
1376relies on accountability and reputation mechanisms to
1377enforce cooperation among selfish nodes. Using a combina-
1378tion of simulation and Evolutionary Game Theory,
1379RACOON++ automatically configures these mechanisms in
1380a way that meets a set of design objectives specified by the
1381system designer. We illustrated the benefits of using
1382RACOON++ by designing a P2P live streaming system, a
1383load balancing protocol, and an anonymous communication
1384system. The evaluation of the use cases, performed using
1385the state-of-the-art simulator PeerSim, shows that the
1386cooperative systems designed using RACOON++ achieve
1387selfishness-resilience and high performance. The RACOON
1388++ framework is provided as a Java program, and is freely
1389available for download [33].

Fig. 12. Performance comparisons between FullReview and RACOON+
+ CEM in the Live Streaming (LS), Load Balancing (LB), and Anony-
mous Communication (AC) use cases.

Fig. 13. Experiment results with different proportions of message loss.
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1390 Our future work includes the integration of a domain-
1391 specific language into RACOON++ to specify more complex
1392 selfish behaviours, such as the one we proposed in [42], and
1393 the investigation of other mechanisms to foster cooperation
1394 (e.g., decentralised credit-based systems).
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