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Let (Xt) t≥0 be the overdamped Langevin process on R d , i.e. the solution of the stochastic differential equation

Let Ω ⊂ R d be a bounded domain. In this work, when X0 = x ∈ Ω, we derive new sharp asymptotic equivalents (with optimal error terms) in the limit h → 0 of the mean exit time from Ω of the process (Xt) t≥0 (which is the solution of (-h 2 ∆ + ∇f • ∇)w = 1 in Ω and w = 0 on ∂Ω), when the function f : Ω → R has critical points on ∂Ω. Such a setting is the one considered in many cases in molecular dynamics simulations. This problem has been extensively studied in the literature but such a setting has never been treated. The proof, mainly based on techniques from partial differential equations, uses recent spectral results from [29] and its starting point is a formula from the potential theory. We also provide new sharp leveling results on the mean exit time from Ω.

1 Purpose of this work and main result

Setting and purpose of this work

Let us consider a function f : R d → R. A prototypical process used to model the evolution of a statistical system in a constant temperature environment is the so-called overdamped Langevin process, i.e. the solution (X t ) t≥0 of the stochastic differential equation

dX t = -∇f (X t ) dt + √ h dB t , (1) 
where h > 0 is the temperature of the medium and (B t ) t≥0 is a d-dimensional standard Brownian motion. For an open subset Ω of R d , one denotes by

τ Ω c = inf{t ≥ 0, X t / ∈ Ω},
the first time the process (1) enters in Ω c := R d \ Ω (or equivalently the first exit time from Ω). The aim of this paper is to prove sharp asymptotic estimates when h → 0, with optimal error terms, on the mean exit time E[τ Ω c ] from a domain Ω ⊂ R d of the process (1) when f has critical point on ∂Ω. The resulting equivalents are usually called Eyring-Kramers type formulas, see [START_REF] Hänggi | Reaction-rate theory: fifty years after kramers[END_REF] for a review on this topic. Such a setting is motivated by the fact that in many molecular dynamics simulations (where several algorithms have been designed to accelerate the sampling of the exit event (τ Ω c , X τ Ω c )), the domain Ω is defined as a basin of attraction for the -∇f dynamics (see (4) below) of a local minimum point of f in R d so that f has critical points on ∂Ω. To analyse the mathematical foundations of these algorithms, it is necessary to study the precise asymptotic behavior of the law of (τ Ω c , X τ Ω c ) as h → 0 (see for instance [START_REF] Di Gesù | Jump markov models and transition state theory: the quasi-stationary distribution approach[END_REF][START_REF] Lelièvre | Accelerated dynamics: Mathematical foundations and algorithmic improvements[END_REF][START_REF] Lelièvre | Partial differential equations and stochastic methods in molecular dynamics[END_REF][START_REF] Sorensen | Temperature-accelerated dynamics for simulation of infrequent events[END_REF][START_REF] Voter | A method for accelerating the molecular dynamics simulation of infrequent events[END_REF][START_REF] Voter | Radiation Effects in Solids, chapter Introduction to the Kinetic Monte Carlo Method[END_REF] and references therein). Moreover, our techniques also allow us to consider the case when f : Ω → R has a degenerate principal barrier in Ω, i.e. for some m > 1, lim h→0 h ln λ 1,h = lim h→0 h ln λ 2,h = . . . = lim h→0 h ln λ m,h , where λ 1,h < λ 2,h ≤ . . . ≤ λ m,h are the m smallest eigenvalues of the Dirichlet realization of infinitesimal generator of the diffusion [START_REF] Berglund | Kramers' law: validity, derivations and generalisations[END_REF] in Ω (see the next section for the definition of this operator). Despite the attention this topic has received these past few decades, to the best of our knowledge, such settings have not been treated yet (see Section 1.5 below). Furthermore, dealing with a degenerate principal barrier introduces some subtleties if one wants to study the asymptotic behavior of E[τ Ω c ] via a spectral approach. This is due to the fact that the m smallest eigenvalues λ 1,h , . . . , λ m,h can be asymptotically indistinguishable when h → 0, as explained in [START_REF] Peutrec | Repartition of the quasi-stationary distribution and first exit point density for a double-well potential[END_REF]. To overcome these difficulties, we introduce local Dirichlet problems (see Section 2.5 below) and use recent spectral results from [START_REF] Peutrec | Small eigenvalues of the Witten laplacian with dirichlet boundary conditions: the case with critical points on the boundary[END_REF] together with formulas from the potential theory and estimates from the large deviations theory.

Notation and definitions

In all this work, Ω is a C ∞ bounded open and connected subset of R d , and the function f : Ω → R is C ∞ . Throughout this work, we will use the following notation: for a ∈ R, {f < a} = {x ∈ Ω, f (x) < a} and {f ≤ a} = {x ∈ Ω, f (x) ≤ a}.

We will say that a connected component M of {f ≤ a} is isolated if there exists an open set V of Ω such that M = V ∩ {f ≤ a} 1 . Moreover, B r (x * ) will denote the closed ball centred at x * of radius r > 0 in R d . Finally, E x (resp. P x ) will denote the expectation (resp. the probability) when

X 0 = x ∈ R d .
Dirichlet realization ofh 2 ∆ + ∇f • ∇ in Ω. Let us denote by L f,h = -h 2 ∆ + ∇f • ∇ the infinitesimal generator of the process [START_REF] Berglund | Kramers' law: validity, derivations and generalisations[END_REF]. The operator L f,h on L 2 (Ω, e -2 h f dx) with domain w ∈ H 2 (Ω, e -2 h f dx), w = 0 on ∂Ω is denoted by L Dir f,h (where the notation Dir stands for the fact that we consider L f,h with Dirichlet boundary conditions on ∂Ω). The operator L Dir f,h is the Friedrichs extension on L 2 (Ω, e -2 h f dx) of the closed quadratic form

g ∈ H 1 0 (Ω, e -2 h f dx) → 2 h Ω |∇g| 2 e -2 h f . (2) 
The operator L Dir f,h is a positive self adjoint operator on L 2 (Ω, e -2 h f dx) with compact resolvent. Its eigenvalues are denoted by λ 1,h < λ 2,h ≤ λ 3,h . . .

where we recall that by standard results on elliptic operators, λ 1,h is simple and any associated eigenfunction u 1,h is C ∞ on Ω and has a sign on Ω. Finally let us recall that L f,h is connected to the Witten Laplacian ∆ f,h = h 2 ∆ H + |∇f | 2 -h∆f through the relation

L f,h = 1 2h e 1 h f ∆ f,h e -1 h f , (3) 
which will allow us to transfer the results of [START_REF] Peutrec | Small eigenvalues of the Witten laplacian with dirichlet boundary conditions: the case with critical points on the boundary[END_REF] on the spectrum of the Dirichlet realization of ∆ f,h in Ω to L Dir f,h . Domain of attraction of a subset M of Ω for the -∇f dynamics in Ω. Let x ∈ Ω and ϕ t (x) denote the solution to the ordinary differential equation

d dt ϕ t (x) = -∇f (ϕ t (x)) with ϕ 0 (x) = x, (4) 
on the interval t ∈ [0, t x ], where t x = inf{t ≥ 0, ϕ t (x) / ∈ Ω} > 0. Let x ∈ Ω be such that t x = +∞. The ω-limit set of x, denoted by ω(x), is defined by

ω(x) = {y ∈ Ω, ∃(s n ) n∈N ∈ (R + ) N , lim n→∞ s n = +∞, lim n→∞ ϕ sn (x) = y}.
Let us recall that the ω-limit set ω(x) is included in the set of the critical points of f in Ω. Moreover, if f has a finite number of critical points in Ω, there exists y ∈ Ω such that ω(x) = {y} ⊂ {z ∈ Ω, ∇f (z) = 0}. The domain of attraction of M is then defined by

A Ω (M) = x ∈ Ω, t x = +∞ and ω(x) ⊂ M .

(

) 5 
Principal wells of f in Ω. In all this work, we will assume that the function f : Ω → R a Morse function, i.e. that all its critical points are non degenerate. In particular, f has a finite number of critical points in Ω. Indeed, a critical point of f is isolated from the other critical points of f in the compact set Ω because the Hessian matrix of f at a critical point of f is invertible. Moreover, we shall say that z ∈ Ω is a saddle point of f if it is a critical point of index 1 of f . Let us finally recall the definition of the principal wells of f in Ω which are defined in [29, Section 3.1] when f : Ω → R is a C ∞ Morse function (see also [START_REF] Di Gesù | The exit from a metastable state: concentration of the exit point distribution on the low energy saddle points, part 1[END_REF]Section 2.1]). For all local minimum point x of f in Ω and λ > f (x), we denote by C(λ, x) the connected component of {f < λ} in Ω containing x. Moreover, one defines λ(x) := sup{λ > f (x), C(λ, x) ∩ ∂Ω = ∅} and C(x) := C(λ(x), x).

For x a minimum point of f in Ω, we call C(x) a principal well of f in Ω. The set of principal wells of f in Ω is the set

C := C(x),
x is a local minimum point of f in Ω}. [START_REF] Bovier | Metastability in reversible diffusion processes. II. Precise asymptotics for small eigenvalues[END_REF] From [START_REF] Peutrec | Small eigenvalues of the Witten laplacian with dirichlet boundary conditions: the case with critical points on the boundary[END_REF]Proposition 7], each C ∈ C is included in Ω and the elements of C are two by two disjoint. Notice finally that for each C ∈ C, it holds C ⊂ A Ω (C) since C is stable for the dynamics (4) (because f is non increasing along the curves defined by ( 4)).

Assumptions on the function f

Let us now introduce the basic assumption of this work.

Assumption (H1). The function f : Ω → R is a C ∞ Morse function and the set {f < min ∂Ω f } is non empty and contains all the local minima of f in Ω. Furthermore, denoting by C 1 , . . . , C N the connected components of {f < min ∂Ω f }, it holds for all j ∈ {1, . . . , N}:

∂C j ∩ ∂Ω = ∅ and C j is an isolated connected component of {f ≤ min ∂Ω f }.
A schematic representation of C 1 , . . . , C N is given in Figure 1 when N = 2 (see also Figure 8 below). Let us now comment the assumption (H1). Notice that under (H1), one has:

min Ω f < min ∂Ω
f and for all j ∈ {1, . . . , N}, C j ⊂ Ω.

The following lemma will allow us to use the results of [START_REF] Peutrec | Small eigenvalues of the Witten laplacian with dirichlet boundary conditions: the case with critical points on the boundary[END_REF].

Lemma 1. When (H1) holds, according to the terminology introduced in [START_REF] Peutrec | Small eigenvalues of the Witten laplacian with dirichlet boundary conditions: the case with critical points on the boundary[END_REF] (see also [START_REF] Bovier | Metastability in reversible diffusion processes. II. Precise asymptotics for small eigenvalues[END_REF]), the function f has exactly N principal wells in Ω which are C 1 , . . . , C N .

Proof. Under (H1), it follows that for all local minima x of f in Ω, λ(x) = min ∂Ω f and C(x) = C j where j ∈ {1, . . . , N} is such that x ∈ C j . Thus, it holds C = {C 1 , . . . , C N }.

From Lemma 1 and [29, Proposition 12], for z ∈ ∂C j ∩ ∂Ω (notice that z ∈ arg min ∂Ω f ) one has:

a. If ∇f (z) = 0, then, z is a saddle point of f . b. If ∇f (z) = 0, then ∂ n f (z) > 0, where ∂ n f (z) = ∇f (z) • n Ω (z)
is the normal derivative of f (where n Ω (z) is the outward normal to Ω at z).

For j ∈ {1, . . . , N}, the assumption that ∂C j ∩ ∂Ω = ∅ ensures that the exit event from Ω when

X 0 = x ∈ A Ω (C j ) is associated with a point z ∈ ∂C j ∩ ∂Ω when h → 0 (see indeed the prefactor appearing in the asymptotic equivalents of E x [τ Ω c ] in Theorem 1 below). {f = min ∂Ω f } {f = min Ω f } C 1 C 2 z 1 z 2 x 1 x 3 x 2 z
Figure 1: A one dimensional case when (H1) is satisfied with N 0 = N = 2 (notice that (H2) is always satisfied in dimension one), see [START_REF] Day | Exponential leveling for stochastically perturbed dynamical systems[END_REF]. Here, the set of local minima of f is

{x 1 , x 2 , x 3 } with arg min Ω f = {x 1 , x 3 }. The points z 1 and z 2 satisfy z 1 ∈ ∂C 1 ∩ ∂Ω, f (z 1 ) = 0, and f (z 2 ) = 0. Moreover, A Ω (C 1 ) = (z 1 , z), A Ω (C 2 ) = (z, z 2 ).
When (H1) is satisfied, we denote by N 0 the number of C j 's which contain a point in arg min Ω f , i.e. N 0 := Card j ∈ {1, . . . , N}, arg min

Ω f ∩ C j = ∅ . (8) 
In all this work, we will assume that {C 1 , . . . , C N } are ordered such that for all j ∈ {1, . . . , N 0 }, arg min Ω f ∩ C j = ∅. Let us now introduce the following and last assumption on the function f .

Assumption (H2). The function f : Ω → R satisfies (H1) and for all j ∈ {1, . . . , N} and

z ∈ ∂C j ∩ ∂Ω, a. If ∇f (z) = 0, z is a nondegenerate global minimum point of f | ∂Ω .
b. If ∇f (z) = 0, the outward normal n Ω (z) to Ω at z is an eigenvector associated with the negative eigenvalue of Hess f (z).

Notice that in dimension 1, (H2) is always satisfied. When (H1) and (H2) hold, from [29, Theorem 2], Lemma 1, and (3), there exists C > 0, for all j ∈ {1, . . . , N 0 }, there exits β j ∈ {0, -1/2} such that, for h small enough:

C -1 h β j e -2 h (min ∂Ω f -min Ω f ) ≤ λ j,h ≤ C h β j e -2 h (min ∂Ω f -min Ω f ) .
Consequently, if N 0 ≥ 2, the principal barrier of f in Ω is thus degenerate and equal min ∂Ω fmin Ω f . Point a in (H2) is convenient for computations, it can be relaxed using a similar procedure to [START_REF] Nectoux | Sharp estimate of the mean exit time of a bounded domain in the zero white noise limit[END_REF] (see also [START_REF] Borisov | Asymptotic analysis of exit time for dynamical systems with a single well potential[END_REF]). When point b in (H2) is satisfied, each z ∈ ∂C j ∩ ∂Ω (j ∈ {1, . . . , N}) such that ∇f (z) = 0 is a nondegenerate global minimum point of f | ∂Ω (see [START_REF] Peutrec | Small eigenvalues of the Witten laplacian with dirichlet boundary conditions: the case with critical points on the boundary[END_REF]Proposition 12]). In particular, under (H2), for all j ∈ {1, . . . , N}, ∂C j ∩ ∂Ω consists of a finite number of points. Point b in (H2) will be needed to use the results of [START_REF] Peutrec | Small eigenvalues of the Witten laplacian with dirichlet boundary conditions: the case with critical points on the boundary[END_REF] in Section 2.7 and without this assumption, the prefactors appearing in Theorem 1 below might not be valid anymore, as explained in [START_REF] Peutrec | Small eigenvalues of the Witten laplacian with dirichlet boundary conditions: the case with critical points on the boundary[END_REF]Section 1.4].

Main result

When the function f satisfies the assumptions (H1) and (H2), one defines for j ∈ {1, . . . , N}:

Θ j,1 = z∈∂C j ∩∂Ω, ∇f (z) =0 ∂ n f (z) π 1 2 det Hessf | ∂Ω (z) -1 2 y∈arg min C j f
det Hessf (y)

-1 2 and Θ j,2 = z∈∂C j ∩∂Ω, ∇f (z)=0 |µ z | π det Hessf (z) -1 2 y∈arg min C j f det Hessf (y) -1 2
where µ z is the negative eigenvalue of Hess f (z). By convention, when d = 1, det Hessf | ∂Ω (z) = 1. The main result of this work is the following.

Theorem 1. Let f : Ω → R be such that Assumptions (H1) and (H2) are satisfied. Then:

1. Let K be a compact subset of Ω. Then, for any δ > 0, it holds for h small enough:

sup x∈K E x [τ Ω c ] ≤ e 2 h (min ∂Ω f -min Ω f +δ) .
2. Let j ∈ {1, . . . , N 0 } (see [START_REF] Day | Exponential leveling for stochastically perturbed dynamical systems[END_REF]) and K be a compact subset of A Ω (C j ) (see [START_REF] Bovier | Metastability: a potential-theoretic approach[END_REF]). Then, for all x ∈ K, it holds in the limit h → 0:

E x [τ Ω c ] = e 2 h (min ∂Ω f -min Ω f ) Θ j,1 h -1 2 + Θ j,2 + O( √ h)
, uniformly with respect to x ∈ K.

3. Let j ∈ {N 0 +1, . . . , N} (with the convention that {N 0 +1, . . . , N 0 } = ∅) and K be a compact subset of A Ω (C j ). Then, it holds for h small enough:

min x∈K E x [τ Ω c ] ≥ e 2 h (min ∂Ω f -min C j f ) Θ j,1 h -1 2 + Θ j,2 + O( √ h)
.

Furthermore, there exists ε > 0, such that if min C j f -min Ω f < ε, then, when h → 0:

E x [τ Ω c ] = e 2 h (min ∂Ω f -min C j f ) Θ j,1 h -1 2 + Θ j,2 + O( √ h)
, uniformly with respect to x ∈ K.

As explained above, in many applications where the dynamics (1) is used, Ω is a basin of attraction of some local minimum point of f on R d , and therefore, for all j, {z ∈ ∂C j ∩ ∂Ω, ∇f (z) = 0} = ∅. Thus only the saddle points of f appear (through the constants Θ j,2 ) in the equivalents of E x [τ Ω c ] above. This is the main novelty of this work.

The remainder term O( √ h) in items 2 and 3 in Theorem 1 is optimal, as shown in Appendix 1 below. The second statement in item 3 in Theorem 1 can be seen as a perturbation result of the completely degenerate case N 0 = N (i.e. when all the C 's have the same depth, namely min Ω f ). Though it is assumed that C j is an isolated connected component of {f ≤ min ∂Ω f } (and thus for all i = j, ∂C i ∩ ∂C j = ∅), when j ∈ {N 0 + 1, . . . , N}, a tunnelling effect can occur between C j and the others C 's, mixing their properties. This is discussed in Appendix 2 below where we show that when, for some j

≥ N 0 + 1, min C j f is much larger than min Ω f , lim h→0 h ln E x [τ Ω c ] > 2(min ∂Ω f -min C j f ), when x ∈ C j .
Finally, as suggested by computations on one dimensional examples, when C j is not an isolated connected component of {f ≤ min ∂Ω f }, a strong tunnelling effect occurs between C j and the other C i 's which are such that ∂C i ∩∂C j = ∅, and it is much harder to predict the precise asymptotic equivalents of E x [τ Ω c ] when x ∈ C j due to the various situations that happen.

Remark 2. The prefactor Θ j,1 h -12 in Theorem 1 differs from the one derived initially in [START_REF] Kramers | Brownian motion in a field of force and the diffusion model of chemical reactions[END_REF]. Indeed, when z ∈ ∂C j ∩ ∂Ω and ∇f (z) = 0, it holds ∂ n f (z j ) = 0 2 and thus, the Laplace method on which is based the proof of Theorem 1 leads to a dependence on h in this prefactor. The constant Θ j,2 in Theorem 1 is the same as the one obtained in [START_REF] Kramers | Brownian motion in a field of force and the diffusion model of chemical reactions[END_REF] up to a multiplication by 2 (see also [START_REF] Bovier | Metastability in reversible diffusion processes. I. Sharp asymptotics for capacities and exit times[END_REF]Theorem 3.2]): this is expected. Indeed, when the process (1) reaches a critical point z ∈ ∂C j ∩ ∂Ω, because z is a saddle point of f , it has, in the limit h → 0, a one-half probability to come back in Ω and a one-half probability to go in R d \ Ω (this result is not difficult to prove in dimension 1, see [START_REF] Nectoux | Analyse spectrale et analyse semi-classique pour la métastabilité en dynamique moléculaire[END_REF]Section A.1.2.2], and can be extended to higher dimensions using a suitable set of coordinates around z).

According to items 2 and 3 in Theorem 1, for x, y

∈ A Ω (C j ), E x [τ Ω c ] = E y [τ Ω c ](1 + o(1)) when h → 0, where o(1) either equal O( √ h) or O(h).
We will actually derive the following more precise leveling result on

x ∈ Ω → E x [τ Ω c ].
Theorem 2. Let f : Ω → R which satisfies the assumptions (H1) and (H2). Let K ⊂ A Ω (C j ) for some j ∈ {1, . . . , N}. Then, if j ∈ {1, . . . , N 0 } (see [START_REF] Day | Exponential leveling for stochastically perturbed dynamical systems[END_REF]), there exists c > 0 such that for h small enough and for all x, y ∈ K:

E x [τ Ω c ] = E y [τ Ω c ] 1 + O(e -c h ) , uniformly in x, y ∈ K.
Moreover, if j ≥ N 0 + 1, there exists ε > 0, such that if min C j f -min Ω f < ε, there exists c > 0, such that for h small enough for all x, y ∈ K:

E x [τ Ω c ] = E y [τ Ω c ] 1 + O(e -c h ) , uniformly in x, y ∈ K.
Theorem 2 generalizes, as long as the gradient case is concerned, the leveling result [9, Corollary 1] to the case when f has critical points on ∂Ω and several critical points in Ω.

To prove Theorem 1, the starting point is a formula from the potential theory for E x * [τ Ω c ] when x * is a local minimum point of f in Ω. To extract information from this formula, we derive leveling properties on the mean exit time from Ω and committor functions, and we give sharp equivalents on capacities: this is the purpose of Section 2 where more general assumptions than (H1) and (H2) are considered. Then, in Section 3, we prove Theorems 1 and 2. Let us mention that our analysis is not a straightforward extension of the analysis led in [START_REF] Bovier | Metastability in reversible diffusion processes. I. Sharp asymptotics for capacities and exit times[END_REF], because in our setting, we have to analyse the effect of the boundary ∂Ω on the sharp equivalents of E x [τ Ω c ] when x ∈ Ω and h → 0. Moreover, we also consider a set of deterministic initial conditions in Ω with nonzero Lebesgue measure (here A Ω (C j ), j ∈ {1, . . . , N}) and not only the case when X 0 = x * (which requires a further analysis, see Sections 3.2 and 3.3). This is important for the following reason. In many applications where the dynamics ( 1) is used, one is interested in having a sharp estimate on the average time this process remains trapped in Ω when h 1. Since the process (1) has a density with respect to the Lebesgue measure in R d , for all h > 0, the probability that the trajectories of (1) entering in Ω pass through each x * is zero.

Let us mention that our analysis to prove Theorem 1 will allow us to derive Corollary 9 which states in particular that, when ∂C(x) ∩ ∂Ω = {z} (see [START_REF] Bovier | Metastability in reversible diffusion processes. I. Sharp asymptotics for capacities and exit times[END_REF]) and C(x) is an isolated connected component of {f ≤ λ(x)}, the process (1) exits Ω almost surely through any neighborhood of z in the limit h → 0 when X 0 = x ∈ A Ω (C(x)). Since z can be a critical point of f , to the best of our knowledge, Corollary 9 is new for the dynamics (1) (see indeed [START_REF] Day | Mathematical approaches to the problem of noise-induced exit[END_REF] or [31, Section 1]).

Link with the previous results on the mean exit time

Let us now recall the main previous contributions on the study of E x [τ Ω c ]. The limit of h ln E[τ Ω c ] when h → 0 and x ∈ Ω has been studied by Freidlin and Wentzell in [START_REF] Freidlin | Random Perturbations of Dynamical Systems[END_REF] when |∇f | = 0 on ∂Ω (see also [START_REF] Martinelli | Small random perturbations of finite-and infinite-dimensional dynamical systems: unpredictability of exit times[END_REF]). In [START_REF] Day | On the exponential exit law in the small parameter exit problem[END_REF], it is shown that, for x ∈ Ω, E x [τ Ω c ]λ 1,h = 1 + o(1) when h → 0, in the case when ∂ n f > 0 on ∂Ω and f has a unique critical point in Ω (see also [START_REF] Nectoux | Sharp estimate of the mean exit time of a bounded domain in the zero white noise limit[END_REF]). We also refer to [START_REF] Ishii | Metastability for parabolic equations with drift: part 1[END_REF][START_REF] Ishii | Metastability for parabolic equations with drift: Part II. the quasilinear case[END_REF] for the study, when |∇f | = 0 on ∂Ω, of the solution of the parabolic equation L f,h u h = ∂ t u h as h → 0. Let us mention that in [START_REF] Day | On the exponential exit law in the small parameter exit problem[END_REF][START_REF] Freidlin | Random Perturbations of Dynamical Systems[END_REF][START_REF] Ishii | Metastability for parabolic equations with drift: part 1[END_REF][START_REF] Ishii | Metastability for parabolic equations with drift: Part II. the quasilinear case[END_REF][START_REF] Martinelli | Small random perturbations of finite-and infinite-dimensional dynamical systems: unpredictability of exit times[END_REF], the authors also considered non reversible processes. Sharp asymptotic estimates when h → 0 of E x [τ Ω c ] for some x ∈ Ω have been obtained in [START_REF] Sugiura | Asymptotic behaviors on the small parameter exit problems and the singularly perturbation problems[END_REF]Section 4] when |∇f | = 0 on ∂Ω (let us also mention that the assumption that ∂{f < min ∂Ω f } ∩ ∂Ω = ∅ is not allowed there according to the assumption (C3) in [START_REF] Sugiura | Asymptotic behaviors on the small parameter exit problems and the singularly perturbation problems[END_REF]Section 4]). In [START_REF] Mathieu | Spectra, exit times and long time asymptotics in the zero-white-noise limit[END_REF]Theorem 5], when f has a non degenerate principal barrier (i.e. in our setting, when N 0 = 1), it is shown that λ 1,h τ Ω c converges in distribution to an exponential random variable in the limit h → 0 when X 0 = x for some x ∈ Ω (in our setting, for x ∈ C 1 ). A comprehensive review of the literature on this topic can be found in [START_REF] Berglund | Kramers' law: validity, derivations and generalisations[END_REF]. We refer to [START_REF] Maier | Limiting exit location distributions in the stochastic exit problem[END_REF][START_REF] Matkowsky | The exit problem: a new approach to diffusion across potential barriers[END_REF][START_REF] Matkowsky | Eigenvalues of the Fokker-Planck operator and the approach to equilibrium for diffusions in potential fields[END_REF][START_REF] Matkowsky | A singular perturbation approach to kramers' diffusion problem[END_REF][START_REF] Schuss | Theory and applications of stochastic processes: an analytical approach[END_REF] where asymptotic formulas for E[τ Ω c ] when h → 0 have been obtained through formal computations in different settings (see also [START_REF] Devinatz | Asymptotic behavior of the principal eigenfunction for a singularly perturbed dirichlet problem[END_REF][START_REF] Perthame | Perturbed dynamical systems with an attracting singularity and weak viscosity limits in hamilton-jacobi equations[END_REF]). We finally mention [START_REF] Berglund | The Eyring-Kramers law for Markovian jump processes with symmetries[END_REF][START_REF] Berglund | The Eyring-Kramers law for potentials with nonquadratic saddles. Markov Process[END_REF][START_REF] Bovier | Metastability in reversible diffusion processes. I. Sharp asymptotics for capacities and exit times[END_REF][START_REF] Bovier | Metastability in reversible diffusion processes. II. Precise asymptotics for small eigenvalues[END_REF][START_REF] Galves | Metastability for a class of dynamical systems subject to small random perturbations[END_REF][START_REF] Hérau | Tunnel effect and symmetries for Kramers-Fokker-Planck type operators[END_REF][START_REF] Landim | Dirichlet's and Thomson's principles for non-selfadjoint elliptic operators with application to non-reversible metastable diffusion processes[END_REF][START_REF] Peutrec | Sharp spectral asymptotics for non-reversible metastable diffusion processes[END_REF][START_REF] Miclo | Comportement de spectres d'opérateurs de Schrödinger à basse température[END_REF] and references therein for asymptotics estimates on eigenvalues, transition times in the boundary less case.

General results on committor functions and capacities

In all this section, we assume that the function f : Ω → R is a C ∞ Morse function. In this section, we derive leveling results on committor functions and we give asymptotic equivalents of capacities in the limit h → 0.

The committor function

For any closed ball B ⊂ Ω, one denotes by τ B = inf{t ≥ 0, X t ∈ B} the first time the process (1) hits B. Let x * be a local minimum point of f in Ω. In all this work, we consider for all h > 0 a constant r h > 0 such that when h → 0,

r h = O(e -δ * h ), (9) 
where δ * > 0 will be fixed in [START_REF] Bris | A mathematical formalization of the parallel replica dynamics[END_REF]. In the following, h > 0 is chosen small enough so that B r h (x * ) ⊂ C(x * ). The committor function (also called equilibrium potential ) between B r h (x * ) and Ω c is defined by:

p x * : x ∈ Ω → P x [τ Br h (x * ) < τ Ω c ]. (10) 
A schematic representation of C(x * ) and B r h (x * ) is given in Figure 2 when [START_REF] Bovier | Metastability in reversible diffusion processes. I. Sharp asymptotics for capacities and exit times[END_REF]) and B r h (x * ). On the figure ∂C(x * ) ∩ ∂Ω is non empty and equals {z 1 , z 2 }.

∂C(x * ) ∩ ∂Ω = ∅. {f = λ(x * )} C(x * ) Ω ∂Ω r h x * z 1 z 2 Figure 2: Schematic representation of C(x * ) (see

A formula from the potential theory

In this section, we recall a formula from the potential theory which is used in this work (see [START_REF] Devinatz | Asymptotic behavior of the principal eigenfunction for a singularly perturbed dirichlet problem[END_REF]), which can be found for instance in [START_REF] Bovier | Metastability: a potential-theoretic approach[END_REF]. Let us denote by G Ω be the Green function of L f,h associated with homogeneous Dirichlet boundary conditions on ∂Ω. The equilibrium measure e Br h (x * ),Ω c associated with the couple (B r h (x * ), Ω c ) (see [6, Section 2] and more precisely (2.10) there) is defined as the unique measure on ∂B r h (x * ) such that

p x * (x) = ∂Br h (x * )
G Ω (x, y)e Br h (x * ),Ω c (dy).

From [6, Section 2] (see (2.27) there), one has the following relation:

∂Br h (x * ) E z [τ Ω c ] e -2 h f (z) e Br h (x * ),Ω c (dz) = Ω e -2 h f (x) p x * (x) dx, (11) 
where p x * is defined by [START_REF] Day | Mathematical approaches to the problem of noise-induced exit[END_REF]. Let us now define, as in [6, Section 2] (see (2.13) there), the capacity associated with (B r h (x * ), Ω c ):

cap Br h (x * ) (Ω c ) = ∂Br h (x * ) e -2 h f (z) e Br h (x * ),Ω c (dz). (12) 
Finally, let us recall that from [6, Section 2], one has the following variational principle:

cap Br h (x * ) (Ω c ) = h 2 Ω\Br h (x * ) ∇p x * 2 e -2 h f = inf p∈H Br h (x * ),Ω c h 2 Ω\Br h (x * ) |∇p| 2 e -2 h f , (13) 
where we recall p x * is defined by [START_REF] Day | Mathematical approaches to the problem of noise-induced exit[END_REF] and

H Br h (x * ),Ω c = p ∈ H 1 Ω \ B r h (x *
), e -2 h f dx , p = 1 on ∂B r h (x * ), p = 0 on ∂Ω}.

Leveling results on the mean exit time

In order to extract E x * [τ Ω c ] from the left hand side of [START_REF] Devinatz | Asymptotic behavior of the principal eigenfunction for a singularly perturbed dirichlet problem[END_REF], we need a leveling result on the

function z → E z [τ Ω c ] in B r h (x * )
. This is the purpose of the next lemma.

Lemma 3. Let x * be a local minimum point of f in Ω and r h > 0 such that (9) holds for some δ * > 0. Then, there exist h 0 > 0 and c > 0 such that for all h ∈ (0, h 0 ) it holds

max z∈Br h (x * ) E z [τ Ω c ] -E x * [τ Ω c ] ≤ e -c h E x * [τ Ω c ].
Proof. Let us recall that from the Dynkin's formula, the function w :

x → E x [τ Ω c ] is the unique weak solution to L f,h w = 1 in Ω and w = 0 on ∂Ω, (14) 
and

w ∈ C ∞ (Ω, R). Set b := ∇f . For z ∈ B 2 √ h (x * ), set y = (z -x * )/ √ h + x * ∈ B 2 (x * ) and v(y) = w((y -x * ) √ h + x * ) which satisfies for y ∈ B 2 (x * ), - 1 2 ∆v(y) + b((y -x * ) √ h + x * ) √ h • ∇v(y) = 1.
Then, since b(x * ) = 0 (and thus y → b((y

-x * ) √ h + x * )/ √ h on B 2 (x *
) is bounded uniformly with respect to h, as well as its gradient), using the Schauder estimate [18, Corollary 6.3] on y → v(y) on B 2 (x * ), there exits C > 0 independent of h such that, max

y∈B 1 (x * ) ∇v(y) ≤ C (1 + max y∈B 2 (x * ) v(y)).
Thus, coming back to the variable z, it holds:

max z∈B √ h (x * ) ∇ E z [τ Ω c ] ≤ C √ h 1 + max z∈B 2 √ h (x * ) E z [τ Ω c ] .
Moreover, there exist M > 0 and c > 0 such that for h small enough and for all z ∈ B 2

√ h (x * ), E z [τ Ω c ] ≥ M e c h . Indeed, this follows from [15, Lemma 1] together with the fact that for all z ∈ B 2 √ h (x * ), E z [τ Ω c ] ≥ E z [τ U c ] where U is a C ∞ subdomain of Ω such that ∂ n f > 0 on ∂U and {z ∈ U, ∇f (z) = 0} = {x * } (such a U exists since x * is a nondegenerate local minimum point of f in Ω). Hence, one has, for h small enough, max z∈B √ h (x * ) ∇ E z [τ Ω c ] ≤ C √ h max z∈B 2 √ h (x * ) E z [τ Ω c ].
Then, for all z ∈ B √ h (x * ),

E z [τ Ω c ] -E x * [τ Ω c ] ≤ C √ h |z -x * | max z∈B 2 √ h (x * ) E z [τ Ω c ],
and thus, for all z ∈ B r h (x * ),

E z [τ Ω c ] -E x * [τ Ω c ] ≤ C e -δ * h √ h max z∈B 2 √ h (x * ) E z [τ Ω c ].
Finally, it follows from [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF]Theorem 8.20] (applied to the function v):

max z∈B 2 √ h (x * ) E z [τ Ω c ] ≤ C min z∈B 2 √ h (x * ) E z [τ Ω c ],
for some C > 0. In conclusion, one has for h small enough, max

z∈Br h (x * ) E z [τ Ω c ] -E x * [τ Ω c ] ≤ C e -δ * 2h E x * [τ Ω c ].
This concludes proof of Lemma 3.

Using Lemma 3 together with ( 11) and ( 12), one obtains, for all local minima x * of f in Ω, in the limit h → 0:

E x * [τ Ω c ] = Ω e -2 h f (x) p x * (x) dx cap Br h (x * ) (Ω c ) 1 + O(e -c h ) , for some c > 0 independent of h. (15) 
To compute a sharp asymptotic equivalent of E x * [τ Ω c ] when h → 0, we study the asymptotic behaviour of p x * (x) and cap Br h (x * ) (Ω c ) in the limit h → 0. This is the purpose of the next sections.

Leveling results on the committor function

p x * in C(x * )
Let us prove the following leveling property on the committor function p x * (see [START_REF] Day | Mathematical approaches to the problem of noise-induced exit[END_REF]

) in a h- independent neighborhood U of x * in C(x * ) (see (6)). Lemma 4. Let x * be a local minimum point of f in Ω. Let U be a C ∞ subdomain of C(x * ) (see (6)) such that ∂ n f > 0 on ∂U and {z ∈ U, ∇f (z) = 0} = {x * }. Let K be a C ∞ compact subset of U.
Then, for some δ * > 0, there exist h 0 > 0 and c > 0, for all h ∈ (0, h 0 ):

max y∈K p x * (y) -1 ≤ e -c h .
The constant δ * > 0 in (9) will be fixed in [START_REF] Bris | A mathematical formalization of the parallel replica dynamics[END_REF].

Proof. Since the trajectories of the process (1) are continuous, one has for all y ∈ K, {τ Theorem 2], there exist δ * > 0 (see ( 9)),

Ω c < τ Br h (x * ) } ⊂ {τ U c < τ Br h (x * ) } when X 0 = y. Using [8,
h 0 > 0 and c > 0 such that for all h ∈ (0, h 0 ) and y ∈ K, P y [τ U c ≥ τ Br h (x * ) }] ≤ e -c h . This concludes the proof of Lemma 4.
With Lemma 4, we can extend the leveling property on p x * to A Ω (C(x * )). Proposition 5. Let x * be a local minimum point of f in Ω. Let K be a compact subset of A Ω (C(x * )) (see [START_REF] Bovier | Metastability in reversible diffusion processes. I. Sharp asymptotics for capacities and exit times[END_REF] and (5)). Then, there exist h 0 > 0 and c > 0 such that for all h ∈ (0, h 0 ), one has:

max y∈K p x * (y) -1 ≤ e -c h .
This implies in particular that, using the Laplace method, for all k ∈ {1, 2}, in the limit h → 0:

C(x * ) p k x * e -2 h f = (hπ) d 2 e -2 h min C(x * ) f y∈arg min C(x * ) f
det Hessf (y)

-1
Proof. Let us introduce the function q x * :

y → 1 -p x * (y) which is the C ∞ (Ω \ B r h (x * ), R) solution to - h 2 ∆q x * = -∇f • ∇q x * in Ω \ B r h (x * ), q x * = 1 on ∂Ω and q x * = 0 on ∂B r h (x * ). ( 16 
)
Working with q x * instead of p x * will be convenient to derive the key estimate (25) below. The proof of Proposition 5 is divided into several steps. The first two steps are inspired by [START_REF] Devinatz | Asymptotic behavior of the principal eigenfunction for a singularly perturbed dirichlet problem[END_REF] but we have to take care here with the regularity of q x * which does not belong to H 2 (C(x * )). For that reason, before starting the proof of Proposition 5, we introduce the following sets. Let r * > 0 and U be a smooth subdomain of C(x * ) as in Lemma 4 with moreover U ⊂ C(x * ), such that:

B r * (x * ) ⊂ U. (17) 
For m ∈ N with m ≥ 1, we consider a sequence

(r k ) k=1,...,m ∈ (R) m such that 0 < r 1 < r 2 < . . . < r m < r m+1 := r * . ( 18 
)
It then follows that

B r k (x * ) ⊂ int(B r k+1 (x * )), for k = 1, . . . , m. In the following, h > 0 is chosen small enough so that B r h (x * ) ⊂ int(B r 1 (x * )). ( 19 
)
In the following, C > 0 is a constant which can change from one occurrence to another and which does not depend on h. We are now in position to prove Proposition 5.

Step 1: Let us prove that there exist h 0 > 0, γ > 0 and C > 0 such that for all h ∈ (0, h 0 ),

∇q x * L ∞ (Ω\Br * (x * )) ≤ Ch -γ . (20) 
To this end, we apply recursively H 2 -interior elliptic estimates outside a neighboorhood of B r h (x * ). This will allow us to use Sobolev injections with constants independent of h. Using ( 16) and combining H 2 -interior elliptic estimates and H 2 -boundary elliptic estimates nea ∂Ω (see [14, Theorem 1 and Theorem 4 in Section 6.3]), there exists C > 0 such that:

q x * H 2 (Ω\Br 2 (x * )) ≤ C 1 + h -1 ∇q x * L 2 (Ω\Br 1 (x * )) . (21) 
Moreover, using ( 16), the trace theorem and ( 21) together with the fact that q x * = 0 on ∂B r h (x * ) and q x * = 1 on ∂Ω, there exists C > 0 such that for any ε > 0 and ε > 0,

h ∇q x * 2 L 2 (Ω\Br h (x * )) ≤ C h ∂Ω |∂ n q x * | dσ + Ω\Br h (x * ) |∇f • ∇q x * | ≤ C h ε + h ε q x * 2 H 2 (Ω\Br 2 (x * )) + 1 ε + ε ∇q x * 2 L 2 (Ω\Br h (x * )) ≤ C h ε + h -1 ε ∇q x * 2 L 2 (Ω\Br 1 (x * )) + 1 + 1 ε + ε ∇q x * 2 L 2 (Ω\Br h (x * )) . Choosing ε = h 4(C+1) , one obtains 3 4 h ∇q x * 2 L 2 (Ω\Br h (x * )) ≤ C h ε + h -1 ε ∇q x * 2 L 2 (Ω\Br 1 (x * )) + 1 + h -1 . Thus, since Ω \ B r 1 (x * ) ⊂ Ω \ B r h (x * ) (see (19)), 3h 4 ∇q x * 2 L 2 (Ω\Br 1 (x * )) ≤ C h ε + h -1 ε ∇q x * 2 L 2 (Ω\Br 1 (x * )) + 1 + h -1 .
Then, one chooses ε = h 2 4(C+1) which implies that ∇q x * L 2 (Ω\Br 1 (x * )) ≤ Ch -1 . Thus, from ( 21), there exist C > 0 and h 0 > 0 such that for all h ∈ (0, h 0 ):

q x * H 2 (Ω\Br 2 (x * )) ≤ Ch -2 .
Then, for k ∈ {3, . . . , m}, using H k -interior elliptic estimates and H k -boundary elliptic estimates [14, Theorems 4 and 5 in Section 6.3.2], one obtains recursively that there exists C > 0 such that for h small enough:

q x * H k (Ω\Br k (x * )) ≤ Ch -1 1 + ∇q x * H k-1 (Ω\Br k (x * )) ≤ Ch -k .
Then, choosing m (see [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF]) such that m > d 2 yields (20) using the Sobolev injection

H m (Ω \ B rm (x * )) is continuously embedded in L ∞ (Ω \ B rm (x * )).
Step 2: Let us define for η > 0 the set (see ( 6))

C η (x * ) = C(x * ) ∩ {f < λ(x * ) -η} ⊂ Ω, ( 22 
) Let c * ,M := max{f (y), y ∈ C(x * ) such that ∇f (y) = 0}. ( 23 
)
Since f is a Morse function on Ω, f has a finite number of critical points in Ω, and thus:

c * ,M < λ(x * ). Let us consider η * ∈ (0, λ(x * ) -c * ,M ) such that U ⊂ C η * (x * ) (see (17)-(19)) and η ∈ (0, η * ]. (24) 
According to [29, Proposition 10],

C η (x * ) is a connected component of {f < λ(x * )-η}. Moreover, C η (x *
) is C ∞ because its boundary does not contain critical points of f by choice of η and C η (x * ) ⊂ Ω. Let us now prove that for all η 0 ∈ (0, η * ], there exists α 0 > 0 such that for h small enough:

∇q x * L ∞ (Cη 0 (x * )\Br * (x * )) ≤ e -α 0 h . ( 25 
)
Let η such that 2 m η = η 0 (see [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF]) where m will be fixed later (notice that η ≤ η * ). Notice that ( 16) can be rewritten as div e -2 h f ∇q x * = 0 on Ω \ B r h (x * ). Therefore, using [START_REF] Helffer | Spectral theory and its applications[END_REF], the Green formula, q x * ≤ 1, and q x * = 0 on ∂B r h (x * ), there exist C > 0 and γ > 0 such that,

C η/2 (x * )\Br h (x * ) |∇q x * | 2 e -2 h f = ∂C η/2 (x * )\Br h (x * ) q x * e -2 h f ∂ n q x * ≤ C h γ e -2 h (λ(x * )-η 2 ) , since ∂C η/2 (x * ) ⊂ {f = λ(x * ) -η 2 }. In addition, since C η (x * ) \ B r h (x * ) ⊂ C η/2 (x * ) \ B r h (x * ) it holds, e -2 h (λ(x * )-η) Cη(x * )\Br h (x * ) |∇q x * | 2 ≤ Cη(x * )\Br h (x * ) |∇q x * | 2 e -2 h f ≤ C h γ e -2 h (λ(x * )-η 2 ) .
Therefore, using in addition [START_REF] Hänggi | Reaction-rate theory: fifty years after kramers[END_REF], there exists β > 0 such that for h small enough,

Cη(x * )\Br 1 (x * ) |∇q x * | 2 ≤ Cη(x * )\Br h (x * ) |∇q x * | 2 ≤ C h γ e -η h ≤ C e -β h .
Thus, from ( 16), we deduce that h small enough, ∆q x * L 2 (Cη(x * )\Br 1 (x * )) ≤ C e -β 2h . In the following, β > 0 is a constant which may change from one occurrence to another and does not depend on h.

Let χ 1 ∈ C ∞ c (C η (x * ) \ B r 1 (x * ), [0, 1]) be such that χ 1 ≡ 1 on C * ,2η \ B r 2 (x * ). Since ∆(χ 1 q x * ) = χ 1 ∆q x * + q x * ∆χ 1 + 2∇χ 1 • ∇q x * , there exists C, such that ∆(χ 1 q x * ) L 2 (Cη(x * )\Br 1 (x * )) ≤ C for h small enough. From the H 2 -elliptic regularity estimate on C η (x * ) \ B r 1 (x * ), one has: q x * H 2 (C 2η (x * )\Br 2 (x * )) ≤ C.
Let α ∈ (0, 1) be an irrational number such that p 1 = 2d d-2α > 0. From the Gagliardo-Nirenberg interpolation inequality (see [43, Lecture II]), the following inequality holds:

C ∇q x * L p 1 (C 2η (x * )\Br 2 (x * )) ≤ q x * α H 2 (C 2η (x * )\Br 2 (x * )) ∇q x * 1-α L 2 (C 2η (x * )\Br 2 (x * )) + ∇q x * L 2 (C 2η (x * )\Br 2 (x * )) ≤ e -β h .
Then, from ( 16), one deduces that ∆q

x * L p 1 (C 2η (x * )\Br 2 (x * )) ≤ C e -β h . Using a cutoff function χ 2 ∈ C ∞ c (C 2η (x * ) \ B r 2 (x * ), [0, 1]) such that χ 2 ≡ 1 on C 4η (x * ) \ B r 3 (x * ), we get from the W 2,p 1 -elliptic regularity estimate, that q x * W 2,p 1 (C 4η (x * )\Br 3 (x * )) ≤ C. Let p 2 = 2d d-4α
, from the Gagliardo-Nirenberg interpolation inequality (see [43, Lecture II]), one obtains:

C ∇q x * L p 2 (C 4η (x * )\Br 3 (x * )) ≤ q x * α W 2,p 1 (C 4η (x * )\Br 3 (x * )) ∇q x * 1-α L p 1 (C 4η (x * )\Br 3 (x * )) + ∇q x * L p 1 (C 4η (x * )\Br 3 (x * )) ≤ e -β h .
We repeat this procedure m -2 times such that d -2mα ≤ 0, the Galgliardo-Nirenberg interpolation inequality implies that ∇q x * L ∞ (C 2 m η (x * )\Br m+1 (x * )) ≤ C e -β h which ends the proof of ( 25) since η 0 = 2 m η and r m+1 = r * (see [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF]).

Step 3: Let r * * > r * such that B r * * (x * ) ⊂ U (see [START_REF] Galves | Metastability for a class of dynamical systems subject to small random perturbations[END_REF]). From Lemma 4 applied with K = B r * * (x * ), there exists δ * > 0 and c > 0 such that for all h small enough: [START_REF] Galves | Metastability for a class of dynamical systems subject to small random perturbations[END_REF] and ( 24)) and thus, when

max y∈Br * * (x * ) |p x * (y) -1| = O(e -c h ). ( 26 
) When the dimension d ≥ 2, the open set C η (x * ) \ B r * (x * ) is path-connected. Indeed B r * (x * ) is a closed ball included in the open connected set C η (x * ) (see
d ≥ 2, C η (x * ) \ B r * (x * ) is connected. Since it is moreover locally path-connected, C η (x * ) \ B r * (x * ) is path-connected. When d = 1, C η (x * )\B r * (x * ) is the disjoint union of two open intervals I 1 and I 2 .
Let z * * ∈ ∂B r * * (x * ). Then, when d ≥ 2 for η > 0 small enough and for all y

∈ C η (x * ) \ B r * (x * ), considering a smooth curve γ : [0, 1] → C η (x * ) \ B r * (x * ) such that γ(0) = y and γ(1) = z * * (because C η (x * ) \ B r * (x *
) is open, path-connected, and locally smooth), it follows from (25) that there exists β > 0 such that for h small enough:

sup y∈Cη(x * )\Br * (x * ) p x * (y) -p x * (z * * ) ≤ e -β h .
Let us mention that when d = 1, the previous estimate also holds by choosing

z * * ∈ I k if y ∈ I k (k ∈ {1, 2}
). Using in addition [START_REF] Bris | A mathematical formalization of the parallel replica dynamics[END_REF], for η > 0 small enough, there exists c > 0, for h small enough, one has:

p x * (y) = 1 + O(e -c h ), uniformly on y ∈ C η (x * ). ( 27 
)
This concludes the proof of Proposition 5 when K ⊂ C(x * ) (indeed in this case there exists η > 0 such that K ⊂ C η (x * )).

Step 4: Let us consider K ⊂ A Ω (C(x * )). In view of [START_REF] Peutrec | Sharp spectral asymptotics for non-reversible metastable diffusion processes[END_REF], it is enough to consider the case when

K ∩ C η (x * ) = ∅. Since C(x * ) ⊂ A Ω (C(x * )) and C(x * ) is open, there exists T K ≥ 0 such that for all x ∈ K, ϕ T K (x) ∈ C(x * ), (28) 
where we recall ϕ t (x) is defined by (4). Moreover, because K ⊂ A Ω (C(x * )), for all x ∈ K, t x = +∞ (i.e. ϕ t (x) ∈ Ω for all t ≥ 0) and thus {ϕ t (x), t ∈ [0, T K ] and x ∈ K} ⊂ Ω. Since K is compact, {ϕ t (x), t ∈ [0, T K ] and x ∈ K} is therefore a compact subset of Ω. Thus, there exists δ > 0 such that all continuous curves γ : [0,

T K ] → Ω such that ∃x ∈ K, sup t∈[0,T K ] γ(t) -ϕ t (x) ≤ δ, satisfy: ∀t ∈ [0, T K ], γ(t) ∈ Ω. ( 29 
)
Moreover, up to choosing δ > 0 smaller, there exists α K > 0 such that

ϕ T K (x) + z, x ∈ K and |z| ≤ δ ⊂ C α K (x * ) x * / ∈ ϕ t (x) + z, (x, t) ∈ K × [0, T K ] and |z| ≤ δ . ( 30 
)
These conditions imply that when X 0 = x ∈ K and sup t∈[0,T K ] X t -ϕ t (x) ≤ δ, it holds from ( 29) and ( 30):

T K < τ Br h (x * ) (for h small enough), τ Ω > T K and X T K ∈ C α K (x * ). (31) 
From the proof of [9, Lemma 1] and its note, there exists η K > 0 such that for h small enough, it holds:

sup x∈K P x sup t∈[0,T K ] X t -ϕ t (x) ≥ δ ≤ e -η K h . ( 32 
)
Let us now concludes the proof of Proposition 5. For x ∈ K, one writes p x * (x) = a(x) + b(x), where a(x

) = P x τ Br h (x * ) < τ Ω c ∩ sup t∈[0,T K ] X t -ϕ t (x) < δ , and b(x) = P x τ Br h (x * ) < τ Ω c ∩ sup t∈[0,T K ] X t -ϕ t (x) ≥ δ .
Using [START_REF] Lelièvre | Low temperature asymptotics for quasistationary distributions in a bounded domain[END_REF], it holds for h small enough: max x∈K b(x) ≤ e -η K h . Using [START_REF] Lelièvre | The exit from a metastable state: concentration of the exit point distribution on the low energy saddle points II[END_REF], [START_REF] Peutrec | Sharp spectral asymptotics for non-reversible metastable diffusion processes[END_REF] with C α K (x * ), [START_REF] Lelièvre | Low temperature asymptotics for quasistationary distributions in a bounded domain[END_REF], and the Markov property of the process (1), there exists c > 0 such that for all x ∈ K, one has when h → 0:

a(x) = E x E X T K 1 {τ Br h (x * ) <τ Ω c 1 sup t∈[0,T K ] Xt-ϕt(x) <δ = 1 + O e -c h × P x sup t∈[0,T K ] X t -ϕ t (x) ≤ δ = 1 + O e -c h , uniformly in x ∈ K.
Hence, there exists c > 0 such that for all x ∈ K, one has when h → 0: p x * (x) = 1 + O e -c h , uniformly in x ∈ K. This concludes the proof of Proposition 5.

We will also need a leveling result of p x * in C ⊂ C (see [START_REF] Bovier | Metastability in reversible diffusion processes. II. Precise asymptotics for small eigenvalues[END_REF]) when C = C(x). This leveling result is the purpose of Proposition 7 below which is based on an estimate on the most probable places of exit from a bounded domain when N = 1, see the next section.

The case when N = 1

In this section, we prove the following result. Proposition 6. Assume that (H1) is satisfied with N = 1 (i.e. {f < min ∂Ω f } is connected). Let K be compact subset of A Ω ({f < min ∂Ω f }) (see [START_REF] Bovier | Metastability: a potential-theoretic approach[END_REF]) and Γ be an open subset of ∂Ω such that min Γ f > min ∂Ω f . Then, there exists c > 0 s.t. for h small enough:

max x∈K P x [X τ Ω c ∈ Γ] ≤ e -c h . (33) 
In Corollary 9 below, we will generalize [START_REF] Lelièvre | Partial differential equations and stochastic methods in molecular dynamics[END_REF] to more general settings (e.g. when N > 1).

Before going through the proof of Proposition 6, we recall the notion of separating saddle points of f in Ω. A point z ∈ Ω is a separating saddle point of f in Ω if it is a saddle point of f and for r > 0 small enough, B r (z) ∩ {f < f (z)} has two connected components which are included in two different connected components of {f < f (z)}. The notion of separating saddle points was first introduced in [START_REF] Hérau | Tunnel effect and symmetries for Kramers-Fokker-Planck type operators[END_REF] in the boundaryless case and then adapted to the boundary case in [START_REF] Di Gesù | The exit from a metastable state: concentration of the exit point distribution on the low energy saddle points, part 1[END_REF][START_REF] Peutrec | Small eigenvalues of the Witten laplacian with dirichlet boundary conditions: the case with critical points on the boundary[END_REF].

Proof. Let f : Ω → R be a C ∞ function.
Before starting the proof of Proposition 6, we introduce some preliminary results we will need. Let us choose an eigenfunction u 1,h associated with the principal eigenvalue λ 1,h of L Dir f,h such that

u 1,h > 0 on Ω and Ω u 2 1,h e -2 h f = 1. ( 34 
)
For ease of notation, we write L 2 w (Ω) (resp. L 2 (Ω)) for L 2 (Ω, e -2 h f dx) (resp. for L 2 (Ω, dx)). The subscript w stands for the fact that we consider the weight function e -2 h f in the scalar product. The proof of Proposition 6 is based on the use of the quasi-stationary distribution of the process [START_REF] Berglund | Kramers' law: validity, derivations and generalisations[END_REF] in Ω: we will indeed first prove (33) when X 0 is distributed according to this distribution, and then, with the help of a leveling result, we will derive it when X 0 = x ∈ K. A quasi-stationary distribution for the process [START_REF] Berglund | Kramers' law: validity, derivations and generalisations[END_REF] in Ω is a probability measure µ supported in Ω such that for all measurable sets A ⊂ Ω and for all t ≥ 0,

µ(A) = Ω P x [X t ∈ A, t < τ Ω ] µ(dx) Ω P x [t < τ Ω c ] µ(dx)
.

Let us recall that (see for example [START_REF] Bris | A mathematical formalization of the parallel replica dynamics[END_REF]) the unique quasi-stationary distribution ν h of the dynamics [START_REF] Berglund | Kramers' law: validity, derivations and generalisations[END_REF] in Ω is the measure

ν h (dx) = u 1,h (x)e -2 h f (x) Ω u 1,h e -2 h f dx. (35) 
Moreover, according to [START_REF] Bris | A mathematical formalization of the parallel replica dynamics[END_REF], when X 0 ∼ ν h , X τ Ω c has a density with respect to the Lebesgue measure on ∂Ω which is given by:

z ∈ ∂Ω → - h 2λ 1,h ∂ n u 1,h (z)e -2 h f (z) Ω u 1,h e -2 h f . ( 36 
)
Let us now assume that f : Ω → R is a Morse function. From the analysis led in the proof of [29, Theorem 1] together with (3), for any L 2 w (Ω)-normalized eigenfunction w h of L Dir f,h associated with an eigenvalue of order o(1) when h → 0, it holds, for every neighborhood W of the local minima of f in Ω: lim

h→0 w h 1 W L 2 w (Ω) = 1. (37) 
Let us now assume that (H1) is satisfied with N = 1. Let us define c M = max{f (x), x ∈ {f < min ∂Ω f } such that ∇f (x) = 0} < min ∂Ω f . In the following, for α > 0, C α denotes the open set {f < min ∂Ω f -α}. Let us recall that for α < min ∂Ω f -c M , C α is a smooth connected open subset of Ω (see indeed the lines after ( 22)). Moreover, for any c 0 > 0, we denote by V 0 a smooth open connected subset of Ω such that {f < min ∂Ω f } ⊂ V 0 and f ≤ min ∂Ω f + c 0 on V 0 . Since ∂{f < min ∂Ω f } ∩ ∂Ω = ∅, we choose V 0 such that ∂V 0 ∩ ∂Ω has a non zero Lebesgue measure (in ∂Ω). We are now ready to prove Proposition 6. The proof is divided into several steps.

Step 1: Let us prove that:

lim h→0 h log λ 1,h = -2 min ∂Ω f -min Ω f and lim inf h→0 h log λ 2,h ≥ -2 c M -min Ω f . (38) 
When (H2) holds, ( 38) is a consequence of [29, Theorem 2] and (3). Moreover, under (H1), the set ∂{f < min ∂Ω f } ∩ Ω does not contain separating saddle point of f in Ω. Thus, if (H2) holds, according to (3) and [29, Theorem 3] (with m * = 1 and C j (x 1 ) = {f < min ∂Ω f } there), one has more precisely when h → 0:

λ 1,h = Θ 1,1 h -1 2 (1 + O(h)) + Θ 1,2 (1 + O( √ h)) e -2 h (min ∂Ω f -min Ω f ) , (39) 
where Θ 1,1 and Θ 1,2 are defined at the beginning of Section 1.4 (recall that C 1 = {f < min ∂Ω f } because we assume here that N = 1). Actually, we will prove ( 38) and ( 33) without assuming (H2). Let us first prove the first limit in [START_REF] Matkowsky | Eigenvalues of the Fokker-Planck operator and the approach to equilibrium for diffusions in potential fields[END_REF]. Let χ ∈ C ∞ c ({f < min ∂Ω f }) be such that χ = 1 on C α , for α > 0. Then, it follows from the Laplace method that for all α > 0 small enough such that arg min Ω f ⊂ C α , there exists C > 0 such that for h small enough:

λ 1,h ≤ L f,h χ χ L 2 w (Ω) , χ χ L 2 w (Ω) L 2 w (Ω) = h 2 ∇χ 2 L 2 w (Ω) χ 2 L 2 w (Ω) ≤ C h -d 2 +1 e -2 h (min ∂Ω f -min Ω f -α) . (40) 
Because α > 0 is arbitrary, this proves that lim h→0 h log λ 1,h ≤ -2(min ∂Ω f -min Ω f ). To prove the reverse inequality, inspired by [32, Lemma 5.9], let us argue by contradiction: assume that there exists c > 0 and a sequence (h n ) n∈N such that lim n→+∞ h n = 0 and for all n ≥ 0, λ 1,hn ≤ e -2 hn (min ∂Ω f -min Ω f +c) . Let c 0 < c. From (34) and since f ≤ min ∂Ω f + c 0 on V 0 , it holds:

h n e -2 hn (min ∂Ω f +c 0 ) V 0 |∇u 1,hn | 2 2 ≤ h n 2 V 0 |∇u 1,hn | 2 e -2 hn f ≤ e -2 hn (min ∂Ω f -min Ω f +c) , (41) 
which implies that:

∇(u 1,hn e -1 hn min Ω f ) 2 L 2 (V 0 ) ≤ 2 hn e -c-c 0 hn → 0 as n → ∞. Defining c n = V 0 u n e -1 hn min Ω f V 0 1 -1
, the Poincaré-Wirtinger inequality (valid because V 0 is a smooth bounded domain) then implies:

lim n→+∞ u n e -1 hn min Ω f -c n L 2 (V 0 ) = 0 and thus, lim n→+∞ u n e -1 hn min Ω f -c n H 1 (V 0 ) = 0.
Because u n | ∂V 0 ∩∂Ω = 0, it follows from the the trace theorem, that lim n→+∞ c n = 0. Therefore, it holds: lim n→+∞ u n e -1 hn min Ω f L 2 (V 0 ) = 0 and thus, lim n→+∞ u n e -1 hn f L 2 (V 0 ) = 0 which contradicts [START_REF] Matkowsky | The exit problem: a new approach to diffusion across potential barriers[END_REF]. This concludes the proof of the first limit in [START_REF] Matkowsky | Eigenvalues of the Fokker-Planck operator and the approach to equilibrium for diffusions in potential fields[END_REF]. Let us now prove the second limit in [START_REF] Matkowsky | Eigenvalues of the Fokker-Planck operator and the approach to equilibrium for diffusions in potential fields[END_REF]. For that purpose, we argue again by contradiction: assume that there exists a constant c ∈ (0, min ∂Ω f -c M ) and a decreasing sequence (h n ) n∈N such that lim n→+∞ h n = 0 + and for all n ∈ N, λ 2,hn ≤ e -2 hn (c M -min Ω f +c) . Then, for α > 0 small enough (such that 1 Cα = 0), using the Max-Min principle (see for example [START_REF] Helffer | Spectral theory and its applications[END_REF]Theorem 11.7]), for all n ∈ N, there exists a

L 2 w (Ω)-normalized function ϕ n ∈ D(L Dir f,h ) such that ϕ n , 1 L 2 w (Cα) = 0 and L f,hn ϕ n , ϕ n L 2 w (Ω) = h n 2 ∇ϕ n 2 L 2 w (Ω) ≤ e -2
hn (c M -min Ω f +c) .

Choosing α = min ∂Ω f -c M -c 2 and reasoning as in [START_REF] Nectoux | Analyse spectrale et analyse semi-classique pour la métastabilité en dynamique moléculaire[END_REF], one deduces that:

∇(ϕ n e -1 hn min Ω f ) 2 L 2 (Cα) ≤ 2 hn e -c-c/2 hn → 0 as n → ∞. The Poincaré-Wirtinger inequality (valid because C α is a smooth bounded domain since α < min ∂Ω f -c M ), there exists c n ∈ R such that lim n→+∞ ϕ n e -1 hn min Ω f -c n L 2 (Cα) = 0. Therefore, lim n→+∞ ϕ n e -1 hn f -c n e -1 hn (f -min Ω f ) L 2 (Cα) = 0.
Since ϕ n , 1 L 2 w (Cα) = 0, it holds:

ϕ n e -1 hn f -c n e -1 hn (f -min Ω f ) 2 L 2 (Cα) = ϕ n e -1 hn f 2 L 2 (Cα) + c 2 n e -1 hn (f -min Ω f ) 2 L 2 (Cα) .
Thus, lim n→+∞ ϕ n e -1 hn f L 2 (Cα) = 0 which contradicts [START_REF] Matkowsky | The exit problem: a new approach to diffusion across potential barriers[END_REF]. This concludes the proof (38).

Step 2: In this step, one proves that in the limit h → 0:

Ω u 1,h e -2 h f = (πh) d 4 y∈arg min Ω f
det Hessf (y)

-1 2 e -1 h min Ω f . (42) 
By [START_REF] Matkowsky | Eigenvalues of the Fokker-Planck operator and the approach to equilibrium for diffusions in potential fields[END_REF], there exists c > 0 such that for h small enough, λ 1,h = O(e -c h )λ 2,h . Therefore, there exists β 0 > 0 such that for all β ∈ (0, β 0 ), there exists h 0 > 0 such that for all h ∈ (0, h 0 ), the L 2 w -orthogonal projector π h := π 0,e

-2 h (min ∂Ω f -min Ω f -β)
L Dir f,h has rank 1. From the following spectral estimate

(1 -π h ) χ χ L 2 w (Ω) 2 L 2 w (Ω) ≤ C e 2 h (min ∂Ω f -min Ω f -β) L f,h χ χ L 2 w (Ω) , χ χ L 2 w (Ω) L 2 w (Ω) ,
and in view of [START_REF] Miclo | Comportement de spectres d'opérateurs de Schrödinger à basse température[END_REF], it holds for some C > 0,

(1 -π h ) χ χ L 2 w (Ω) 2 L 2 w (Ω) ≤ C h d 2 +1 e -2 h (β-α) .
Then, choosing α < β, there exists c > 0 such that for h small enough

(1 -π h ) χ χ L 2 w (Ω) L 2 w (Ω) = O(e -c h ).
Thus, there exists c > 0 such that (using in addition the fact that u 1,h > 0 and χ ≥ 0 on Ω),

u 1,h = χ χ L 2 w (Ω) + O(e -c h ) in L 2
w . This implies that there exists c > 0 such that for h small enough:

Ω u 1,h e -2 h f = Ω χ e -2 h f χ L 2 w (Ω) + O(e -c h ) Ω e -2 h f = Ω χ χ L 2 w (Ω) e -2 h f + O e -1 h min Ω f +c .
The lower bound in ( 42) is then obtained with the Laplace method for the terms Ω χ e -2 h f and Ω χ 2 e -2 h f .

Step 3: Let us now prove that for all measurable subset Σ of ∂Ω, one has:

lim sup h→0 h log P ν h [X τ Ω c ∈ Σ] ≤ -min Σ f -min ∂Ω f , (43) 
where we recall that ν h is the quasi stationary distribution of the process [START_REF] Berglund | Kramers' law: validity, derivations and generalisations[END_REF] in Ω (see [START_REF] Martinelli | Small random perturbations of finite-and infinite-dimensional dynamical systems: unpredictability of exit times[END_REF]).

Notice that ( 43) implies (33) when X 0 ∼ ν h . According to [START_REF] Mathieu | Spectra, exit times and long time asymptotics in the zero-white-noise limit[END_REF] and ( 42), using the Trace theorem, for any δ > 0 there exists h 0 > 0 such that for all h ∈ (0, h 0 ),

P ν h [X τ Ω c ∈ Σ] ≤ h 2λ 1,h e -1 h f u h H 1 (Ω) e -1 h min Σ f e 1 h min Ω f h d 2 . ( 44 
)
Let us now prove that there exists C > 0 such that for h small enough,

e -1 h f u h H 1 (Ω) ≤ Ch -3 2 λ 1,h . (45) 
One first has from (34),

h 2 e -1 h f ∇u 1,h 2 
L 2 = λ 1,h . Moreover, since u 1,h = 0 on ∂Ω, it holds ∇ T (e -1
h f u 1,h ) = 0 on ∂Ω (where ∇ T is the tangential gradient on ∂Ω), the Gaffney inequality (see [START_REF] Schwarz | Hodge decomposition-a method for solving boundary value problems[END_REF]Corollary 2.1.6]) implies that there exist C > 0 independent of h such that,

C e -1 h f ∇u 1,h H 1 (Ω) ≤ e -1 h f ∇u 1,h L 2 (Ω) + div e -1 h f ∇u 1,h L 2 (Ω) + d i,j=1 ∂ i e -1 h f ∂ j u 1,h -∂ j e -1 h f ∂ i u 1,h L 2 (Ω) .
Therefore, there exist C > 0 such that for all h > 0,

e -1 h f ∇u 1,h H 1 (Ω) ≤ C + C h e -1 h f ∇u 1,h L 2 (Ω) + C e -1 h f ∆ u 1,h L 2 (Ω) ≤ C λ 1,h h 3/2 + C e -1 h f ∆ u 1,h L 2 (Ω) .

It remains to estimate the term e

-1 h f ∆ u 1,h L 2 . Multiplying L f,h u 1,h = λ 1,h u 1,
h by e -1 h f and using [START_REF] Maier | Limiting exit location distributions in the stochastic exit problem[END_REF], one obtains that there exists C > 0 such that for h small enough,

e -1 h f ∆ u 1,h L 2 (Ω) ≤ 2 h ∇f L 2 (Ω) e -1 h f ∇u 1,h L 2 (Ω) + λ 1,h ≤ C h λ 1,h √ h + λ 1,h ≤ C λ 1,h h 3 2 
, where we used the fact that lim h→0 λ 1,h = 0 (which follows from [START_REF] Matkowsky | Eigenvalues of the Fokker-Planck operator and the approach to equilibrium for diffusions in potential fields[END_REF]). This concludes the proof of [START_REF] Schuss | Theory and applications of stochastic processes: an analytical approach[END_REF]. Using [START_REF] Perthame | Perturbed dynamical systems with an attracting singularity and weak viscosity limits in hamilton-jacobi equations[END_REF] together with ( 45) and ( 38), one gets [START_REF] Nirenberg | On elliptic partial differential equations[END_REF].

Step 4: Let K be compact subset of {f < min ∂Ω f }. To extend [START_REF] Nirenberg | On elliptic partial differential equations[END_REF] to the case when x ∈ K, let us prove that for any F ∈ C ∞ (∂Ω, R), there exists c > 0 such that for h small enough, max

(x,y)∈K×K E x [F (X τ Ω c )] -E y [F (X τ Ω c )] ≤ e -c h . (46) 
The inequality ( 46) is a leveling result on

x ∈ Ω → E x [F (X τ Ω c )]. Let us denote by v h ∈ H 1 (Ω)
the unique weak solution to the elliptic boundary value problem

h 2 ∆v h -∇f • ∇v h = 0 in Ω and v h = F on ∂Ω,
which actually belongs to C ∞ (Ω, R). Moreover, the Dynkin's formula implies that ∀x ∈ Ω,

v h (x) = E x [F (X τ Ω c )]. Notice that for all h > 0, v h L ∞ (Ω) ≤ F L ∞ (∂Ω)
. With the same arguments as those used to prove [START_REF] Landim | Dirichlet's and Thomson's principles for non-selfadjoint elliptic operators with application to non-reversible metastable diffusion processes[END_REF], for α > 0 small enough there exist h 0 > 0 and c > 0 such that for all h ∈ (0, h 0 ),

∇v h L ∞ (Cα) ≤ e -c h .
Then, since for α > 0 small enough, the open set C α is path-connected (because it is locally path-connected and connected), this proves [START_REF] Schwarz | Hodge decomposition-a method for solving boundary value problems[END_REF].

Step 5: Proof of (33).

Step 5.1: Let K be a compact subset of {f < min ∂Ω f }. Let us prove that for any F ∈ C ∞ (∂Ω, R), there exists c > 0 such that for h small enough,

max y∈K E y [F (X τ Ω c )] -E ν h [F (X τ Ω c )] ≤ e -c h . (47) 
From [START_REF] Martinelli | Small random perturbations of finite-and infinite-dimensional dynamical systems: unpredictability of exit times[END_REF], it holds for α > 0 small enough:

E ν h [F (X τ Ω c )] = Ω v h u 1,h e -2 h f Ω u h e -2 h f = 1 Z h Cα v h u 1,h e -2 h f + 1 Z h Ω\Cα v h u 1,h e -2 h f , (48) 
where Z h := Ω u 1,h e -2 h f . Let us first deal with the second term in [START_REF] Sugiura | Exponential asymptotics in the small parameter exit problem[END_REF]. From ( 42), there exists C > 0 such that for h small enough:

Z -1 h ≤ Ch -d 2 e
1 h min Ω f . For all α > 0 small enough, one has Ω \ C α ∩ arg min Ω f = ∅. Therefore, using in addition [START_REF] Maier | Limiting exit location distributions in the stochastic exit problem[END_REF], for all α > 0 small enough, there exists c > 0 such that when h → 0:

Ω\Cα u 1,h e -2 h f ≤ Ω\Cα e -2 h f ≤ e -1 h (min Ω f +c) . Then, since v h L ∞ (Ω) ≤ F L ∞ (∂Ω) , one obtains that 1 Z h Ω\Cα v h u 1,h e -2 h f = O e -c h . (49) 
Let us now deal with the first term in [START_REF] Sugiura | Exponential asymptotics in the small parameter exit problem[END_REF]. Let α > 0 be small enough. Then, from [START_REF] Schwarz | Hodge decomposition-a method for solving boundary value problems[END_REF], there exists δ α > 0 such that for all y ∈ C α ,

1 Z h Cα v h u 1,h e -2 h f = v h (y) Z h Cα u 1,h e -2 h f + O e -δα h Z h Cα u 1,h e -2 h f (50) 
in the limit h → 0 and uniformly with respect to y ∈ C α . Moreover, for all α > 0 small enough, there exists c > 0 such that in the limit h → 0:

1 Z h Cα u 1,h e -2 h f = 1 + O e -c h . (51) 
This indeed follows from the fact that 1

Z h Cα u 1,h e -2 h f = 1 - 1 Z h Ω\Cα u 1,h e -2 h f ,
together with [START_REF] Sugiura | Asymptotic behaviors on the small parameter exit problems and the singularly perturbation problems[END_REF]. Let us now fix α > 0 sufficiently small. Then, using ( 50) and ( 51), there exist c > 0, δ α > 0 such that for all y ∈ C α :

1 Z h Cα v h u 1,h e -2 h f = v h (y) 1 + O e -c h + O e -δα h (52) 
in the limit h → 0 and uniformly with respect to y ∈ C α . Therefore, using ( 48), ( 49) and ( 52), there exists α 0 > 0, such that for all α ∈ (0, α 0 ), there exists c > 0 such that for h small enough:

E ν h [F (X τ Ω c )] = E y [F (X τ Ω c )] + O e -c h , uniformly with respect to y ∈ C α .
This proves (47) since any compact K of {f < min ∂Ω f } is included in C α for some α > 0.

Step 5.2: End of the proof of [START_REF] Lelièvre | Partial differential equations and stochastic methods in molecular dynamics[END_REF]. To this end, we will use ( 43) and [START_REF] Sorensen | Temperature-accelerated dynamics for simulation of infrequent events[END_REF]. Let us now consider Γ be an open subset of ∂Ω such that min Γ f > min ∂Ω f . Let us mention that (47) holds for smooth functions F on ∂Ω and thus we cannot directly consider F = 1 Γ . Let us consider an open set Σ ⊂ ∂Ω such that Γ ⊂ Σ and min Σ f > min ∂Ω f . Let F be a C ∞ function F on ∂Ω with values in [0, 1] such that F = 1 on Γ and F = 0 on ∂Ω \ Σ. For all y ∈ K (where K is a compact subset of {f < min ∂Ω f }), it holds from (47):

P y [X τ Ω c ∈ Γ] ≤ E y [F (X τ Ω c )] = E ν h [F (X τ Ω c )] + O(e -c h ). Finally, since E ν h [F (X τ Ω c )] ≤ P ν h [X τ Ω c ∈ Σ],
one deduces from [START_REF] Nirenberg | On elliptic partial differential equations[END_REF], that there exists c > 0 such that for h small enough: max

y∈K P y [X τ Ω c ∈ Γ] ≤ e -c h .
This proves [START_REF] Lelièvre | Partial differential equations and stochastic methods in molecular dynamics[END_REF] when K ⊂ {f < min ∂Ω f }. The case when K is a compact subset of A Ω ({f < min ∂Ω f }) is treated with the same arguments as those used in the fourth step in the proof of Proposition 5 (with the large deviations estimate [START_REF] Lelièvre | Low temperature asymptotics for quasistationary distributions in a bounded domain[END_REF]). This concludes the proof of ( 33) and the proof of Proposition 6.

Leveling result of p x * outside C(x * )

In this section we prove the following leveling property on p x * in another sublevel set of f in Ω. Proof. To prove Proposition 7, the strategy consists in using Proposition 6 with a suitable domain Ω x * ,2 ⊂ Ω such that:

(i) Ω x * ,2 is a C ∞ connected open subset of Ω containing C(x * ,2 ). (ii) ∂Ω x * ,2 ∩ ∂Ω is a neighborhood of ∂C(x * ,2 ) ∩ ∂Ω in ∂Ω. (iii) argmin ∂Ωx * ,2 f = ∂C(x * ,2 ) ∩ ∂Ω. (iv) {f < min ∂Ωx * ,2 f } ∩ Ω x * ,2 = C(x * ,2 ) and C(x * ,2 ) contains all the local minima x of f in Ω x * ,2 . (v) {f ≤ min ∂Ωx * ,2 f } ∩ Ω x * ,2 = C(x * ,2 ).
Notice that item (iii) above implies that min ∂Ωx * ,2 f = λ(x * ,2 ) (see ( 6)).

For δ > 0, let

V δ (x * ,2 ) = {x ∈ Ω, d(x, C(x * ,2 )) < δ} 3 be the δ-neighborhood of C(x * ,2 ) in Ω. The set V δ (x * ,2 ) is an open neighborhood of C(x * ,2 ) in Ω. Because C(x * ,2 ) is an isolated connected component of {f ≤ λ(x * ,2
)} (by assumption), for δ > 0 small enough,

{f ≤ λ(x * ,2 )} ∩ V δ (x * ,2 ) = C(x * ,2 ). ( 53 
)
Notice that this implies in particular that

f > λ(x * ,2 ) V δ (x * ,2 ) δ ∂C(x * ,2 ) ∩ ∂Ω f < λ(x * ,2 ) ∂Ω Ω C(x * ,2 ) ∂Ω x * ,2
Figure 3: The sets V δ (x * ,2 ) and Ω x * ,2 . On the figure ∂C(x * ,2 ) ∩ ∂Ω is reduced to a single point.

{f < λ(x * ,2 )} ∩ V δ (x * ,2 ) = C(x * ,2 ). ( 54 
) Moreover, since V δ (x * ,2 ) ∩ ∂Ω is an open subset of ∂Ω (because V δ (x * ,2 ) is an open subset of Ω) and since ∂C(x * ,2 ) ∩ ∂Ω ⊂ V δ (x * ,2 ) ∩ ∂Ω (because C(x * ,2 ) ⊂ V δ (x * ,2
)), it holds:

V δ (x * ,2 ) ∩ ∂Ω is a neighborhood of ∂C(x * ,2 ) ∩ ∂Ω in ∂Ω. ( 55 
)
Recall that f has a finite number of critical points in Ω. In addition, ∂C(x * ,2 ) does not contain local minimum point of f in Ω. Indeed, let z be a local minimum point of f in Ω. Then ∇f (z) = 0 and Hess f (z) > 0. Consequently, for some r > 0, f (x) > f (z) for x ∈ B r (z) \ {z}, and thus, z / ∈ {f < f (z)}. Therefore, one can assume, up to choosing δ > 0 smaller, that

V δ (x * ,2 ) \ C(x * ,2
) does not contain local minimum point of f in Ω.

See Figure 3 for a schematic representation of V δ (x * ,2 ). At this stage, a good candidate to be Ω x * ,2 is intuitively Ω∩V δ (x * ,2 ) (up to considering δ > 0 smaller such that (53) holds with V δ (x * ,2 ) instead of V δ (x * ,2 )), but this set is not smooth. However, since V δ (x * ,2 ) is a neighborhood of C(x * ,2 ) in Ω and in view of (55), by increasing

C(x * ,2 ) in V δ (x * ,2 ), one can construct a C ∞ connected open set Ω x * ,2 of Ω such that a. C(x * ,2 ) ⊂ Ω x * ,2 , Ω x * ,2 ⊂ V δ (x * ,2 ), b. ∂Ω x * ,2 ∩ ∂Ω is a neighborhood of ∂C(x * ,2 ) ∩ ∂Ω in ∂Ω, c. ∂Ω x * ,2 ∩ Ω ⊂ V δ (x * ,2 ) \ C(x * ,2 ).
A schematic representation of Ω x * ,2 is given in Figure 3. Let us now give some direct properties of Ω x * ,2 which will imply that it satisfies (i)-(v) above. First of all, it holds f ≥ λ(x * ,2 ) on

∂Ω x * ,2 ∩∂Ω. Indeed, {f < λ(x * ,2 )}∩∂Ω x * ,2 ∩∂Ω ⊂ {f < λ(x * ,2 )}∩V δ (x * ,2 )∩∂Ω = C(x * ,2 )∩∂Ω =
∅, where we have used (54) and the fact that C(x * ,2 ) ⊂ Ω (see the line just after ( 7)). Similarly

{f ≤ λ(x * ,2 )} ∩ ∂Ω x * ,2 ∩ ∂Ω ⊂ {f ≤ λ(x * ,2 )} ∩ V δ (x * ,2 ) ∩ ∂Ω = C(x * ,2 ) ∩ ∂Ω = ∂C(x * ,2 ) ∩ ∂Ω.
Thus, one has: arg min

∂Ωx * ,2 ∩∂Ω f = ∂C(x * ,2 ) ∩ ∂Ω ⊂ {f = λ(x * ,2 )}.
In addition, by (53), it holds:

f > λ(x * ,2 ) on the tube V δ (x * ,2 ) \ C(x * ,2 ) of width δ around C(x * ,2 ) in Ω.
Using also that

∂Ω x * ,2 ∩ Ω ⊂ V δ (x * ,2 ) \ C(x * ,2
), it then holds:

for some β > 0, f ≥ λ(x * ,2 ) + β on ∂Ω x * ,2 ∩ Ω.
It is then easy to check that Ω x * ,2 satisfy items (i)-(v) above. See Figure 4 for a schematic representation of Ω with Ω x * ,2 , x * ,2 , x * ,1 , C(x * ,2 ), and C(x * ,1 ).

Let us now end the proof of Proposition 7. Since for h small enough, B r h (x * ,1 ) ∩ Ω x * ,2 = ∅, using the continuity of the trajectories of the process (1), it holds for all x ∈ C(x * ,2 ) and h small enough:

{τ Br h (x * ,1 ) < τ Ω c } ⊂ {X τ Ω c x * ,2 ∈ ∂Ω x * ,2 \ ∂Ω}.
The domain Ω x * ,2 and f : Ω x * ,2 :→ R satisfies all the required assumptions of Proposition 6. Moreover, since inf ∂Ωx * ,2 \∂Ω f > min Ωx * ,2 f = λ(x * ,2 ) (see items (ii) and (iii) above), from Proposition 6, for all compact subset

K of C(x * ,2 ) = {v ∈ Ω x * ,2 , f (v) < λ(x * ,2
)} (see item (iv) above), there exists c > 0 such that for h small enough (see [START_REF] Lelièvre | Partial differential equations and stochastic methods in molecular dynamics[END_REF]):

max y∈K P y [X τ Ω c x * ,2 ∈ ∂Ω x * ,2 \ ∂Ω] ≤ e -c h . ( 56 
)
Recall that by definition (see [START_REF] Day | Mathematical approaches to the problem of noise-induced exit[END_REF])

p x * ,1 (y) = P x * ,1 [τ Br h (x * ,1 ) < τ Ω c ],
and thus, there exists c > 0 such that for h small enough: max y∈K p x * ,1 (y) ≤ e -c h . The proof of Proposition 7 is complete when K ⊂ C(x * ,2 ). The proof of Proposition 7 for K ⊂ A Ω (C(x * ,2 )) is obtained using the same procedure as the one used in the fourth step in the proof of Proposition 5.

A direct consequence of the proof of Proposition 7 is the following generalization of Proposition 6. Corollary 9. Let x * be a local minimum point of f in Ω. Assume that C(x * ) (see [START_REF] Bovier | Metastability in reversible diffusion processes. II. Precise asymptotics for small eigenvalues[END_REF]) is an isolated connected component of {f ≤ λ(x * )} which intersects ∂Ω. Let K be compact subset of A Ω (C(x * )) (see [START_REF] Bovier | Metastability: a potential-theoretic approach[END_REF]) and Γ be an open subset of ∂Ω.

C(x * ,2 ) C(x * ,1 ) Ω ∂Ω z 1 x * ,2 z 2 z 3 Ω x * ,2 x * ,1 r h ∂Ω x * ,2
Then, if Γ ∩ (∂C(x * ) ∩ ∂Ω) = ∅,
there exist h 0 > 0 and c > 0 s.t. for all h ∈ (0, h 0 ): max

x∈K P x [X τ Ω c ∈ Γ] ≤ e -c h .
Proof. Set x * = x * ,2 so that we can use the notation of the proof of Proposition 7. Since Γ ∩ (∂C(x * ,2 ) ∩ ∂Ω) = ∅, one can assume, up to choosing V(x * ,2 ) smaller, that Γ ∩ V(x * ,2 ) = ∅ (and therefore, Γ ∩ Ω x * ,2 = ∅). Thus, it holds for all y ∈ C(x * ,2 ), when

X 0 = y, {X τ Ω c ∈ Γ} ⊂ {X τ Ω c x * ,2 ∈ ∂Ω x * ,2 \ ∂Ω}.
Together with (56), this concludes the proof of Corollary 9 when

y ∈ K ⊂ C(x * ,2
). To get it for K ⊂ A Ω (C(x * ,2 )), one uses the procedure of the the fourth step in the proof of Proposition 5.

Notice that assumptions of Corollary 9 are satisfied when (H1) holds (see indeed the proof of Lemma 1). Corollary 9 implies that the process (1) exits Ω almost surely through any neighborhood of ∂C(x * ) ∩ ∂Ω in the limit h → 0 when X 0 = x ∈ A Ω (C(x)).

Sharp asymptotic estimate of the capacities

In this section, one proves an asymptotic equivalent of cap Br h (x * ) (Ω c ) in the limit h → 0. We start with the following lemma.

Lemma 10. Consider a local minimum point x * of f in Ω. Let us assume that ∂C(x * ) ∩ ∂Ω = ∅ (see [START_REF] Bovier | Metastability in reversible diffusion processes. II. Precise asymptotics for small eigenvalues[END_REF]), C(x * ) is an isolated connected component of {f ≤ λ(x * )}, and that all z ∈ ∂C(x * )∩∂Ω satisfy item a or item b in (H2). Then, there exists a smooth function

φ x * ∈ H 1 0 (Ω, e -2 h f dx)
with values in [0, 1] which equals 1 in a neighborhood of x * in Ω, such that in the limit h → 0:

h 2 Ω |∇φ x * | 2 e -2 h f = z∈∂C(x * )∩∂Ω, ∇f (z) =0 (hπ) d-1 2 ∂ n f (z) det Hessf | ∂Ω (z) 1 2 e -2 h λ(x * ) (1 + O(h)) + z∈∂C(x * )∩∂Ω, ∇f (z)=0 (hπ) d 2 |µ z | π det Hessf (z) 1 2 e -2 h λ(x * ) (1 + O( √ h)).
Proof. Because C(x * ) ∈ C and all the z ∈ ∂C(x * ) ∩ ∂Ω satisfy item a or item b in (H2), we can use the results of [START_REF] Peutrec | Small eigenvalues of the Witten laplacian with dirichlet boundary conditions: the case with critical points on the boundary[END_REF]. First of all, consider the function Definition 22] which is associated to x * . Then set (see [START_REF] Peutrec | Small eigenvalues of the Witten laplacian with dirichlet boundary conditions: the case with critical points on the boundary[END_REF]Definition 23])

φ x * ∈ H 1 0 (Ω, e -2 h f dx) with values in [0, 1] introduced in [29,
ψ x * = φ x * e -f h Z x where Z 2 x := Ω φ 2 x * e -2 h f .
As h → 0, it holds (see at the beginning of the proof of [START_REF] Peutrec | Small eigenvalues of the Witten laplacian with dirichlet boundary conditions: the case with critical points on the boundary[END_REF]Proposition 24] and the fact that

C j (x * ) = C(x * )): Z 2 x = (πh) d/2 e -2 h f (x * ) q∈argmin C(x * ) f (det Hess f (q)) -1/2 (1 + O(h)).
Define S * = {z ∈ ∂C(x * ), z is a separating saddle point of f in Ω}. Let us recall that by the construction of the map j in [29, Section

* ) = S * ∪ (∂C(x * ) ∩ ∂Ω) and S * = j(x * ) ∩ Ω ⊂ {x ∈ Ω, ∇f (x) = 0}. 3.3], j(x 
By item 1 in [29, Proposition 26] and since f (j(x * )) = λ(x * ) there,

Ω |d f,h ψ x * | 2 = √ h(K 1,x * (1 + O(h)) + h(K 2,x * (1 + O(h)) e -2 h (λ(x * )-f (x * )) ,
as h → 0 and where

K 1,x * = z∈j(x * ),∇f (z) =0 c x * ,z and K 2,x * = z∈j(x * ),∇f (z)=0 c x * ,z ,
see [START_REF] Peutrec | Small eigenvalues of the Witten laplacian with dirichlet boundary conditions: the case with critical points on the boundary[END_REF]Proposition 24] for the definition of the c x * ,z 's. Since

d f,h = he -1 h f ∇e 1 h f , one has: Ω |d f,h ψ x * | 2 = h 2 Z 2 x Ω |∇φ x * | 2 e -2 h f . Moreover, because C(x * ) is a connected component of {f ≤ λ(x * )}, S * = ∅. One then deduces that: K 2,x * = z∈j(x * )∩∂Ω,∇f (z)=0 c x * ,z .
Using the previous asymptotic formulas and the definition of the c x * ,z 's (see [29, item 1 in Proposition 24]), one deduces the asymptotic equivalent on Ω |∇φ x * | 2 e -2 h f given in Lemma 10.

The following proposition provides the asymptotic equivalent of cap Br h (x * ) (Ω c ) when h → 0.

Proposition 11. Consider x * a local minimum point of f in Ω. Assume that the assumptions on C(x * ) stated in Lemma 10 are satisfied. Then, it holds, in the limit h → 0:

cap Br h (x * ) (Ω c ) = z∈∂C(x * )∩∂Ω, ∇f (z) =0 (hπ) d-1 2 ∂ n f (z) det Hessf | ∂Ω (z) 1 2 e -2 h λ(x * ) (1 + O(h)) + z∈∂C(x * )∩∂Ω, ∇f (z)=0 (hπ) d 2 |µ z | π det Hessf (z) 1 2 e -2 h λ(x * ) (1 + O( √ h)). (57) 
Proof. From (13), it holds: cap Br h (x * ) (Ω c ) ≤ h2 Ω\Br h (x * ) ∇φ x * 2 e -2 h f . Using Lemma 10, this gives the required asymptotic upper bound on cap Br h (x * ) (Ω c ). Let us now obtain a lower bound on cap Br h (x * ) (Ω c ). To this end, we will use [START_REF] Matkowsky | A singular perturbation approach to kramers' diffusion problem[END_REF]. Let us consider two smooth subdomains Ω 1

x * and Ω 2

x * of Ω, both satisfying items (i)-(v) listed at the beginning of the proof of Proposition 7, such that C(x * ) ⊂ Ω 1

x * ⊂ Ω 2 x * and Ω 2

x * is a neighborhood of Ω 1

x * in Ω. This implies in particular that there exists r > 0 s.t. for all

x ∈ Ω 2 x * \ Ω 1 x * , f (x) ≥ λ(x * ) + r. (58) 
Let χ ∈ C ∞ (Ω, [0, 1]) be such that χ = 1 on Ω 1 x * and χ = 0 on Ω \ Ω 2 x * . From ( 13), it holds:

cap Br h (x * ) (Ω c ) = h 2 Ω\Br h (x * ) ∇p x * 2 e -2 h f ≥ h 2 Ω 1 x * \Br h (x * ) ∇p x * 2 e -2 h f .
Let us now obtain an asymptotic lower bound on h

2 Ω 1

x * \Br h (x * ) ∇p x * 2 e -2 h f in the limit h → 0. To this end, let us write:

Ω 2 x * \Br h (x * ) ∇(χp x * ) 2 e -2 h f = Ω 2 x * \Br h (x * ) χ 2 ∇p x * 2 + 2p x * χ ∇χ • ∇p x * + p 2 x * ∇χ 2 e -2 h f = Ω 1 x * \Br h (x * ) ∇p x * 2 e -2 h f + R * ,
where

R * = Ω 2 x * \Ω 1 x * χ 2 ∇p x * 2 e -2 h f + Ω 2 x * \Ω 1 x * 2p x * χ ∇χ • ∇p x * + p 2 x * ∇χ 2 e -2 h f ,
where we used the fact that ∇χ = 0 on Ω 1 x * and χ = 1 on Ω 1 x * . Moreover, from ( 20), (58), and since p x * ≤ 1, there exists c > 0, such that for h small enough: R * = O e -2 h (λ(x * )+c) . Now since

χp x * ∈ H 1 0 (Ω 2
x * , e -2 h f dx) (because p x * = 0 on ∂Ω and χ = 0 on ∂Ω 2 x * ∩ Ω), using the min-max principle (see (2)):

h 2 Ω 2 x * \Br h (x * ) ∇(χp x * ) 2 e -2 h f = h 2 Ω 2 x * ∇(χp x * ) 2 e -2 h f ≥ λ 1,h Ω 2 x * |χp x * | 2 e -2 h f ,
where λ 1,h denotes here the principal eigenvalue of the Dirichlet realization of L f,h in Ω 2 x * . In conclusion, for h small enough:

cap Br h (x * ) (Ω c ) ≥ λ 1,h Ω 2 x * |χp x * | 2 e -2 h f + O e -2 h (λ(x * )+c) . (59) 
Since χ = 1 on C(x * ), from Proposition 5 and since arg min C(x * ) f = arg min Ω 2

x * f (see item (iv) at the beginning of the proof of Proposition 7), the Laplace method provides when h → 0:

Ω 2 x * |χp x * | 2 e -2 h f = (hπ) d 2 e -2 h min C(x * ) f y∈arg min C(x * ) f
det Hessf (y)

-1
Furthermore, the domain Ω 2 x * and f : Ω 2 x * :→ R satisfy all the required assumptions of Proposition 6 (see indeed items (i)-(iv) at the beginning of the proof of Proposition 7) with:

min ∂Ω 2 x * f = λ(x * ) and v ∈ Ω 2 x * , f (v) < min ∂Ω 2 x * f = C(x * ).
Since (H2) holds for f : Ω 2 x * :→ R, the asymptotic equivalent of λ 1,h when h → 0 given in (39) (with Ω = Ω 2

x * there) holds. Together with (59) and ( 60), this provides the expected lower bounds on cap Br h (x * ) (Ω c ). The proof of Proposition 11 is complete.

Proof of Theorems 1 and 2

In all this section, we assume that the function f : Ω → R satisfies (H1). Then, the results of the previous section can be used with C(x * ) = C j , where x * is a local minimum point of f in Ω such that x * ∈ C j , j ∈ {1, . . . , N} (in this case λ(x * ) = min ∂Ω f ), see Lemma 1 and its proof.

Mean value of the committor functions

The following proposition gives sharp asymptotic equivalents of Ω p x j e -2 h f for j ∈ {1, . . . , N}, where x j is a local minimum point of f in C j .

Proposition 12. Let f : Ω → R be such that the assumption (H1) holds. Let x j be a local minimum point of f in C j , for some j ∈ {1, . . . , N}, and k ∈ {1, 2}. If j ∈ {1, . . . , N 0 }, it holds when h → 0:

Ω p k x j e -2 h f = (hπ) d 2 e -2 h min Ω f y∈arg min C j f
det Hessf (y)

-1 2 (1 + O(h)),
where we recall that p x j is defined by [START_REF] Day | Mathematical approaches to the problem of noise-induced exit[END_REF] with x * = x j there. Finally, if j ≥ N 0 + 1, there exists ε > 0, such that if min C j f -min Ω f < ε, in the limit h → 0, it holds:

Ω p k x j e -2 h f = (hπ) d 2 e -2 h min C j f y∈arg min C j f
det Hessf (y)

-1 2 (1 + O(h)).
Proof. Let j ∈ {1, . . . , N} and writes:

Ω p k x j e -2 h f = C j p k x j e -2 h f + Ω\C j p k x j e -2 h f .
To prove Proposition 12, in view of Proposition 5 (applied with x * = x j and C(x * ) = C j ), it remains to show that Ω\C j p k x j e -2 h f is an error term for h small enough. Let us consider a neighborhood V ⊂ Ω of the points belonging to arg min Ω f \ C j . Let us moreover choose V such that V ⊂ ∪ =j, =1,...,N 0 C (this possible by the choice of N 0 ). Since there exists α 1 > 0 such that f (x) ≥ min Ω f + α 1 for all x ∈ Ω \ (C j ∪ V), it holds, using in addition the fact that p x j ≤ 1,

Ω\(C j ∪V) p k x j e -2 h f ≤ C e -2 h (min Ω f +α 1 )
, for some C > 0 independent of h.

Since V ⊂ ∪ =j, =1,...,N 0 C , from Proposition 7 (applied with x 1, * = x j , x 2, * = x , and K = V ∩ C , for ∈ {1, . . . , N 0 }, = j), one has:

V p k x j e -2 h f ≤ C e -2 h (min Ω f +α 2 )
, for some α 2 > 0 and h small enough.

Recall that min C j f ≥ min Ω f for all j, and that min C j f > min Ω f iff j > N 0 . Therefore, when j ≤ N 0 , one deduces the second statement in Proposition 12. When j ≥ N 0 + 1, one sees that if min C j f -min Ω f < min(α 1 , α 2 ), ones obtains the last statement in Proposition 12. This concludes the proof of Proposition 12.

Let us assume that (H1) and (H2) hold. Let x j be a local minimum point of f in C j , for some j ∈ {1, . . . , N}. Using [START_REF] Freidlin | Some problems concerning stability under small random perturbations[END_REF] and Proposition 11 together with the first statement in Proposition 12, one deduces that in the limit h → 0, when j ∈ {1, . . . , N 0 }:

E x j [τ Ω c ] = e 2 h (min ∂Ω f -min Ω f ) Θ j,1 h -1 2 + Θ j,2 + O( √ h) . (61) 
Using [START_REF] Freidlin | Some problems concerning stability under small random perturbations[END_REF], Proposition 11, and the second statement in Proposition 5 together with the fact that Ω p x j e -2 h f ≥ C j p x j e -2 h f , one deduces that when j ∈ {N 0 + 1, . . . , N}, it holds for h small enough:

E x j [τ Ω c ] ≥ e 2 h (min ∂Ω f -min C j f ) Θ j,1 h -1 2 + Θ j,2 + O( √ h) . (62) 
Moreover, according to the last statement in Proposition 12,[START_REF] Freidlin | Some problems concerning stability under small random perturbations[END_REF], and Proposition 11, there exists ε > 0 such that if min C j f -min Ω f < ε then (62) is actually an equality when h → 0. This proves items 2 and 3 in Theorem 1 when X 0 = x j . To prove Theorem 1, it thus remains to deal with the case when X 0 = x ∈ A Ω (C j ). For that purpose, we need an upper bound on

x ∈ Ω → E x [τ Ω c
]. This is the goal of the next section.

3.2 Upper bound on the mean exit time Proposition 13. Let f : Ω → R be such that the hypotheses (H1) and (H2) hold. Let K be a compact subset of Ω. Then, for any δ > 0, there exists h 0 > 0 such that for all h ∈ (0, h 0 ):

max x∈K E x [τ Ω c ] ≤ e 2 h (min ∂Ω f -min Ω f +δ) . (63) 
Notice that Proposition 13 is item 1 in Theorem 1.

Proof. To prove (63), we will use [START_REF] Sugiura | Exponential asymptotics in the small parameter exit problem[END_REF]Theorem 1]. To this end, we construct a C ∞ bounded subdomain D Ω of R d containing Ω such that |∇f | = 0 on ∂D Ω : this is indeed required to use [START_REF] Sugiura | Exponential asymptotics in the small parameter exit problem[END_REF]Theorem 1].

Step 1: Construction of the domain D Ω containing Ω. The domain D Ω is constructed by slightly "extending" Ω near the critical points of f on ∂Ω. This is made as follows. Since f : Ω → R is a smooth function, it is by definition, the restriction of a smooth function defined on an open neighborhood Ω of Ω in R d . This extension is still denoted by f in the following. In addition, since f : Ω → R is a Morse function, the critical points of f in Ω are isolated in Ω. Thus, there exists ε > 0, for all z ∈ ∂Ω such that ∇f (z) = 0, it holds:

|∇f | = 0 on B ε (z) \ {z}.
Up to choosing ε > 0 smaller, the following properties are satisfied: the balls B ε (z) are two by two disjoint, for all ∈ {1, . . . , N} and y ∈ ∂C ∩ ∂Ω, if ∇f (y) = 0 then y / ∈ B ε (z), (

and there exists a smooth coordinate system Ψ :

y ∈ B ε (z) → (x , x d ) ∈ R d such that Ψ(z) = 0, Ω ∩ B ε (z) = {y ∈ B ε (z), x d (y) < 0} and ∂Ω ∩ B ε (z) = {y ∈ B ε (z), x d (y) = 0}.
Notice that (64) can be indeed satisfied because f has finite number of critical points in ∂Ω and for all k ∈ {1, . . . , N}, ∂C k ∩ ∂Ω contains a finite number of points when (H1) and (H2) hold.

For α > 0, let us consider a

C ∞ function x ∈ R d-1 → χ(x ) ∈ [0, α],
such that:

χ(x ) = 0 for all x ∈ R d-1 \ Ψ(∂Ω ∩ B ε/2 (z)) and χ(x ) = α for all x ∈ Ψ(∂Ω ∩ B ε/4 (z)).
Moreover, one chooses α > 0 small enough such that

{(x , χ(x )), x ∈ Ψ(Ω ∩ B ε (z))} ⊂ Ψ(B ε (z)). (65) 
A schematic representation of (x , x d ) ∈ Ψ(B ε (z)), such that x d < χ(x ) is given in Figure 5.

Let us define,

O z := Ψ -1 (x , x d ) ∈ Ψ(B ε (z)), such that x d < χ(x ) .
For ease of notation, we omitted to write explicitly the dependence on z for Ψ, χ, and α. The bounded subset D Ω of R d is then defined by:

D Ω := Ω ∪ z∈∂Ω,∇f (z)=0 O z .
From the definition of χ it holds:

∂D Ω \ z∈∂Ω,∇f (z)=0 B ε/2 (z) = ∂Ω \ z∈∂Ω,∇f (z)=0 B ε/2 (z). (66) 
From ( 65), for all critical point z of f on ∂Ω (see Figure 5), it holds:

∂D Ω ∩ B ε (z) = Ψ -1 (x , x d ) ∈ Ψ(B ε (z)), such that x d = χ(x ) . (67) 
The set D Ω is thus a smooth open and connected subset of R d . Finally, it holds:

|∇f | = 0 on ∂D Ω ,
and all the critical points of f in D Ω belong to Ω. In the following, we will need other properties on D Ω which might require to reduce the parameter ε > 0 one again. Let us state these properties. First, up to choosing ε > 0 smaller, it holds for all local minima

x ∈ ∂Ω of f in R d , max t∈[-ε,ε] f (x + tn Ω (x)) -f (x) < min ∂Ω f -min Ω f, (68) 
where we recall that n Ω (x) is the unit outward normal to Ω at x. Let us also recall that, for all j ∈ {1, . . . , N} and z ∈ ∂C j ∩ ∂Ω up to choosing ε > 0 smaller, it holds:

B ε (z) ∩ {f < min ∂Ω f } = C j ∩ B ε (z), (69) 
which follows from the fact that the C 's are two by two disjoint (see (H1)). Let us now consider, for some j ∈ {1, . . . , N}, z * ∈ ∂C j ∩ ∂Ω such that z * is a critical point of f in R d (recall that f (z * ) = min ∂Ω f and z * is a saddle point of f in R d ). By assumption (see point b in (H2)), up to choosing ε > 0 smaller,

z * is the unique maximum point of f : t ∈ [-ε, ε] → f (z * + tn Ω (z * )), (70) 
with z * + tn Ω (z * ) ∈ Ω when t ∈ [-ε, 0), and, z * + tn Ω (z * ) ∈ R d \ Ω when t ∈ (0, ε]. Then, one defines:

γ * : t ∈ [-ε, ε] → z * + tn Ω (z * ). (71) 
Hence, since for t ∈ [-ε, 0), z * + tn Ω (z * ) ∈ Ω and f (z

* + tn Ω (z * )) < f (z * ) = min ∂Ω f , from (69), one deduces that for all t ∈ [-ε, 0), γ * (z * + tn Ω (z * )) ∈ C j , (72) 
Let us define

s * := inf{t ∈ (0, ε], γ * (t) ∈ ∂D Ω }. (73) 
Since z * / ∈ ∂D Ω (see (67) and χ(0) = α > 0), it holds: s * > 0. A schematic representation of γ * is given in Figure 6. The parameter ε > 0 defining D Ω is now fixed.

ε x d ∂Ω x z α (x , x d ) ∈ Ψ(B ε (z)), such that x d = χ(x ) Ω Figure 5: Schematic representation of (x , x d ) ∈ Ψ(B ε (z)), such that x d = χ(x ) in the (x , x d )
coordinates (see the dashed line).

Step 2: Proof of (63). Let us introduce τ

D c Ω = inf{t ≥ 0, X t / ∈ D Ω } the first exit time of the process (1) from D Ω . Notice that when X 0 = x ∈ Ω it holds τ Ω c ≤ τ D c
Ω (since the trajectories of the process (1) are continuous). Consequently,

for all x ∈ Ω, E x [τ Ω c ] ≤ E x [τ D c Ω ]. (74) 
For all local minima x ∈ D Ω of f , one defines

H(x) := inf max t∈[0,1] f γ(t) , γ ∈ C 0 ([0, 1], D Ω ), γ(0) = x, γ(1) ∈ ∂D Ω (75) 
where C 0 ([0, 1], D Ω ) is the set of continuous paths from [0, 1] to D Ω , and,

H max := max H(x) -f (x), x ∈ D Ω is a local minimum point of f in D Ω . ε x d ∂Ω x z * C j f < f (z * ) f < f (z * )} f > f (z * ) f > f (z * ) γ * (s * ) γ * ([-ε, ε]) Ω (x , x d ) ∈ Ψ(B ε (z)), such that x d = χ(x ) Figure 6: Schematic representation of γ * for z * ∈ ∂C j ∩ ∂Ω in the (x , x d ) coordinates.
From [48, Theorem 1], it holds, for all K ⊂ Ω and for all δ > 0, there exists h 0 > 0, for all h ∈ (0, h 0 ), max 

x∈K E x [τ D c Ω ] ≤ e 2 h (Hmax+δ) , (76) 
(x) -f (x) ≤ max t∈[0,1] f (x + εtn Ω (x)) -f (x) < min ∂Ω f -min Ω f. (77) 
Let us now consider the case when

x ∈ C j for some j ∈ {1, . . . , N}.

Let γ ∈ C 0 ([0, 1], D Ω ) such that γ(0) = x and γ(1) ∈ ∂D Ω . Because γ is continuous and C j ⊂ D Ω , there exists t * ∈ [0, 1] such that γ(t * ) ∈ ∂C j . Hence, one has: max t∈[0,1] f γ(t) ≥ f (γ(t * )) = min ∂Ω f. (78) 
Let us now prove that there exists T 1 < T 2 , and

γ ∈ C 0 ([T 1 , T 2 ], D Ω ) such that γ(T 1 ) = x, γ(T 2 ) ∈ ∂D Ω , and max t∈[T 1 ,T 2 ] f γ(t) = min ∂Ω f. (79) 
Case 1: ∂C j ∩ ∂Ω contains a critical point z * of f . Let z * ∈ ∂C j ∩ ∂Ω be a critical point of f . Since γ * (-ε) ∈ C j (see ( 71) and ( 72)) and C j is pathconnected (because it is open, connected and locally path-connected), there exists a continuous curve γ 0 : [-2ε, -ε] → C j such that γ 0 (-2ε) = x and γ 0 (-ε) = γ * (-ε). Let us finally define the continuous curve γ : [-2ε, s * ] → D Ω by: for all t ∈ [-2ε, -ε], γ(t) = γ 0 (t), and, for all t ∈ (-ε, s * ], γ(t) = γ * (t), where s * > 0 is defined by (73). It then follows from (70) together with the fact that γ

0 ([-2ε, -ε]) ⊂ C j ⊂ {f < min ∂Ω f } that max t∈[-2ε,s * ] f γ(t) = f (z * ) = min ∂Ω f
. This proves (79) in this case.

Case 2: ∂C j ∩ ∂Ω does not contain critical point of f .

Because, by assumption (see (H1)), ∂C j ∩ ∂Ω is non empty, there exists z * ∈ ∂C j ∩ ∂Ω. Notice that from (64) and (66), z * ∈ ∂D Ω . In addition, since ∂ n f (z * ) > 0, for t > 0 small enough, ϕ t (z * ) ∈ Ω (see ( 4)). Furthermore, because there is no critical point of f in a neighborhood of z * in R d , it holds for all t > 0 sufficiently small,

f (ϕ t (z * )) -f (z * ) = t 0 d ds f (ϕ s (z * )) ds = - t 0 |∇f | 2 (ϕ s (z * )) ds < 0.
Thus, from (69), for all t > 0 sufficiently small, ϕ t (z * ) ∈ C j (and since C j is stable for the dynamics (4), ϕ t (z * ) ∈ C j for all t > 0). Let us consider t * > 0 and a curve γ 0 : [-2t * , -t * ] → C j such that γ 0 (-2t * ) = x and γ 0 (-t * ) = ϕ t * (z * ). Then, one defines γ : [-2t * , 0] → D Ω by: for all t ∈ [-2t * , -t * ], γ(t) = γ 0 (t), and, for all t ∈ (-t * , 0], γ(t) = ϕ -t (z * ).

By construction, it holds, max t∈[-2t * ,0] f γ(t) = f (z * ) = min ∂Ω f . This concludes the proof of (79). From ( 75), (78), and (79), one deduces that for all local minimum point x of f in Ω, H(x) = min ∂Ω f . Together with (77) and by definition of H max , it holds

H max = min ∂Ω f -min Ω f.
Then, (74) and (76) conclude the proof of Proposition 13.

Proof of Theorem 2 and end of the proof of Theorem 1

End of the proof of Theorems 1 and 2. Let f : Ω → R which satisfies the assumptions (H1) and (H2). Let j ∈ {1, . . . , N} and x j be a local minimum point of f in C j . For ease of notation, we set here (see [START_REF] Kramers | Brownian motion in a field of force and the diffusion model of chemical reactions[END_REF] and the lines just after)

D j = C η (x j ) and K j = C η * (x j ). Recall K j ⊂ D j , D j ⊂ C j ⊂ A Ω (C j ), min C j f = min D j f
, and for all h small enough, B r h (x j ) ⊂ int K j (because x j ∈ int K j ).

Step 1: In this step we prove that there exists c > 0 such that for h small enough: max

x∈K j E x [τ Br h (x j ) ∧ τ Ω c ] ≤ e 2 h (min ∂Ω f -min Ω f -c) . (80) 
Before proving (80), we give some preliminary estimates. By Proposition 13, for any δ > 0, it holds for h small enough: max

x∈D j E x [τ Ω c ] ≤ e 2 h (min ∂Ω f -min Ω f +δ) . (81) 
We now claim that there exist β > 0 and c > 0 such that for h small enough: max

x∈K j E x [τ D c j ] ≤ e 2 h (min ∂Ω f -min Ω f -β) , (82) 
and for all bounded and measurable function φ :

∂D j → R, sup x,y∈K j E x [φ(X τ D c j )] -E y [φ(X τ D c j )]| ≤ e -c h sup ∂D j |φ|. (83) 
Equation ( 82) is a consequence of [48, Theorem 1] which implies that for any δ > 0 it holds for h small enough (recall min

C j f ≥ min Ω f ): lim h→0 h ln max x∈K j E x [τ D c j ] ≤ 2(min ∂Ω f -η -min C j f + δ). (84) 
Let us prove (83). We have for all x ∈ K j :

E x [φ(X τ D c j )] = E x [φ(X τ D c j )1 τ Br h (x j ) <τ D c j ] + E x [φ(X τ D c j )1 τ Br h (x j ) >τ D c j ].
In addition, with the same arguments as used to prove [START_REF] Peutrec | Sharp spectral asymptotics for non-reversible metastable diffusion processes[END_REF], there exists c > 0 such that for all h > 0 small enough, sup

x∈K j |P x [τ Br h (x j ) < τ D c j ] -1| ≤ e -c h .
Consequently, it holds:

sup x∈K j |E x [φ(X τ D c j )1 τ Br h (x j ) >τ D c ]| ≤ sup ∂D j |φ| sup x∈K j P x [τ Br h (x j ) > τ D c j ] ≤ sup ∂D j |φ| e -c h .
In addition, with the same arguments as those used to prove Lemma 3 (which rely on a Schauder estimate, see also [8, Lemma 1]), we have sup

x∈Br h (x j ) |∇ x E x [φ(X τ D c j )]| ≤ Ch -1/2 sup ∂D j |φ|.
Then, (83) holds with K j replaced by B r h (x j ) (recall r h = O(e -δ * h ), see ( 9)). From this, we deduce that for x ∈ K j , using the strong Markov property,

E x [φ(X τ D c j )1 τ Br h (x j ) <τ D c j ] = E x E Xτ Br h (x j ) [φ(X τ D c j )]1 τ Br h (x j ) <τ D c j = E x j [φ(X τ D c j )] + sup ∂D j |φ| O(e -c h ).
This proves (83). We prove now (80). By the same arguments as those used to prove [9, Lemma 6] and using (83), we get for all x ∈ K j :

E x [τ Br h (x j ) ∧ τ Ω c ] ≤ (1 -P x [τ Br h (x j ) < τ Ω c ])E x E Xτ D c j [τ Ω c ] + O(e -c h ) max y∈D j E y [τ Ω c ] + E x [τ D c j ]
≤ (1 -P x [τ Br h (x j ) < τ Ω c ]) + O(e -c h ) max

y∈D j E y [τ Ω c ] + max y∈K j E y [τ D c j ]
where c > 0 is independent of h and x ∈ K j . Then, (81), (82), and Proposition 5 (with K = K j there) imply (80).

Step 2: we now end the proof of Theorems 1 and 2. Let j ∈ {1, . . . , N}. We have by the strong Markov property, for all x ∈ A Ω (C j ),

E x [τ Ω c ] = E x [τ Br h (x j ) ∧ τ Ω c ] + E x 1 τ Br h (x j ) <τ Ω c E Xτ Br h (x j ) [τ Ω c ] . (85) 
Assume that j ∈ {1, . . . , N 0 }. Recall that in this case, min C j f = min Ω f (see [START_REF] Day | Exponential leveling for stochastically perturbed dynamical systems[END_REF]). Then, using (85), Lemma 3, Proposition 5 (with K = K j there), (61), and (80), we deduce that if x ∈ K j ,

E x [τ Ω c ] = E x j [τ Ω c ] 1 + O(e -c h ) = e 2 h (min ∂Ω f -min Ω f ) Θ j,1 h -1 2 + Θ j,2 + O( √ h) , uniformly in x ∈ K j .
This previous estimates extend uniformly to any x ∈ K ⊂ A Ω (C j ) using the same arguments as those used in Step 4 of the proof of Proposition 5. Let us now consider j ∈ {N 0 + 1, . . . , N}. By (85), Lemma 3, Proposition 5, and (62), we then have for all x ∈ K ⊂ A Ω (C j ),

E x [τ Ω c ] ≥ E x 1 τ Br h (x j ) <τ Ω c E Xτ Br h (x j ) [τ Ω c ] = E x j [τ Ω c ] 1 + O(e -c h ) ≥ e 2 h (min ∂Ω f -min C j f ) Θ j,1 h -1 2 + Θ j,2 + O( √ h)
, uniformly in x ∈ K. Finally, using (85) and (80), and by the lines just after (62), there exists ε > 0, such that if min C j f -min Ω f < ε, the previous inequality is an equality which holds uniformly in x ∈ K j (and is then extended uniformly to any x ∈ K ⊂ A Ω (C j ) using the same arguments as those used in Step 4 of the proof of Proposition 5). This concludes the proof of Theorem 2, and the proofs of items 2 and 3 in Theorem 1. The proof of Theorem 1 is thus complete.

Appendix

Appendix 1. In this section, we show the optimality of the error term O( √ h) in items 2 and 3 in Theorem 1. For that purpose, let us consider a function f ∈ C ∞ ([z 1 , z 2 ], R) such that {z ∈ [z 1 , z 2 ], f (z) = 0} = {z 1 , x 1 , z}, f (z 1 ) < 0, f (z) < 0, f (x 1 ) > 0, f (z 2 ) < 0, z 1 < x 1 < z < z 2 , and f (x 1 ) < f (z 1 ) < f (z 2 ) < f (z) (see Figure 7). Assumption (H1) is thus satisfied with N = 1. In addition, one has min ∂Ω f = f (z 1 ) and

C 1 = {f < f (z 1 )} = (z 1 , z * ),
where z * is the unique point y in (z 1 , z 2 ] such that f (y) = f (z 1 ) (see Figure 7). The following formula holds for x ∈ [z 1 , z 2 ]: Consider now x ∈ C 1 = (z 1 , z * ). For all t and y such that z 1 ≤ t ≤ y ≤ x, it holds f (y) -f (t) ≤ f (x) -f (x 1 ) < f (z 1 ) -f (x 1 ). Thus, for some c > 0 it holds for all h > 0: Using the Laplace method, since the maximum value of t < y ∈ [z 1 , z 2 ] → f (y) -f (t) attains uniquely is maximum at the point (x 1 , z) ∈ {t < y, (t, y) ∈ (z 1 , z 2 ) 2 }, it holds when h → 0: Moreover, since the maximum value of y ∈ [z 1 , z 2 ] → f (y) is uniquely attained when y = z ∈ (z 1 , z 2 ), one has using again the Laplace method, in the limit h → 0: Finally, since the maximum value of y ∈ [z 1 , x] → f (y) is uniquely attained when y = z 1 ∈ ∂(z 1 , x 1 ), f (z 1 ) = 0, and f (z 1 ) < 0, using Watson's lemma, it holds when h → 0:

E x [τ (z 1 ,z 2 ) c ] = 2 h
x z 1 e 2 h f = 1 2 √ πh |f (z 1 )| e 2 h f (z 1 ) (1 + c √ h + O(h)),
where c ∈ R can be expressed in terms of the gamma function and the derivatives of f at z 1 . In conclusion, it holds for x ∈ C 1 , in the limit h → 0: If we now assume that f (z 1 ) < 0, we obtain that, using the Laplace method, when h → 0: where, by the Laplace method, O(h) equals O(h) = k≥1 a k h k , and where the a k 's can be explicitly computed with the derivatives of f at z, x 1 , and z 1 . In general, a 1 = 0, and this O(h) is thus not a o(h). These computations show that the error term O( √ h) in Theorem 1 is optimal.

Appendix 2. In this section, we discuss the strong tunnelling effect which occurs when a well C i of f in Ω is much deeper than the other wells C j , j = i. To this end, we consider a function f ∈ C ∞ ([z 2 , z 1 ], R) such that {z ∈ [z 2 , z 1 ], f (z) = 0} = {x 2 , z, x 1 }, z 2 < x 2 < z < x 1 < z 1 , f (z) < 0, f (x 2 ) > 0, f (x 1 ) > 0, f (z 2 ) < 0, f (z 1 ) > 0, and f (x 1 ) < f (x 2 ) < f (z 1 ) = f (z 2 ) < f (z). Such a function f is represented in Figure 8. It thus holds f (x 2 ) = min C 2 f > min Ω f = f (x 1 ), and {f < min ∂Ω f } has two connected components: C 1 containing x 1 and C 2 containing x 2 . Moreover, (H1) holds with N 0 = 1 < N = 2. When f (z) -f (x 2 ) > f (z 1 ) -f (x 1 ), one has, using the Laplace method in (86) (replaced z 1 by z 2 , and z 2 by z 1 there):

lim h→0 h ln E x 2 [τ (z 2 ,z 1 ) c ] = 2(f (z 2 ) -f (x 2 )),
whereas, when f (z) -f (x 2 ) < f (z 1 ) -f (x 1 ), it holds:

lim h→0 h ln E x 2 [τ (z 2 ,z 1 ) c ] = 2(f (z 1 ) -f (x 1 ) -(f (z) -f (z 2 )) ).
We thus observe that when f (z) -f (x 2 ) < f (z 1 ) -f (x 1 ), even if C 1 ∩ C 2 = ∅, a strong tunnelling effect between the wells C 1 and C 2 occurs. Let us mention that the conclusion remains unchanged if f (z 1 ) = 0 or f (z 2 ) = 0. Remark 14. In the example depicted in Figure 8, it has been proved in [START_REF] Peutrec | Small eigenvalues of the Witten laplacian with dirichlet boundary conditions: the case with critical points on the boundary[END_REF]Theorem 2], that lim h→0 h ln λ 1,h = -2(f (z 1 ) -f (x 1 )) and lim h→0 h ln λ 2,h = -2(f (z 2 ) -f (x 2 )). Thus, when f (z) -f (x 2 ) < f (z 1 ) -f (x 1 ), for all i ∈ {1, 2}, lim h→0 h ln E x 2 [τ (z 1 ,z 2 ) c ] = lim h→0 h ln λ -1 i .
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 4 Figure 4: Schematic representation of Ω x * ,2 satisfying items (i)-(v). On the figure, ∂C(x * ,2 ) ∩ ∂Ω = {z 1 , z 2 } (see (7)).
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 27 Figure 7: A one dimensional case (H1) is satisfied with N = 1 (∂C 1 ∩ ∂Ω = {z 1 }).

Figure 8 :

 8 Figure 8: A one dimensional case when (H1) holds with N 0 = 1 and N = 2.

  Let us mention that Proposition 7 is not a consequence of[START_REF] Bovier | Metastability in reversible diffusion processes. I. Sharp asymptotics for capacities and exit times[END_REF] Corollary 4.8] for the following two reasons. On the one hand,[START_REF] Bovier | Metastability in reversible diffusion processes. I. Sharp asymptotics for capacities and exit times[END_REF] Corollary 4.8] does not directly apply in our setting because the saddle points connecting B r h (x * ,1 ) and Ω c belongs to Ω c . On the other hand, even if the inequality in [6, Corollary 4.8] holds, it is possible that the height of the saddle points connecting x ∈ C(x * ,2 ) and B r h (x * ,1 ) in R d is equal to the height of the those connecting x and Ω c .

Proposition 7. Let x * ,1 and x * ,2 be two local minima of f in Ω such that C(x * ,1 ) = C(x * ,2 ) (see

[START_REF] Bovier | Metastability in reversible diffusion processes. I. Sharp asymptotics for capacities and exit times[END_REF]

). Assume moreover that C(x * ,2 ) is an isolated connected component of {f ≤ λ(x * ,2 )} which intersects ∂Ω. Let K be a compact set of A Ω (C(x * ,2 )). Then, there exist h 0 > 0 and c > 0 s.t. for all h ∈ (0, h 0 ): max y∈K p x * ,1 (y) ≤ e -c h .

Remark 8.

This is equivalent to say that the connected component M of {f ≤ a} is open in {f ≤ a}.

Such points z have also been considered by Kramers in[START_REF] Kramers | Brownian motion in a field of force and the diffusion model of chemical reactions[END_REF] to derive formulas for transition rates, as explained in[START_REF] Matkowsky | A singular perturbation approach to kramers' diffusion problem[END_REF].

(1 + O(h)).

Where d(x, C(x * ,2)) = inf{|y -x|, y ∈ C(x * ,2)} is the distance of x ∈ Ω to C(x * ,2).

(1 + O(h)). (60)