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Adaptive Elicitation of Rank-Dependent Aggregation
Models based on Bayesian Linear Regression

Nadjet Bourdache1 and Patrice Perny1 and Olivier Spanjaard1

Abstract. We introduce a new model-based incremental choice pro-
cedure for multicriteria decision support, that interleaves the analysis
of the set of alternatives and the elicitation of weighting coefficients
that specify the role of criteria in rank-dependent models such as or-
dered weighted averages (OWA) and Choquet integrals. Starting from
a prior distribution on the set of weighting parameters, we propose
an adaptive elicitation approach based on the minimization of the ex-
pected regret to iteratively generate preference queries. The answers
of the Decision Maker are used to revise the current distribution until
a solution can be recommended with sufficient confidence. We present
numerical tests showing the interest of the proposed approach.

1 Introduction
Designing efficient preference elicitation methods to capture the value
system of the Decision Maker (DM) is one of the major challenges
of computer-aided decision support. In the field of multicriteria deci-
sion support, the key parameters that must be elicited to perform the
preference aggregation are weighting coefficients that specify the role
of criteria in the aggregation, in particular their relative importance
and sometimes also their level of interaction, see e.g., [10]. Weighting
coefficients can be elicited in a preliminary step and used for several
recommendation tasks or can alternatively be elicited on the fly during
the exploration of the set of alternatives. The latter approach, said to
be incremental, has been widely investigated in AI and OR in order
to reduce the elicitation burden, see e.g., [13, 9, 8, 4, 12, 2].

One key aspect of interactive preference elicitation is to limit the
number of preference queries without downgrading the quality of rec-
ommendations. For example, this is the goal of incremental elicitation
methods based on the minimization of the maximum regret proposed
in [12, 3] where the answers to queries are translated into hard con-
straints limiting the space of admissible parameters and allowing to
refine current preferences. No opportunity is nevertheless given to
the DM to contradict itself, thus the efficiency comes at the cost of a
relative lack of robustness in recommendation tasks.

A way to be less sensitive to errors is to adopt a probabilistic ap-
proach. Starting from a prior distribution over a class of admissible
preference models, the observation of new preference statements can
be used to incrementally revise the current model and progressively
reduce the risk attached to recommendations. This revision can be em-
bodied into an adaptive elicitation process where preference queries
are selected according to their expected value of information. This
approach is well introduced and illustrated in [4] for the elicitation
of utilities. Multiple variants relying on the Bayesian approach have
been proposed, see e.g., [5, 7, 11]. Following this line, our aim in this
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work is to propose a Bayesian approach for the incremental elicitation
of weighting parameters in rank-dependent (and therefore non-linear)
multicriteria decision models such as ordered weighted averages [14]
and Choquet integrals [6], where preference queries are selected by
expected regret minimization. The goal is not to assess the weighting
parameters of these models precisely but only to reduce the uncer-
tainty sufficiently to be able to make a choice within a given set of
alternatives, with the desired level of confidence.

2 Rank-dependent aggregation functions

Let A be the set of alternatives that need to be compared in order to
make a decision. Any alternative a ∈ A is evaluated with respect to a
set of p criteria denoted by C = {1, . . . , p}, and is characterized by
a performance vector a = (a1, . . . , ap), where ai ∈ [0, 1] represents
the utility of a with respect to criterion i. From now on, for simplicity,
we will consider the image of A in the criteria space, denoted by
abuse of notation A = {a1, . . . ,an}, and indifferently use the terms
“alternative” and “performance vector”. Given a performance vector
a, we denote by (·) a permutation on C such that a(1) ≤ . . . ≤
a(p). Thus, a(i) represents the smallest ith component of a. We will
consider two families of rank-dependent aggregation functions:

– The ordered weighted averages (OWA) are defined by
OWAλ(a)=

∑p
i=1 λia(i)

where λ = (λ1, . . . , λp) is a weighting vector such that
∑p

i=1 λi = 1
and λi ≥ 0 ∀i. The λ is a parameter of the model providing a control
on the relative importance attached to bad and good performances.

– The Choquet integrals are defined by

Cv(a)=

p∑
i=1

(v(A(i))− v(A(i+1)))a(i)=

p∑
i=1

[a(i) − a(i−1)]v(A(i))

where v is a set function, named capacity, defined on 2C such that
v(∅) = 0, v(C) = 1 and v(X) ≤ v(Y ) for all X ⊆ Y ⊆ C. The
capacity v models the importance attached to any coalition of criteria
and makes it possible to represent positive or negative interactions
between criteria [6].

The parameters of the aggregation functions introduced above (i.e., the
weighting vector or the capacity function) must be tuned to the DM’s
value system in order to make relevant recommendations. Our aim is to
collect preference statements to progressively reduce the uncertainty
about these parameters to make a more cautious recommendation.

In order to assess parameters λ or v with Bayesian linear regression
methods, it is important to remark that OWA and Choquet admit
linear reformulations of the form fw(a) =

∑q
i=1 wigi(a), where

w=(w1, . . . , wq) is a weighting vector and {g1(a), . . . , gq(a)} is a
generating set of non-linear functions defined from criterion values.



For OWA with decreasing weights, we can use p cumulative functions
defined by gi(a) =

∑i
k=1 a(k), and positive weights wi=λi − λi+1

for i < p and wp = λp. It can also be shown that another linear
reformulation exists for 2-additive Choquet integrals with gi(a) =
Cvi(a), using specific 0-1 capacities vi (unanimity games and some
of their conjugates). Details are omitted due to the space constraint.

3 Elicitation by expected regret minimization
We propose a Bayesian approach where a prior Gaussian distribution
over the parameter space is iteratively updated with new preference
statements. The incremental decision process is based on the progres-
sive minimization of expected regrets attached to possible decisions.
Let us now introduce the notion of expected regret more formally, for
an aggregation function fw.

Definition 1. Given a probability distribution p on the possible values
of w, the pairwise expected regret of an alternative a with respect to
an alternative b is defined as follows:

PER(a,b, p) =
∫
max{0, fw(b)− fw(a)}p(w)dw

Definition 2. Given a setA of alternatives and a probability distribu-
tion p on the possible values of w, the max expected regret of a ∈ A
is defined by MER(a,A, p) = maxb∈A PER(a,b, p)

Definition 3. Given a set A of alternatives and a probability distri-
bution p on the possible values of w, the minimax expected regret is
defined by MMER(A, p) = mina∈AMER(a,A, p).

The incremental decision procedure is described in Algorithm 1,
where a(i) ∈A denotes an alternative achieving the MMER(A, p)
value at the current iteration i and b(i) is its stronger opponent.

Algorithm 1: Incremental Decision Making
Input: A: set of alternatives, δ: acceptance threshold;

p0: prior distribution on vectors w.
Output: a∗ : best recommendation in A

1 i← 1; p(w)← p0(w)
2 repeat
3 a(i) ← argmina∈AMER(a,A, p)
4 b(i) ← argmaxb∈A PER(a(i),b, p)

5 Ask the DM if a(i) is preferred to b(i)

6 y(i) ← 1 if the answer is yes and 0 otherwise
7 p(w)← p(w|y(i)) (Bayesian updating)
8 i← i+ 1

9 until MMER(A, p) ≤ δ
10 return a∗ selected in argmina∈AMER(a,A, p)

The probability distribution p(w) is updated in Line 7 using the
latent variable approach introduced by [1] for binary probit regression,
where the noise is assumed to be Gaussian. The latent variable corre-
sponds to a preference intensity (utility gap) that is not observable but
that makes it possible to explain the DM’s answer y(i).

4 Numerical tests
The results are averaged over 20 randomly generated instances with
100 Pareto optimal alternatives and 5 criteria. The DM’s answers are
simulated using an hidden OWA model perturbated by a Gaussian
noiseN (0, σ). Hence, the percentage of errors made by the DM can

be controlled by varying σ. The experiments show that the algorithm
converges in a dozen of queries. The curves in Figure 1 show, at any
step, the improvement of the quality of the current MMER-optimal
alternative, for various values of σ. This quality is measured by the
rank of the alternative according to the hidden DM preference model.

We remark that the average rank of the recommended alternative is
never beyond 5 (over 100 alternatives), thus the procedure exhibits
a good tolerance to errors. Concerning the computation times be-
tween two queries, it takes about 5 seconds for OWA with decreasing
weights, and about 35 seconds for 2-additive Choquet integrals.

Figure 1. Mean rank of the recommendation (OWA).
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