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Abstract

The growth of plant organs is a complex process powered by osmosis that attracts water

inside the cells; this influx induces simultaneously an elastic extension of the walls and

pressure in the cells, called turgor pressure; above a threshold, the walls yield and the cells

grow. Based on Lockhart’s seminal work, various models of plant morphogenesis have

been proposed, either for single cells, or focusing on the wall mechanical properties. How-

ever, the synergistic coupling of fluxes and wall mechanics has not yet been fully addressed

in a multicellular model. This work lays the foundations of such a model, by simplifying as

much as possible each process and putting emphasis on the coupling itself. Its emergent

properties are rich and can help to understand plant morphogenesis. In particular, we show

that the model can display a new type of lateral inhibitory mechanism that amplifies growth

heterogeneities due e.g to cell wall loosening.

Author summary

Plant cells are surrounded by a rigid wall that prevents cell displacements and rearrange-

ments as in animal tissues. Therefore, plant morphogenesis relies only on cell divisions,

shape changes, and local modulation of growth rate. It has long been recognized that cell

growth relies on the competition between osmosis that tends to attract water into the cells

and wall mechanics that resists to it, but this interplay has never been fully explored in a

multicellular model. The goal of this work is to analyze the theoretical consequences of

this coupling. We show that the emergent behavior is rich and complex: among other

findings, pressure and growth rate heterogeneities are predicted without any ad-hoc

assumption; furthermore the model can display a new type of lateral inhibition based on

fluxes that could complement and strengthen the efficiency of already known mechanisms

such as cell wall loosening.
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Introduction

Plants grow throughout their lifetime at the level of small regions containing undifferentiated

cells, the meristems, located at the extremities of their axes. Growth is powered by osmosis that

tends to attract water inside the cells. The corresponding increase in volume leads to simulta-

neous tension in the walls and hydrostatic pressure (so-called turgor pressure) in the cells.

Continuous growth occurs thanks to the yielding of the walls to these stretching forces [1–3].

This interplay between growth, water fluxes, wall stress and turgor was first modelled by

Lockhart in 1965 [4], in the context of a single elongating cell. Recent models focused on how

genes regulate growth at more integrated levels [5–9]. To accompany genetic, molecular, and

biophysical analyses of growing tissues, various extensions of Lockhart’s model to multicellular

tissues have been developed. The resulting models are intrinsically complex as they represent

collections from tens to thousands of cells in 2- or 3-dimensions interacting with each other.

To cut down the complexity, several approaches abstract organ multicellular structures as

polygonal networks of 1D visco-elastic springs either in 2D [7, 10–12] or in 3D [6, 13] submit-

ted to a steady turgor pressure. Other approaches try to represent more realistically the struc-

ture of the plant walls by 2D deformable wall elements able to respond locally to turgor

pressure by anisotropic growth [8, 14, 15].

Most of these approaches consider turgor as a constant driving force for growth, explicitely

or implicitly assuming that fluxes occur much faster than wall synthesis. Cells then regulate the

tissue deformations by locally modulating the material structure of their walls (stiffness and

anisotropy) [6, 16–20]. However, the situation in real plants is more complex: turgor heteroge-

neity has been observed at cellular level [21, 22], which challenges the assumption of very fast

fluxes. As a matter of fact, the relative importance of fluxes or wall mechanics as limiting fac-

tors to growth has fuelled a long standing debate [3, 23] and is still an open question. More-

over, from a physical point of view, pressure is a dynamic quantity that permanently adjusts to

both mechanical and hydraulic constraints, which implies that a consistent representation of

turgor requires to model both wall mechanics and hydraulic fluxes.

The aim of this article is to explore the potential effect of coupling mechanical and hydrau-

lic processes on the properties of the “living material” that corresponds to multicellular popu-

lations of plant cells. To this end, we build a model that describes in a simple manner wall

mechanics and cell structure, but do not compromise on the inherent complexity of consider-

ing a collection of deformable object hydraulically and mechanically connected.

The article is organized as follows (see Fig 1): we first recall the Lockhart-Ortega model and

its main properties. Then we explore two simple extensions of this model: first we relax the

constraint of uniaxial growth in the case of a single polygonal cell; then we study how two cells

hydraulically connected interact with each other. Finally we describe our multicellular and

multidimensional model and numerically explore its properties.

A table of notations is provided in Supplementary Information (S1 Table).

Models and results

The Lockhart model

In 1965, Lockhart [4] derived the elongation of a plant cell by coupling osmosis-based fluxes

and visco-plastic wall mechanics. Ortega [24] extended this seminal model to include the elast-

ics properties of the cell walls. We recall here the main properties of this model, see Fig 1a for

the geometrical configuration.

Cell wall elongation. It is expressed as a rheological law [4, 24]: let l be the length of the

cell, the total strain rate of the walls _ε ¼ 1

l
dl
dt is decomposed into the sum of a plastic and an

Hydro-mechanical model of plant development
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elastic strain rate:

_ε ¼ �w
ðP � PYÞ

þ
þ

1

�E
dP
dt
; ð1Þ

where P is the hydrostatic pressure, the extensibility ϕw (inverse of a viscosity) describes the

ability of the cell to synthesize wall material, and �E is an effective elastic modulus. Here, ϕw

and �E both depend on cell wall thickness. The notation (x)+ denotes x if x> 0 and 0 otherwise

for any real number x.

Water uptake. Lockhart described water uptake by the cell as a flux through a semi-per-

meable membrane characterized by its surface A and its permeability La. Assuming the mem-

brane is perfectly impermeable to solutes, the rate of volume change is the result of a difference

between the water potential C of the cell and Cext of its exterior [25]:

dV
dt
¼ ALa Cext � Cð Þ; ð2Þ

The cell water potential C = P − π results from the antagonistic effect of the cell hydrostatic

pressure P that tends to expel water from the cell and its osmotic pressure π that tends to

attract water inside the cell. In the case of a single solute of concentration c, we have π = RTc
where R is the ideal gas constant and T the temperature. Let us denote �

a
¼ ALa

V which has the

Fig 1. Hierarchy of models presented in this article. The cells are given a height h as illustrated in c). The walls that hold stresses

(in green) have a thickness w. a) Lockhart-Ortega model: uniaxial growth in the x direction of a cell of length l. b) two cells

extension, both growing along x; the lighter shade of green corresponds to a lower elastic modulus; c) 2D extension of a single cell

growth; d) Multicellular, multidimensional model; left: fluxes, right: mechanical equilibrium; the stress σ is proportionnal to the

elastic deformation εe; E is the elastic modulus.

https://doi.org/10.1371/journal.pcbi.1007121.g001
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same dimension as ϕw. Assuming that the fluxes occur mostly on the lateral surface, the ratio

A/V is constant in the configuration of an elongating cell (see S1 Text). After dividing (2) by V,

we get the following expression for the relative growth rate _g ¼ 1

V
dV
dt :

_g ¼ �
a
ðPM � PÞ: ð3Þ

where PM =Cext + π quantifies the power of the osmotic pump: it is positive if π is high enough

to overcome the possibly negative water potential Cext of the exterior of the cell. Growth

( _g > 0) implies P< PM and hence PM is an upper bound for turgor, above which the cell

would lose water to the exterior. The additional condition for growth P> PY (see above)

requires PM > PY: growth is possible only when the osmotic pump is able to overcome the

mechanical resistance of the walls.

In order to keep the analysis as simple as possible, we take here and in the remaining of

the article PM constant with time and homogeneous among the cells, which corresponds for

instance to constant π and Cext. This choice will be commented in the discussion section.

Coupling hydraulics and mechanics for a single cell. Equating the expressions of strain

rate _ε from (1) and relative growth rate _g from (3) ensures that the requirements for water

uptake and yield of the cell wall are simultaneously satisfied. This means that turgor P, that is

present in both equations, has to be adjusted to satisfy both hydraulic and mechanical con-

straints. The resolution of the model is detailed in SI (see S1 Text). The time dependent solu-

tions can be analytically determined and we find that P and _g converge towards a stationary

solution ðP�; _g�Þ: first, P� writes

P� ¼ aaPM þ ð1 � aaÞPY ; ð4Þ

where

aa ¼
�

a

�
a
þ �

w 2 ½0; 1� ð5Þ

measures the relative importance of ϕa compared to ϕw. In the limit ϕa� ϕw (αa = 0), any

excess of turgor above the threshold is relaxed by cell wall synthesis and turgor is minimal at

P = PY. Conversely, in the limit ϕw� ϕa (αa = 1), the wall synthesis is not able to relax turgor,

which reaches then its maximal value P = PM. Second, the expression of the relative growth

rate is:

_g� ¼
�

a
�

w

�
a
þ �

w ðP
M � PYÞ; ð6Þ

or equivalently: PM � PY ¼ 1

�a þ
1

�w

� �
_g� This equation is the analog of Ohm’s law ΔU = (R1 +

R2)I with two resistors R1 = 1/ϕa and R2 = 1/ϕw in series: growth can be limited by either

hydraulic conductivity or wall synthesis.

Link with wall rheology. Wall expansion law (1) can be equivalently described as a func-

tion of wall stress σ rather than cell turgor P: in the geometry of the Lockhart-Ortega model,

we find (see S1 Text for the calculations) P ¼ 2 w
h s, where w is the width of the walls and

h their height. Thanks to this relation, (1) translates into _ε ¼ 1

E
ds
dt þ F

wðs � sYÞ
þ

, where

E ¼ h
2w

�E (resp. Fw ¼ 2w
h �

w
) is the intrinsic elastic modulus (resp. extensibility) of the walls. Let

εe = σ/E be the so-called elastic deformation of the walls. It is dimensionless and can be mea-

sured from the image analysis of experiments, without the knowledge of the elastic modulus.

Hydro-mechanical model of plant development
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The wall rheology is then described as follows:

_ε ¼
dεe

dt
þ FwEðεe � εYÞ

þ
; ð7Þ

where εY = σY/E is the threshold elastic deformation. Note that 1

FwE can be interpreted as the

characteristic time of wall synthesis.

Multidimensional and multicellular models

A multicellular extension of the Lockhart-Ortega model adapted to the study of morphogene-

sis requires first to relax the constraint of uniaxial growth and allow multidimensional geome-

tries, and second is complexified by the possibility of fluxes between cells. We study separately

the effect of each of these extensions before presenting the complete model.

First extension: Multidimensional growth. In order to keep the analysis as simple as pos-

sible, we study here the expansion of a single 2D cell whose shape is a regular polygon with n
edges (see Fig 1c). This model allows to evaluate the effect of a varying surface/volume ratio

compared to the Lockhart-Ortega model where this ratio is constant. The fluxes are described

in the same way as for Lockhart’s model (2) but wall synthesis is described with (7), as a func-

tion of elastic deformation instead of turgor. We find (see S2 Text for detailed calculations)

that the relation between cell turgor and wall stress becomes P ¼ w
R cos ðp=nÞ s where R is the cell

radius. In contrast with the Lockhart-Ortega model, the ratio P/σ is no more constant as the

cell grows, and the turgor vanishes at long times if the stress remains in the order of magnitude

of the threshold. Note also that for a given stress the turgor decreases with the number of edges

n. Therefore, the yield turgor PY depends both on n and R and is not a well defined parameter.

It suggests also that cells with less neighbors should have a higher turgor, as experimentally

observed in [21, 22].

The prediction of growth rate requires a numerical resolution of the model (see S2 Text).

The parameters are chosen to ensure a turgor of the order of 0.5 MPa and a relative growth

rate of the order of 2% per hour, using the predictions (4) and (6). First let’s examine the case

of a cell of initial radius R = 10μm for which wall synthesis is the limiting factor to growth

(case αa = 0.9 in S2 Text). We find that it results initially in an accelerating growth (the bigger

the cell, the faster the growth), much faster than predicted by the Lockhart model, during

which the elastic deformation of the walls can reach values up to 20%. The ratio area/sur-

face = 1/R decreases with growth and there is less and less water available compared to the

volume; as a consequence, the relative growth rate vanishes at long times after this initial accel-

erating phase.

In the case where the fluxes are already limiting in the initial state (case αa = 0.1 in S2 Text),

the initial behavior is closer to the predictions of the Lockhart model but the relative growth

rate still vanishes at long times.

Altogether, these results show that a non constant surface/volume ratio deeply modifies the

behavior of the model compared to the Lockhart model. In particular, flux and wall synthesis

as limiting factors for growth are no more equivalent.

Second extension: Multicellular growth. Then, we study a simple multicellular extension

of the Lockhart-Ortega model where two elongating cells i = 0, 1 are in contact through one of

their walls (see Fig 1b). The cells can absorb water from their lateral surface and in the mean-

time exchange water with each other through their common wall. We look for stationary solu-

tions:
dPi
dt ¼ 0 and 1

Vi

dVi
dt ¼ Cst.

We set for both cells a common value of PM, La and ϕw, while the value of the yield turgors

PY
i can differ; this corresponds for instance to a heterogeneity of wall elastic modulus or yield

Hydro-mechanical model of plant development
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deformation. For the sake of convenience, we refer to fluxes between cells as symplasmic

fluxes, characterized by a water conductivity Ls, and to fluxes from the water source as apoplas-

mic fluxes, characterized by the water conductivity La. The biological relevance of this choice

is addressed in the discussion section. Assuming that the symplasmic fluxes occur through

plasmodesmata that are permeable to both water and solutes, the flux equation writes

dVi

dt
¼ AiL

a
i ðP

M � PiÞ þ A01L
s Pj � Pi

� �
; i 2 f0; 1g;

where j = 1 − i, and A01 is the surface of the common wall of cells 0 and 1. We introduce the

number ϕs = 2A01 Ls/Vi which has the same dimension as ϕa and ϕw. In order to allow an ana-

lytical resolution of this set of equations, we assume ϕs to be constant with time, and consider

it in this section as a parameter of the model. Thus, we have

_g i ¼ �
a PM � Pið Þ þ

�
s

2
ðPj � PiÞ: ð8Þ

We introduce the dimensionless number

as ¼
�

s

�
s
þ �

a 2 ½0; 1� ð9Þ

which represents the relative importance of symplastic fluxes with respect to apoplasmic ones.

We combine this flux equation with the growth Eq (1) and find analytical solutions for any val-

ues of the parameters (see S3 Text). We use here the following set of control parameters:

PM; PY
i ; _g�

0
; aa; as;

and fix the value _g�
0
¼ 2% � h� 1

; this way, the parameters space to explore is reduced to (PM,

PY, αa, αs). When αs = 0, the cells are completely isolated one from another and reach turgors

P�i and growth rates _g�i as predicted by the Lockhart model ((4) and (6)). In particular, the

condition PM > PY
i ensures that each cell is growing. When αs > 0, the fluxes between cells

modify this behavior. We restrict to the case PY
0
< PY

1
< PM , which corresponds to less

mechanical constraints on cell 0 than cell 1; therefore we can expect P1 > P0 and _g1 < _g0.

The calculations show a complex non linear behavior that is illustrated in Fig 2, in which the

parameters subspace (αa, αs) is explored for given values of PY
i and PM (detailed calculations

are provided in S3 Text). Let DPY ¼ PY
1
� PY

0
> 0 be the difference of the two yield turgors

and �PY ¼ 0:5ðPY
0
þ PY

1
Þ their average; we also introduce the dimensionless number

r ¼
DPY

2ðPM � �PYÞ
: ð10Þ

Note that the hypothesis PY
0
< PY

1
< PM is equivalent to ρ 2 ]0, 1[.

We find that the subspace (αa, αs) can be divided in two main regions separated by the

curve as ¼ 1� r

1� aa (see Fig 2a): surprisingly, in the region as > 1� r

1� aa, only cell 0 is growing ( _g0 > 0,

_g1 ¼ 0, and equivalently P0 > PY
0

, P1 < PY
1

). Hence, the growth of cell 1 is inhibited by fluxes

with cell 0. Conversely, in the region as < 1� r

1� aa both cells are growing ( _g i > 0 and equivalently

Pi > PY
i ). The size of the region as > 1� r

1� aa increases with ρ and fills the whole square [0, 1] ×
[0, 1] when ρ! 1; such values can be reached when ΔPY is large and / or PM is close to �PY .

More quantitatively, Fig 2d and 2e) show that _g1 is always below _g�
1
, while _g0 is always above

_g�
0

and can reach up to twice this value. Furthermore, maximal values of _g0 coincide with

Hydro-mechanical model of plant development
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Fig 2. Analytical resolution of the two cells model, properties of the solution in the parameters space αa × αs; a)

delimitation of the two zones _g1 ¼ 0 and _g1 > 0: the red thick solid line asðaaÞ ¼ 1� r

1� aa corresponds to ρ = 0.75. The two

black thin dashed lines correspond to the values ρ = 0.5 and 0.99. b-c) Turgors P0 and P1 for ρ = 0.75. d-e) relative growth

rates _g i= _g�i for ρ = 0.75.

https://doi.org/10.1371/journal.pcbi.1007121.g002
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minimal values of _g1: this confirms quantitatively that the growth of the cell with less favorable

mechanical conditions is slowed down if not inhibited by the growth of its neighbor. This

shows also that the growth rate heterogeneity is amplified by fluxes.

Turgor heterogeneity is also affected by fluxes (see Fig 2b and 2c): when αs is close to zero,

the cells are hydraulically isolated and their turgors vary with αa as predicted by Lockhart

model (4), this is where the turgor heterogeneity is maximal. Conversely, when αs is close to 1,

there is no hydraulic resistance between the two cells and the two turgors are equal. Between

these two limits, P0 is only slightly affected and remains in the ½PY
0
; PM� interval; conversely,

P1 is dramatically affected as it shifts from the interval ½PY
1
; PM� when αs = 0 to the interval

½PY
0
; PM� when αs = 1. Therefore, as PY

0
< PY

1
, there is a region where P1 < PY

1
which corre-

sponds to the region as > 1� r

1� aa, where cell 1 is not growing.

Finally, we have seen that intercellular fluxes tend to increase (resp. decrease) growth

rate (resp. turgor) heterogeneities; the cell with less mechanical constraints takes control and

imposes its turgor, which can lead the other one to stop growing. The growing cell then bene-

fits from the water resources of the other cell and its growth is all the more increased.

Extension to a chain of cells. To further explore and quantify the spatial range of this

process, we extended our two-cells model (see S4 Text for detailed equations) to a chain of 2N
+ 1 cells where the central cell has twice softer walls, and focussed on the propagation of the

inhibition of growth on its neighbors. We numerically solved the corresponding system of dif-

ferential equations; the exploration of the parameters space showed that the number 2Ni of

inhibited cells scales with
ffiffiffiffi
Ls
p

. We computed the prefactor c (such that Ni � c
ffiffiffiffi
Ls
p
Þ for values

of (αa, PM) 2 [0.05, 0.35] × [0.51, 0.85] (the interval for PM is in MPa) and plotted its value in

the (αa, PM) space (See S4 Text). This shows that the propagation of the inhibition is favored

by low values of αa and PM − PY.

Generalization: A multidimensional and multicellular model of growth. We consider

(see Fig 1d) a collection of N cells that form a (non necessarily regular) 2D mesh with a fixed

topology (distribution of neighbors) as is the case with plant tissues when no division occurs.

The cell walls rheology is described by the visco-elasto-plastic law (7) of the Ortega model

and the fluxes toward a cell i are described as in the simple multicellular model presented

above:

dVi

dt
¼ AiL

a
i ðP

M � PiÞ þ
X

j2nðiÞ

AijL
s
ij Pj � Pi

� �
; ð11Þ

where n(i) is the set of neighbors of cell i, Aij is the area of the common wall with cell j, Ls
ij its

permeability (it is symmetric: Ls
ij ¼ Ls

ji), and La
i is the permeability of the lateral walls to the

supply of water.

The last missing part to obtain a closed set of equation is the mechanical equilibrium, that

allows to link cells turgors, walls tensions, and geometry. Contrary to the cases studied above,

no explicit expression of turgors as a function of stresses can be obtained and the equilibrium

has to be solved at each time step. Let Pi be the turgor pressure in each cell i. The tissue being

at every moment in a quasi-static equilibrium, pressure forces on wall edges and elastic forces

within walls balance exactly at each vertex v:

1

2

X

k2f ðvÞ

DkP Sknk þ
X

k2f ðvÞ

Ekε
e
kskek;v ¼ 0; ð12Þ

where f(v) is the set of faces adjacent to junction v, DkP ¼ Pk1
� Pk2

is the pressure jump across

face k, with k1 < k2 being indices of the cells across face k, Sk = hlk is the area of the face k on

Hydro-mechanical model of plant development
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which pressure is exerted, nk is the normal vector to face k, oriented from cell k1 to cell k2, and

sk = hw is the cross-section area of the face, on which the elastic stress is exerted; finally, ek,v is

the unit vector in the direction of face k, oriented from junction v to the other end of face k.

Coupling mechanical and hydraulic models

In the Lockhart-Ortega model, the compatibility between wall enlargement and cell volume

variation is automatically enforced through the geometrical constraint of uni-directional

growth that leads to the identity between the relative growth rate of the cell and the strain rate

of the walls. In contrast, in the multicellular model, this identity is no longer true. One has to

solve the closed set of Eqs (7)–(11) and (12) with respect to the unknowns X, P, and εe.

Despite its apparent simplicity, the problem to be solved is not straightforward as water fluxes

induce potentially long range interactions. In this respect, it differs from most vertex-based

models (e.g [11, 26]) where turgor is an input of the model. The numerical resolution required

the development of an original algorithm (see S5 Text) implemented in an in-house code.

Numerical experiments: Growth of primordia in the shoot apical meristem

(SAM)

The properties of this model cannot be as thoroughly studied as those of the simpler models

presented above, first because of the numerical cost of the resolution, but above all because it

allows an infinite variety of geometries and spatial distribution of its parameters. We present

here a numerical experiment that illustrates on the one hand how the properties of the simple

multidimensional and multicellular submodels are combined in the generalized model; in turn

the study of these models helps us to anticipate the properties of the generalized model. And

on the other hand, we show that this model is readily applicable to the study of systems of bio-

logical interest.

Growth heterogeneities can be triggered by the local modulation of the mechanical properties

of the cell walls [27]. In SAMs, new organs are initiated by a local increase in growth rate that

leads to the appearance of small bumps. Measurements show that physico-chemical properties

of walls are modified so that mechanical anisotropy and elastic modulus are decreased. Our 2D

model is used to represent a cross section of a SAM and we explore what effect a local softening

of the walls has on growth rate and turgor heterogeneities; based on our previous analysis of the

model in simple configurations, we expect that the growth heterogeneities will be maximal for

parameters such that the growth is restricted by fluxes rather than wall synthesis (αa close to 0),

cell-cell conductivity is large (αs close to 1), and the walls deformations are just above the growth

threshold, which can be enforced by a low value of the osmotic pressure (yet large enough to

ensure growth). The set of parameters (REF) is chosen according to these criteria; then we

explore the effect of a higher αa ((ALPHA+) set) and lower cell-cell conductivity ((CC-) set)

that should both decrease the growth heterogeneities, and also test the effect of a lower osmotic

pressure ((PM-) set) that should conversely increase the growth heterogeneity. See S6 Text for

detailed explanations on the values of the parameters corresponding to these sets.

We build a mesh made primarily of hexagons (see Fig 3a) and first let it grow with homoge-

neous parameters until the elastic regime ends and plastic growth occurs. Then we divide by

two the elastic modulus of a small group of cells (marked with a white star in Fig 3a) that will

be referred to as “bump cells” thereafter. First, Fig 3b shows that the multicellular system

grows globally in the same way as the single hexagonal cell studied above; it diverges from

the Lockhart predictions because the ratio A/V of the cells is not constant: the (ALPHA+) sim-

ulations exhibit a very large initial growth rate that decreases only when the cells are so large

that water fluxes become limiting. The (PM-) set leads to a roughly twice lower growth rate
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Fig 3. Growth of tissue with heterogeneous mechanical parameters, see S6 Text. a) (a) Initial state for (REF): walls are under

tension because of turgor and have reached their yield deformation. At t = 0, the walls of the cells marked with a white star are

softened (the elastic modulus is divided by two). (b) Time evolution of the total volume. The dashtype of the lines distinguishes the

parameters sets; the same dashtype convention is used in (c) and (d). (c) Time evolution of turgor pressure of bump cells (red) and

other cells (blue). (d) Time evolution of relative growth rate of bump cells (red) and other cells (blue). (e-l) Turgor and relative

growth rate maps of parameters sets (REF) ((e-f)), (PM-) ((g-h)), (CC-) ((i-j)), and (ALPHA+) ((k-l)), at the time when the volume

of the bump cells has increased by a factor 5: t = 51h for (REF), t = 33h for (PM-), t = 80h for (CC-), t = 14.8h for (ALPHA+). The

arrows represent the intensity and direction of cell-cell water fluxes; the scale for arrows is the same for (REF), (PM-) and (CC-) and

close to 4 times higher for (ALPHA+).

https://doi.org/10.1371/journal.pcbi.1007121.g003
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than (REF). The set (CC-) leads to the same dynamics at the tissue level as (REF), because the

total influx of water is not affected by fluxes between cells in this setup.

Then we turn to the observation of heterogeneities: we focus on the differences between the

bump region and the rest of the tissue. For all the parameters sets, Fig 3c shows that turgor is

in general lower in bump cells, but the gap varies depending on the parameters, as it has been

predicted by the study of the two-cells model: compared to (REF), the heterogeneity in turgor

is increased by a lower cell-cell conductivity (set CC-), and decreased by a larger value of αa

(set ALPHA+). Decreasing the value of PM (set PM-) does not alter much the turgor heteroge-

neity compared to (REF). The maps of turgor (Fig 3e, 3g, 3i and 3k) confirm visually these

observations.

Fig 3d shows the time evolution of _g= _g� where _g� is the relative growth rate predicted by the

Lockhart model (see (6)); its value is 2% h−1 for (REF), (CC-) and (ALPHA+), and 0.5% h−1 for

(PM-). In the considered time frame, the relative growth rate of bump cells is always higher

except for (ALPHA+): after an initial fast increase where bump cells grow faster, the tendency is

inversed at t� 20h because the bump cells have grown so much that fluxes become limiting. In

the (REF) simulation, while the growth rate of non bump cells is almost constant and close to

_g�, the growth rate of the bump cells is up to 6 times _g� at the beginning of the simulation and

progressively decreases toward _g�. As a result of this large discrepancy, the bump region can be

clearly distinguished from the rest of the tissue (Fig 3e and 3f). In (CC-), the growth rate of the

non bump cells is close to that of (REF), but the growth rate of the bump cells is much lower

(Fig 3d). As a result, the global shape remains convex and the bump is not clearly detached

from the rest of the tissue (Fig 3i and 3j). Note that (CC-) corresponds to a lower value of αs

compared to (REF), which corresponded to a lower growth heterogeneity with the two-cells

model studied above; this is also confirmed by the lower cell-cell fluxes towards the bump cells

for (CC-), see the arrows in Fig 3e and 3i. The (ALPHA+) simulation exhibits also a convex

shape (Fig 3k and 3l); it corresponds to a larger value of αa than (REF), and similarly to the two-

cells model studied above, the growth rate heterogeneity is lower than (REF). Finally, the set

(PM-) corresponds to an increase of the dimensionless parameter ρ (see (10)), and accordingly

to an increase in growth rate heterogeneity as can be seen with Fig 3d. Consequently, the bump

region can be clearly distinguished from the rest of the tissue, even better than (REF) (Fig 3g

and 3h); moreover, the growth of the cells close to the bump seems to be inhibited by fluxes as

explained in the two-cells model described above and further explored below.

Flux-based lateral inhibition predicted by the model. As we saw, cells that benefit from

better mechanical conditions for growth (in the present case a lower elastic modulus) have a

lower turgor than the other cells, and therefore attract water from them. Not only does it

amplify their growth but it also inhibits the growth of their neighbors. Such a lateral inhibition

mechanism is important for morphogenesis, as it allows very large growth rate heterogeneities

and the appearance of well differentiated shapes (in the present case the appearance of a bump

on the surface of the meristem). The efficiency of this mechanism varies depending on the

position in the parameters space, as predicted by the study of the simplified models (see Fig 2):

for instance it is increased if the cell-cell conductivity Ls (or equivalently αs) is increased (see

Fig 4a–4d); even the whole tissue can be inhibited. Inhibited cells can also relax the tension of

their walls and decrease their volume (see Fig 4a).

Discussion

A minimal model with a complex and rich behavior

The model proposed in this article is a minimal multicellular and multidimensional extension

of the Lockhart 1-D single cell model; it can be regarded as a conceptual tool to study the
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interplay between fluxes and wall mechanics in a multicellular tissue. Wall expansion is mod-

eled with a visco-elasto-plastic rheological law, while fluxes derive from water potential gradi-

ents. These two contributions are integrated into the mechanical equilibrium and interact

through the pressure term. Contrary to most previous approaches, turgor is not an input of the

model but a variable that adjusts simultaneously to mechanical, hydraulic, and geometrical

constraints. First of all, this leads to a physically consistent representation of turgor: for

instance, the model predicts that cells with softer walls have a lower turgor. Moreover, this has

deep implications at tissue level: in the previous example, lower turgor is associated with a

faster growth which can be itself amplified by fluxes that follow decreasing pressure gradients.

Thanks to the simplicity of the model, the predicted behavior can be analyzed and inter-

preted with two submodels built from the Lockhart model: first, in a 1-D system, cells are

only elongating and their surface-to-volume ratio is constant. We thus extended the Lockhart

model in two dimensions, where cells have more degree of freedom to change their shape. In

particular their allometric surface-to-volume ratio may then vary. This new possibility induces

additional complexity in the tissue development as the rate of growth of cell surfaces may

become a limiting factor for growing cells. Second, a 1-D multicellular submodel was build

with two or more side-by-side cells; it was used to study the growth of competing cells with

Fig 4. Evidence of lateral inhibition: left: a) time evolution of the volume of two cells on the boundary of the bump (marked with a

green dot on the maps b, c, d) with the sets of parameters (REF), (PM-), (PM-) with αs = 0.95, (PM-) with αs = 0.99. V0 is the volume

of the cells at t = 0. b,c,d) maps of relative growth rate at t = 33h for (PM-), t = 20h for (PM-) and αs = 0.95, t = 10h for (PM-) and

αs = 0.99.

https://doi.org/10.1371/journal.pcbi.1007121.g004
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heterogeneous properties. Key ingredients here are the wall synthesis threshold, the fact that

fluxes and growth can relax turgor, and cell to cell fluxes that allow long range interactions.

A potentially new type of lateral inhibition mechanism

Depending on mechanical and hydraulic parameters of tissue regions, the model exhibits dif-

ferent growth regimes corresponding to either uniform or differential growth. One unexpected

consequence of such an hydraulic-mechanical coupling at the tissue level is the observation

that in certain regions of the parameters space where cell-to-cell hydraulic exchanges are

non-limiting, growing tissue may exert an inhibiting influence on the growth of neighboring

regions. This may be interpreted as a lateral inhibition mechanism. It has for long been

recognized that lateral inhibitory mechanisms play a key role in setting some morphogenetic

patterns in procaryotes (e.g. [28]), animals (e.g. [29, 30]) or plants (e.g. [31, 32]). Lateral inhibi-

tion operates in these systems via chemical signals, such as delta-notch in animals or auxin in

plants. Our model predicts the existence of a novel type of lateral inhibition mechanism based

on the coupling between mechanics and water fluxes. Previous observations of tissue growth

suggest that such a phenomenon may occur in real tissues. In the shoot apical meristem for

instance, detailed quantification of growth with cellular resolution indicates that the region

surrounding primordia growth may have a negative growth rate ([33], Figs 2G and 3K).

According to our model, this decrease of volume in boundary regions might be due to the pri-

mordium growth attracting locally most of the water supply and depriving lateral regions from

water, and thus conforts the hypothesis of a new hydraulic-mechanical component of primor-

dium lateral inhibition, beyond already identified auxin and cytokinin signals [34].

Model simplifications and further potential extensions

Throughout the development of the model, we made several key choices concerning the

abstraction of a multicellular plant tissue. First, our model was developed in 2-D for reasons

of computational efficiency. In principle, it can be extended in 3-D, though at the expense

of more complex formalism and implementation. Second, the current model considers that

water transport is performed in the plant tissue through two conceptually different pathways

[1]. Water can first move within the apoplasmic compartment between the cells and finally

enter a cell. Water can also move locally from cell to cell. This movement includes itself con-

ceptually both symplasmic movements (water circulates between cells through plasmodesmata

without crossing membranes) and movements from cell to cell with intermediate steps in the

wall (water is for example exported locally out of the cell by water transporters like aquaporins

into the wall and immediately re-imported by water transporters into neighboring cells). For

the sake of simplicity in this first analysis, we represented the apoplasm as a single abstract

compartment able to exchange water with every cell. To analyze precisely the effect of water

transporters and their genetic regulation or to assess the impact of wall resistance to water

movement in the processes, explicit spatial representation of the apoplasm, of plasmodesmata

and of membrane water transporters could be integrated into the model in the future.

Finally, we considered a simplified situation here by imposing constant cell osmolarity.

Allowing osmolarity variations (for instance higher values in faster growing regions) may

impact turgor distribution (e.g [35]). However, this should not affect the ability of the system

to build up growth heterogeneities. Similarly, we further simplified our model by keeping con-

stant the apoplasmic water potential. Relaxing this hypothesis would increase cell-cell water

fluxes (via the apoplasm) and could also shift the model in the direction of the flux-limiting

regime. This would therefore favor regimes where growth heterogeneities are amplified by

fluxes.
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Biological relevance of the model

This model may impact our understanding of various biological questions at the interface

between mechanics and hydraulics in plants thanks to its emergent properties that are far

more complex and rich than the Lockhart model it is based on. We showed here the impact of

fluxes on turgor and growth rate heterogeneities at tissue level and how they can impact mor-

phogenesis. In a recent study [22], we focused on heterogeneities at cell level and compared

the model to experimental measurements; in particular, we correctly predicted that the num-

ber of cell neighbors is negatively correlated with cell turgor. Finally, based on its ability to

provide quantitative insights in growing multicellular systems, this model could contribute to

revisit the long-standing debate initiated by Boyer and Cosgrove regarding the relative impor-

tance of fluxes and wall softening in the limitation of growth in plants.
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