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A class period on spacetime-smart 3-vectors with familiar approximates
Matt Wentzel-Long1, a) and P. Fraundorf1, b)

Physics & Astronomy/Center for Nanoscience, U. Missouri-StL (63121), St. Louis, MO,
USA

(Dated: 29 July 2019)

Introductory physics students have Newtons laws drilled into their minds, but historically questions related
to relativistic motion and accelerated frames have been avoided. With help from the metric equation, these 3-
vector laws can be extended into the relativistic regime as long as one sticks with only one reference frame (to
define position plus simultaneity), and considers something students are already quite familiar with, namely:
motion using map-frame yardsticks as a function of time on clocks of the moving-object. The question here
is: How may one class period in an intro-physics class, e.g. as a preview before kinematics or later during a
day on relativity-related material, be used to put the material we teach into a spacetime-smart context?
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I. INTRODUCTION

Consider driving a car: When you look at your
speedometer, what are you seeing? The reported speed
is not relative to some inertial frame with synchronized
clocks on the side of the road, since speedometers use the
rotation of the wheels1 (which make static contact with
the road) per unit time on the cars on-board clocks. This
“proper ratio2 of map distance ∆x to traveler time ∆τ at
any speed (e.g. even if lightspeed as for Mr. Tompkins3

was only ≃ 2.5 mph) turns out to be proportional to 3-
vector momentum ~p, to have no upper limit, and to also
be most simply related to kinetic energy and the time
available for driver and pedestrian to react after the dan-
ger becomes apparent. It reduces to map distance ∆x per
unit map time ∆t only at low speeds.
Another remarkable everyday example of the “traveler

point” approach is the fact that your phone accelerom-
eter cannot detect gravity, as shown in Fig. 1. It only
detects the normal force which prevents us from falling

a)mwhv2@umsl.edu
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FIG. 1. Accelerometer data from a phone dropped and caught
three times. During the free-fall segments, the accelerometer
reading drops to zero because gravity is a geometric force
(like centrifugal) which acts on every ounce of the phone’s
structure, and is hence not detected. The positive spikes occur
when the fall is arrested as the falling phone is caught (also
by hand) before it hit the floor.

through the floor. It also fails to detect inertial forces,
like those which push you back into the seat (or to the
outside of a curve) when your car accelerates (or follows
a curved path). This is good news, coming from general
relativity, which says that our accelerometer only detects
proper forces but that the “undetected” class of geomet-
ric forces (associated with accelerated frames or curved
spacetime) can in general be approximated locally as if
they are one (or more) proper forces. This honored tradi-
tion, of treating geometric forces as proper, was of course
started in the 17th century by none other than Issac New-
ton himself.

II. COLLEGE PHYSICS TABLE

For example, in our college algebra-based basic physics
II class, Walker’s text4 has a chapter near the end on rela-
tivity. Our strategy is to introduce the book’s tools, along
with these traveler-point tools, for dealing with problems
of time dilation, unidirectional velocity addition, and rel-
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TABLE I. Newton at any unidirectional speed in (1+1)D, from (c∆τ )2 = (c∆t)2 − (∆x)2.

Quantity↓ Variable→ standard offering traveler-point version low-speed version

time dilation γ ≡ ∆t/∆τ γ = 1/
√

1− (v/c)2 γ =
√

1 + (w/c)2 γ ≃ 1

relative velocities v ≡ ∆x/∆t, w ≡ ∆x/∆τ vac = (vab+vbc)

(1+vabvbc/c
2)

wac = γacγbc(vab + vbc) vac ≃ vab + vbc

momentum p = mγv p = mw p ≃ mv

total energy E = γmc2 E = γmc2 E ≃ mc2

kinetic energy K = (γ − 1)mc2 K = (γ − 1)mc2 K ≃ 1
2
mv2

ativistic energies/momenta. Length contraction is off the
table, because it requires two extended frames with syn-
chronized clocks. Proper-velocity ~w = γ~v and rest-mass
m is used instead of “relativistic mass” to preserve the
standard relationship between momentum and velocity,
and students are only being asked to master that subset
of problems posed in the book which can solved with or
without these “hybrid kinematic” tools, as shown Table
I.

III. INTROPHYSICS IN GENERAL

More generally we suggest initial mention (even if only
in passing) of the “traveler-point variables” (chosen be-
cause they either have frame-invariant magnitudes or be-
cause they don’t require synchronized clocks), namely
traveler or proper time τ , proper velocity defined as map
distance per unit traveler time ~w ≡ ∆~x/∆τ , and the net

proper force Σ~ξ = m~α felt by on-board accelerometers.
These are approximated at low speeds by the more fa-
miliar map time t, coordinate velocity ~v ≡ ∆~x/∆t, and

net map-based force Σ~f ≃ ∆~p/∆t. By sticking with
displacements ∆~x and simultaneity defined by a single
bookkeeper or map reference frame (i.e. the metric), as
shown in Table II we can simply describe time-dilation
γ ≡ ∆t/∆τ and constant unidirectional proper accelera-
tion ~α at any speed, even when there’s no time to explore
3-vector proper velocity/acceleration or multi-frame phe-
nomena like length contraction.
The unidirectional proper-velocity addition equation

given in Table II, for example, allows students to see
the advantage of colliders over accelerators in more vis-
ceral terms, which may even fire up the imagination of
NASCAR fans (think of land and relative speed records
for particles) as depicted in the relative velocity illustra-
tion of Figure 2 (inspired by an XKCD cartoon). Simi-
larly the unidirectional equations of constant proper ac-
celeration given in Table II allow students to easily cal-
culate the map and traveler times elapsed on constant
proper-acceleration round trips between stars, as illus-
trated in Figure 3.
In passing, we should also mention the curious relation-

ship between various energies and the time-dilation or
differential-aging factor γ ≡ ∆t/∆τ . The basic relation-
ship, given in Table II, allows us to say that kinetic energy
of motion with respect to inertial frames in flat spacetime

FIG. 2. Two 6.5 TeV LHC protons send messages to each
other, while passing at proper velocities of about ≃ 6929
lightyears/traveler-year, for a collider energy advantage of
Krel/K ≃ 13, 859 times the energy of stationary target colli-
sion.

FIG. 3. Round trip times and a sample thrust profile for a
spaceship capable of constant 1-gee acceleration and avoiding
collision with atoms.

isK = (γ−1)mc2. Remarkably, however, in curved space
time and in accelerated frames, relations like this also ex-
press potential energies associated with geometric forces.
This is easiest to see when standing in an artificial (cen-
trifugal) gravity well, where the rotational kinetic energy
from a fixed external point of view looks like a potential
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TABLE II. Traveler-point dynamics in flat (1+1)D spacetime: Conserved quantities energy E = γmc2 and momentum ~p = m~w,
where differential-aging factor γ ≡ δt/δτ , proper velocity ~w ≡ δ~r/δτ ≡ γ~v, coordinate acceleration ~a ≡ δ~v/δt. In the first
4 rows, τ is traveler time from “rest” with respect to the map frame, and α is a fixed space-like proper acceleration vector.
Asterisk means that the (1+1)D relation also works in (3+1)D.

relation w ≪ c (1+1)D

map time elapsed t t ≃ τ t = c
α
sinh[ατ

c
]

map displacement ~x ~x ≃ ~vot+
1
2
~at2 x = c2

α
(cosh[ατ

c
]− 1 )

aging factor γ ≡ δt/δτ γ ≃ 1 + 1
2
(v/c)2 γ = cosh[ατ

c
]

proper velocity ~w ≡ δ~x/δτ ~w ≃ ~v ≃ ~vo + ~at w = c sinh[ατ
c
]

*momentum ~p ~p ≃ m~v ~p = m~w = m(γ~v)

*energy E E ≃ mc2 + 1
2
mv2 E = γmc2

felt (~ξ) ↔ map-based (~f)
force conversions

~f ≃ ~ξ ~f = ~ξ

*work-energy δE ≃ Σ~f · δ~x δE = Σ~f · δ~x

*action-reaction ~fAB = −~fBA
~fAB = −~fBA

*map-force:momentum
*felt force:acceleration

Σ~f = δ~p/δt ≃ m~a Σ~f = δ~p/δt ; Σ~ξ = m~α

energy well of depth U ≃
1
2mω2r2 to the rotating inhabi-

tant. However, it also turns out to be true in a spaceship
of length L undergoing constant proper acceleration α,
where the energy to climb from trailing to leading end is
∆U = (∆tleading/∆ttrailing − 1)mc2 ≃ mαL, and in the
gravity of a non-spinning sphere of mass M and radius
R, where the escape energy for mass m on the surface
(when R is much more than the Schwarzschild radius) is
Wesc = (∆tfar/∆τ−1)mc2 ≃ GMm/R, where tfar is time
elapsed on the clocks of distance observers. This and the
kinetic differential-aging factors must, for example, both
be considered when calculating your global-positioning-
system location.

IV. CAUTIONS

Cautions for “traveler-point dynamicists”, especially
when considering the vantage point of more than one
“map-frame” or bookkeeper metric:

• 1st caution: Specify “which clock” when talking
about time elapsed, and which “map frame” when
talking about position.

• 2nd caution: Try to stick with a single map frame of
yardsticks and bookkeeper or “metric time” clocks.
This takes discussion of length contraction and
Lorentz transforms (both requiring two extended
frames) off the table, but allows 3-vector dynamics
to be added.

• 3rd caution: Like rates of energy change at any
speed, map-based forces (magnitude & direction)
differ from one frame to the next at high speeds,
even if the frames are only moving at a constant
speed with respect to one another. This frame
dependence actually gives rise to a kinetic ver-
sus static breakdown of all proper forces, whose

usefulness in the case when there are “oppositely
charged” force-carriers is behind the 19th cen-
tury distinction between magnetic and electrostatic
fields.

• 4th caution: The simultaneity of separately located
events is also frame dependent, i.e. differently mov-
ing observers may disagree on which of two “space-
like separated” events came first, just as the filial
ordering of non-descendant relatives in a family tree
may disagree on an individual’s generation5.

• 5th caution: Relative 3-vector proper-velocity ad-
dition (e.g. between co-moving reference frames) is
possible, but may be complicated by both “clock
changes” which affect component magnitudes, and
by changes in the reference metric (which affect
both component magnitudes and directions).

• 6th caution: If energy is not conserved in an in-
teraction between objects traveling at high speeds,
momentum may not be either since differently-
moving frames allow trades between energy E and
momenta ~p (as well as between motion-through-
time δt/δτ and motion-through-space δ~x/δτ) be-
cause only a sum of both, e.g. from the flat-space
metric c2 = c2(E/mc2)2 − (p/m)2, is frame invari-
ant.

• 7th caution: Geometric forces like gravity and cen-
trifugal in general only work locally, i.e. in regions
within which your reference spacetime metric is “lo-
cally flat”. Extensions are possible, e.g. with tidal
and Coriolis forces, by combining forces from sep-
arate regions.

To provide space for discussing sample problems,
and for the development of on-line calculators and
simulators to further empower students and intro-
ductory teachers with this metric-first6 or ‘one-map
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two-clock’7 approach, we’ve created some space up
at sites.google.com/umsl.edu/travelerpointdynamics2 for
further discussion.

ACKNOWLEDGMENTS

Thanks to the late Bill Shurcliff (1909-2006) for his
counsel on “minimally-variant” approaches.

1V. N. Matvejev, O. V. Matvejev, and O. Gron, “A relativistic
trolley paradox,” Amer. J. Phys. 84, 419 (2016).

2W. A. Shurcliff, “Special relativity: The central ideas,” (1996),
19 Appleton St, Cambridge MA 02138.

3G. Gamow, Mr. Tompkins in paperback (Cambridge University
Press, 1996) illustrated by the author and John Hookham.

4J. S. Walker, Physics, 5th ed. (Addison-Wesley, NY, 2017).
5C. Rovelli, The order of time (Allen Lane, London, 2018).
6E. Taylor and J. A. Wheeler, Exploring black holes, 1st ed. (Ad-
dison Wesley Longman, 2001).

7D. G. Messerschmitt, “Relativistic timekeeping, motion, and grav-
ity in distributed systems,” Proceedings of the IEEE 105, 1511–
1573 (2017).

Appendix A: possible course notes

The sections to follow might be dropped into the in-
troductory physics schedule as the usual “relativity sec-
tion”, near the end of the course, or may be rearranged
for piecemeal discussion earlier so that the Newtonian
models, that students will be working with, are framed
as approximations from the start.

1. spacetime version of Pythagoras’ theorem

Time is local to a given clock, and simultaneity is
determined by your choice of reference frame. Al-
though Maxwell’s equations on electromagnetism were
“informed” to this reality in the mid 1800’s, humans re-
ally didn’t start to get the picture until the early 1900’s.
But how might one deal with this quantitatively?
Start with the (1+1)D flat-space metric equation,

namely (cδτ)2 = (cδt)2 − (δx)2 where x and t are po-
sition and time coordinates associated with your refer-
ence “map-frame” of yardsticks and synchronized clocks.
The quantity τ is the proper-time elapsed on the clocks
of a traveling observer whose map-position x may be
written as a function of map-time t. As usual c is the
spacetime constant (literally the number of meters in a
second) which is traditionally referred to as lightspeed
because it equals the speed of light in a vacuum.
The term on the left in the metric equation is referred

to as a frame-invariant. Just like a given hypotenuse
(cf. Fig. 4) can be expressed in terms of a bunch of
different xy coordinate systems, all of which agree on its
length, so a given proper-time interval e.g. on a traveling
object’s clock, can be expressed in terms of many differ-
ent “bookkeeper” reference-frames, all of which will also

FIG. 4. Pythagorean frame-invariance of the hypotenuse
(in black), from the metric equation (δh)2 = (δx)2 + (δy)2

for seven different Cartesian coordinate systems, whose unit-
vectors are shown in color. Although none of these coor-
dinate systems agrees on the coordinates of the black line’s
endpoints, all agree that the length of the hypotenuse is 5.

agree on its duration even if they can’t agree on which of
two spatially-separated events happened first.
This equation is seriously powerful. As Einstein illus-

trated, if one curves spacetime by tweaking the “unit”
coefficients of the terms on the right by only “one part
per billion”, we find ourselves in a gravitational field like
that on earth where a fall of only a few meters can do
you in.

2. traveler-point kinematics

From the foregoing, it is easy to define a proper-

velocity ~w ≡ d~x/dτ = γ~v, where ~v ≡ d~x/dt is
coordinate-velocity as usual, and speed of map-

time or “differential-aging factor” γ ≡ dt/dτ =
√

1 + (w/c)2 = 1/
√

1− (v/c)2 ≥ 1. This last relation
tells us that when simultaneity is defined by a network of
synchronized map clocks, a moving traveler’s clock will
always run slow. These relationships follow directly from
the metric equation itself.
Thus having a new time-variable τ also gives us some

new ways to measure rate of travel. Proper-velocity, as
we’ll see, has no upper limit and is related to conserved-
quantity momentum by the simple vector relation ~p =
m~w where m is our traveler’s frame-invariant rest-mass.
The upper limit of c ≥ dx/dt on coordinate-velocity re-
sults simply from the fact that momentum (and dx/dτ)
have to remain finite. Speed of map-time γ, on the other
hand, relates to total energy by E = γmc2, and to
kinetic energy by K = (γ − 1)mc2.
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At this point, a variety of familar time-dilation and
relativistic energy/momentum topics might be covered as
examples. If there is added time, one path to take is
to introduce length-contraction, velocity addition, and
Doppler effect with or without Lorentz transforms, his-
torical notes on lightspeed measurement, etc. In what
follows, we instead push the alignment with traveler-point
concepts and the Newtonian treatment of kinematics and
mechanics a bit further.
It is also conceptually interesting to note that proper-

acceleration, in turn, is simply the vector-acceleration
detected by a cell-phone accelerometer in the traveler’s
pocket. This quantity, after a couple of proper-time
derivatives, pops up on the left side of the metric equa-
tion as a frame-invariant as did “hypotenuse” and proper-
time.
For unidirectional motion in flat-spacetime (i.e. us-

ing map-coordinates in an inertial frame), proper-
acceleration ~αo = γ3~a, where ~a ≡ d2~x/dt2 is the usual
coordinate-acceleration. These relations also yield a
few simple integrals for “constant” proper-acceleration,
namely α = ∆w/∆t = c∆η/∆τ = c2∆γ/∆x.
That 2nd equality involves “hyperbolic velocity-angle”

or rapidity η = sinh−1[w/c] = tanh−1[v/c], so that
γ = cosh[η]. The first and third equalities reduce to the
familiar conceptual-physics relationships a = ∆v/∆t =
1
2∆(v2)/∆x at low speed. However they allow begin-
ning students to explore interstellar constant proper-
acceleration round-trip problems, almost as easily as they
do problems involving projectile trajectories on earth.

3. dynamics in flat spacetime

The net proper-force may in general be written as

Σ~Fo ≡ m~αo. In flat (and unaccelerated) spacetime
coordinate-systems, all forces are proper, and proper-
acceleration ~αo equals the net-acceleration ~α observed
by a traveler. Under a constant net proper-force, we can
therefore expect constant net-acceleration.
At high speeds the constant proper-force equations are

messier because of that pesky γ in equations like ∆w =
∆(γv) = αo∆t. The low speed approximation (namely
∆v = a∆t) is therefore a bit simpler to deal with, and
works fine for speeds well below c.

4. dynamics in curved spacetime

In both curved spacetime and in accelerated frames,
Newton’s equations still work (at least locally) provided
that we recognize the existence of non-proper or geomet-
ric forces, like gravity as well as inertial forces that arise
in accelerated frames. Newton’s law for causes of motion
“in the neighborhood of a traveling object” then takes

the 3-vector form Σ~Fo +Σ~Fg = m~α, where ~α is the net-
acceleration actually observed by the traveler.
The reason that your cell-phone’s accelerometer can’t

see gravity (or centrifugal force), even when gravity is
causing a net-acceleration downward, is that these are

geometric forces. Geometric forces (Σ~Fg), which act on
“every ounce” of an object, result from being in an ac-
celerated frame or in curved spacetime. Accelerometers

can only detect the result of net proper-forces (Σ~Fo), i.e.
one’s proper-acceleration ~αo.

It’s traditional to approximate gravity on the surface of
the earth as simply a proper-force that is proportional to

mass m, for which ~F = m~g where ~g is a downward vector
with a magnitude of about 9.8 [m/s

2
]. This works quite

well for most applications. However unlike geometric-
forces, proper-forces are not associated with positional
time-dilation like that which must be figured into GPS
system calculations.

Just as kinetic energy in flat spacetime is related via
(dt/dτ−1)mc2 to the faster passage of map-time (t) with
respect to traveler time (τ) when simultaneity is defined
by the map-frame, so is the position-dependent potential-
energy well-depth of some geometric-forces in accelerat-
ing frames and curved spacetime. Thus (dt/dτ − 1)mc2

also describes the potential-energy well-depth for mass-
m travelers located: (i) at radius r from the axis in a
habitat rotating with angular velocity ω, which in the
low-speed limit reduces to the classical value 1

2mω2r2;
(ii) a distance L behind the leading edge of a spaceship
undergoing constant proper acceleration α, which in the
small L limit reduces to the classical value mαL; and
(iii) on the radius R surface of a mass M planet, which
in the R ≫ 2GM/c2 limit reduces to the classical value
of GMm/R where G is the gravitational constant.


