
HAL Id: hal-02196755
https://hal.science/hal-02196755v1

Preprint submitted on 29 Jul 2019 (v1), last revised 23 May 2020 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

DENSITY MODULO 1 OF A SEQUENCE
ASSOCIATED TO SOME MULTIPLICATIVE

FUNCTIONS EVALUATED AT POLYNOMIAL
ARGUMENTS

Mohammad Nasiri-Zare

To cite this version:
Mohammad Nasiri-Zare. DENSITY MODULO 1 OF A SEQUENCE ASSOCIATED TO SOME
MULTIPLICATIVE FUNCTIONS EVALUATED AT POLYNOMIAL ARGUMENTS. 2019. �hal-
02196755v1�

https://hal.science/hal-02196755v1
https://hal.archives-ouvertes.fr


DENSITY MODULO 1 OF A SEQUENCE ASSOCIATED TO SOME
MULTIPLICATIVE FUNCTIONS EVALUATED AT POLYNOMIAL

ARGUMENTS

MOHAMMAD NASIRI-ZARE

Abstract. We study density modulo 1 of the sequence with general term
∑

m≤n f(G(m))

where f is the strongly multiplicative function of the form f(n) =
∏

p|n

(
1− ν(p)

p

)
and

ν is a multiplicative function for which there exists a real number 0 < r ≤ 1 such that
1 ≤ |ν(p)| ≤ p1−r for all primes p, and G is a non constant polynomial with integral
coefficients and taking positive values at positive arguments.

1. Introduction

At the Czech-Slovak Number Theory Conference in Smolenice in August 2007, F. Luca
asked whether the sequences of arithmetic and geometric means of the first n values of the
Euler totient function are uniformly distributed modulo 1. A. Schinzel modified these ques-
tions by asking whether these sequences are dense modulo 1. This question was positively
answered in [4], as well as similar questions for different types of mean values of the Euler
function taken on the integers. Shortly later, two extensions were introduced. The first
one [5] was to consider the mean of the Euler function evaluated at Fibonacci arguments
and the second one was to notice that since the sequences have a linear growth with an
irrational leading coefficient, it could be uniformly distributed modulo 1; this was shown
in [2]. Then the quadratic polynomial values was considered in [1] and [3] for some linear
sequences associated to some multiplicative functions. Also, the distribution modulo one of
some sequences associated to the arithmetical functions has been investigated in [9] and [10].

Most recently, J.-M. Deshouillers and author proved that the sequence

an =
∑
m≤n

φ(G(m))

G(m)

is dense modulo 1, where G is a non constant polynomial with integral coefficients and
taking positive values at positive arguments [6]. In this paper an extension of this result for
a family of strongly multiplicative functions is given as follows.

Theorem 1.1. Let f be the strongly multiplicative function defined by

(1) f(n) =
∏
p|n

(
1− ν(p)

p

)
,
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where ν is a multiplicative function and there exists a real number 0 < r ≤ 1 such that

(2) ∀p : 1 ≤ |ν(p)| ≤ p1−r,

and there exists a family PG of primes such that, for any p ∈ PG the congruence G(x) ≡ 0
(mod p) has a solution, and

(3)
∑
p∈PG

ν(p)

p
= +∞.

Let G be a non constant polynomial with integral coefficients and taking positive values at
positive arguments. Then the sequence with general term

(4) an =
∑
m≤n

f(G(m))

is dense modulo 1.

Because of strongly multiplicativity of f , without loss of generality, we may assume that
the polynomial G has no quadratic irreducible rational factor and that ν(pk) = 0 for any
prime p and any integer k ≥ 2. We keep these assumptions throughout the paper, as more
as we set the following notations.

For a polynomial F with integral coefficients, we let

(5) ω(F, p) = Card{x ∈ Z ∩ [0, p) : F (x) ≡ 0 (mod p)},
and we say that a prime p is a fixed divisor of F if ω(F, p) = p.

We denote by G a non constant polynomial with integral coefficients which takes positive
values at positive arguments; we moreover assume that the polynomial G has no square
irreducible rational factor; its degree is denoted by g and we denote by h an integer which
is at least equal to the minimum of the degree of G and the maximal fixed prime divisor of
G; in other words we have

(6) h ≥ deg(G) = g and p > h ⇒ ∃x ∈ Z : p ∤ G(x).

2. Auxiliary lemmas

In this section, we state some lammas we need to prove the main theorem. First we notice
that the introduced function has approximately linear growth.

Lemma 2.1. Let ν be a multiplicative function and f be defined by

f(n) =
∏
p|n

(
1− ν(p)

p

)
.

and there exists a real number 0 < r ≤ 1 such that ∀p : 1 ≤ |ν(p)| ≤ p1−r, then there exists
α ̸= 0 such that

(7)
∑
n≤x

f(n) = αx+O(x1−r log x) as x → +∞.
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Proof. Since ν is multiplicative, we have∑
n≤x

f(n) =
∑
n≤x

∑
d|n

µ(d)ν(d)

d
=
∑
d≤x

(x
d
+O(1)

) µ(d)ν(d)

d

= x
∞∑
d=1

µ(d)ν(d)

d2
− x

∑
d>x

µ(d)ν(d)

d2
+O

(∑
d≤x

|ν(d)|
d

)

= x

∞∑
d=1

µ(d)ν(d)

d2
+O

(
x
∑
d>x

|µ(d)ν(d)|
d2

+ (
∑
d≤x

|µ(d)ν(d)|
d

)

By (2), we have |µ(d)ν(d)| ≤ d1−r, and so we have

x
∑
d>x

|µ(d)ν(d)|
d2

≤ x
∑
d>x

1

d1+r
= O

(
x1−r

)
and ∑

d≤x

|µ(d)ν(d)|
d

≤
∑
d>x

1

dr
= O

(
x1−r log x

)
,

which implies ∑
n≤x

f(n) = αx+O(x1−r log x),

where

α =
∞∑
d=1

|µ(d)ν(d)|
d2

=
∏
p

(
1− ν(p)

p2

)
.

Notice that the log factor can be dispensed with if r < 1. □

Lemma 2.2. Assume that there exists a family PG of primes such that for any p in PG,
ω(G, p) > 0 and

(8)
∑
p∈PG

ν(p)

p
= +∞.

For M large enough, one can find a finite set of primes Q and a positive integer n0 such
that any q ∈ Q is larger than 2(h+ 1)M and

(9) ∀m ∈ [1,M ] : M−1/2 ≤
∏
q∈Q

q|G(n0+m)

(
1− ν(q)

q

)
≤ M−1/4g.

Proof. According to (8), infinitly many primes are available for which ν(p) > 0 and ω(G, p) ̸=
0 such that over those

∑ ν(p)
p

= +∞ and then the infinite prodoct
∏(

1− ν(p)
p

)
tends to

zero over such primes. This allows us to repeat the proof of Lemma 1 of [6] to construct Q
and n0. □
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Lemma 2.3. Let a, b, c, k be positive integers with bk > 4a and u(n, j) be real numbers with

(10) 0 ≤ u(n, j) ≤ 1 and ∀n ≥ 2:
∑
j≤bk

u(n, j) ≤ ck

n
.

We have

(11)
∑

a≤j≤bk

∏
2≤n

(
1− 1

nr

)u(n,j)

≥ bk

4
exp

(
−4ηc

b

)
.

where η =
1

r
(ζ(1 + r)− 1).

Proof. Let us call S the sum which appears in (11). We denote as “bad guys” those integers
j for which the product is at most λ = exp(−4ηc

b
) and “good guys” the other ones. A lower

bound for S is λ times the number of good guys, and so it is enough to find an upper bound
for the number of bad guys. It will be possible because we have an upper bound for the
total number of the u(n, j).

It will be always implicit that the integers j are always limited to a ≤ j ≤ bk and the
integers n to n ≥ 2; let us define B = {j :

∑
n u(n, j) log(1−

1
nr ) ≤ log λ} and G = [a, bk]\B.

We have∑
j

(∑
n

u(n, j) log

(
1− 1

nr

))
≤
∑
j∈B

(∑
n

u(n, j) log

(
1− 1

nr

))
≤ Card(B) log λ.

In the other direction, we have∑
j

(∑
n

u(n, j) log

(
1− 1

nr

))
=
∑
n

log

(
1− 1

nr

)∑
j

u(n, j) ≥ ck
∑
n

1

n
log

(
1− 1

nr

)
.

Using the fact that log
(
1− 1

nr

)
≥ −2

rnr , we get

4ηc

b
Card(B) ≤ 2ck

r

∑
n

1

n1+r
= 2ckη,

whence

Card(B) ≤ bk

2
and so, using (10)

Card(G) ≥ bk

2
− a ≥ bk

4
which implies

S ≥ Card(G)λ ≥ bk

4
exp

(
−4ηc

b

)
.

□
The working engine of the present paper is the following sieve result which is Proposition

1 in [6].
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Lemma 2.4. Let M , Q and n0 satisfy Lemma 2.2 and let H be the polynomial defined by

(12) H(x) =
M∏

m=1

G(Qx+ n0 +m), where Q =
∏
q∈Q

q.

There exist infinitely many integers x such that H(x) has no other prime factor in the
interval [2(h+ 1)M,x1/7gM ] than those from Q.

3. Proof of the main result

In order to prove Theorem 1.1, it is enough to prove that for all m ∈ [1,M ], f(G(Qx +
n0 +m)) tends to zero with M , and

(13)
M∑

m=1

f(G(Qx+ n0 +m)) ≥ 1.

Using the Proposition 2.4 we can find sufficiently large an integer x such that H(x) =∏M
m=1G(Qx+ n0 +m) has no prime factor in the interval [2(h+1)M,x1/7gM ], except those

from Q. So we have only three type of prime divisors :

1) Belong to Q;

2) Smaller than 2(h+ 1)M ;

3) Larger than x1/7gM .

Since G(Qx + n0 + m) = O(xg), number of large divisors is at must 7g2M . Thus for
sufficiently large x,

(14)
∏

q|G(Qx+n0+m)

q>x1/7gM

(
1− ν(q)

q

)
≤

∏
q|G(Qx+n0+m)

q>x1/7gM

ν(q)<0

(
1 +

1

qr

)
≤
(
1 + x−r/7gM

)7g2M ≤ 3

2
,

and

(15)
∏

q|G(Qx+n0+m)

q>x1/7gM

(
1− ν(q)

q

)
≥

∏
q|G(Qx+n0+m)

q>x1/7gM

ν(q)>0

(
1− 1

qr

)
≥
(
1− x−r/7gM

)7g2M ≥ 1

2
.

Considering (9) and (14) we write

(16) f(G(Qx+ n0 +m)) ≤ 3

2
M−1/4g

∏
q≤2(h+1)M

(
1 +

1

qr

)
≪r M

−1/4g logM

an expression which tends to zero with M .
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Also we have
M∑

m=1

f(G(Qx+ n0 +m)) ≥
M∑

m=1

∏
q|G(Qx+n0+m)

ν(q)>0

(
1− ν(q)

q

)

≥ 1

2
M−1/2

M∑
m=1

∏
q|G(Qx+n0+m)
q≤2(h+1)M

(
1− 1

qr

)
.

So its enough to show that

M∑
m=1

∏
q|G(Qx+n0+m)
q≤2(h+1)M

(
1− 1

qr

)
≥ 2M1/2.

We are going to apply Lemma 2.3. We let u(n, j) = 1 when n ≤ 2(h+1)M is a prime which
divides G(Qx+ n0 + j) and 0 otherwise; we thus have

M∑
m=1

∏
q|G(Qx+n0+m)
q≤2(h+1)M

(
1− 1

qr

)
=

M∑
j=1

∏
n≥2

(
1− 1

nr

)u(n,j)

.

In order to apply Lemma 2.3, we take a = b = 1, k = M and we have to show that there
exists c such that

∑
j≤M u(n, j) ≤ cM

n
. If n is a fixed divisor of G, we recall that n ≤ h and

we have ∑
j≤M

u(n, j) = M ≤ hM

n
.

If n is not a fixed divisor of G, for some j ∈ [1,M ], n | G(Qx+ n0 + j).Indeed the number
of such js is ω(G,n) in any interval of length n, so the total number of those in [1,M ] is(
M
n
+ 1
)
ω(G,n). Hence we have∑

j≤M

u(n, j) ≤
(
M

n
+ 1

)
ω(G,n) ≤ g

(
M

n
+ 1

)
≤ (2h+ 3)gM

n
.

Thus, the second part of (10) is satisfied and we can apply Lemma 2.3 with c = g(2h+ 3),
which leads to (with a constant C depending on G only)

M∑
m=1

∏
q|G(Qx+n0+m)
q≤2(h+1)M

(
1− 1

qr

)
≥ CM ≥ 2M1/2,

when M is large enough. This ends the proof of Theorem 1.1.
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