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Numerical simulation of two-dimensional multiple
scattering of sound by a large number of circular
cylinders

Adrien Rohfritsch,1 Jean-Marc Conoir,1 Régis Marchiano,1 and Tony Valier-Brasier1

Sorbonne Université, CNRS, Institut Jean Le Rond d’Alembert, UMR 7190, 4 Place Jussieu, Paris,

F-75005, Francea)

The purpose of this article is to present an innovative resolution method for investigating
problems of sound scattering by infinite cylinders immersed in a fluid medium. The study is
based on the analytical solution of multiple scattering, where incident and scattered waves are
expressed in cylindrical harmonics. This modeling leads to dense linear systems, which are
made sparse by introducing a cutoff radius around each particle. This cutoff radius is deeply
studied and quantified. Numerical resolution is performed using parallel computing methods
designed to solve very large sparse linear systems. Comparisons with direct calculations,
made with another numerical software, and with homogenization technics follow and show
good agreement with the implemented method. The last part is dedicated to a comparison
between the propagation of waves in a circular cluster made of a random distribution of
cylinders and the propagation in the corresponding homogenized cluster where the multiple
scattering formalism is combined with a statistical analysis to provide an effective medium.

c©2020 Acoustical Society of America. [http://dx.doi.org(DOI number)]
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I. INTRODUCTION

Multiple scattering of waves is a general problem
which occurs in many fields of physics. Both the acous-
tical and electromagnetical physics communities have
problems of great interest that deal with multiple scatter-
ing, such as the characterization of effective parameters
of heterogeneous media or phononic crystals, for exam-
ple.
Here, we present a study of scattering by infinite parallel
cylinders. The model used in this paper to describe the
wave propagation through a cluster of cylinders was first
presented by F. Zàvǐska1. It is an analytical model which
leads to writing the solution in an implicit way through
a linear system of great size, which increases with fre-
quency and the number of cylinders. In view of the dif-
ficulty to resolve this dense linear system, two strategies
have emerged.
The first is based on statistical tools applied to the ex-
pression of the total acoustical field, leading to the cal-
culation of statistical quantities, for instance self-energy
or effective wave numbers. As a partial overview of no-
table papers based on the multiple scattering model, one
can note for instance Bose et al.3 for the study of wave
propagation in fiber-reinforced composites. This study
is based on the quasi-cristalline approximation, intro-
duced by Lax4, that gives exact results for crystal lat-
tices. Later on, Varadan et al.5 generalized this case
to arbitrary shaped scatterers. Le Bas et al.6 have in-
troduced the S-matrix to study the resonant interaction

a)adrien.rohfritsch@sorbonne-universite.fr;

between cylinders. More recently, a paper by Linton and
Martin7 deals with the second-order corrections of effec-
tive wavenumbers in elastic media, and derives Twersky’s
expressions to criticize their relevance. Later, Norris and
Conoir8 performed the calculation of effective wavenum-
bers up to fourth order. All these analytical models based
on statistical tools are intrinsically limited by the con-
centration and the geometry of the cluster of cylinders,
which is often a half-plane or a slab.
The second strategy emerged at the beginning of the sev-
enties. At that time, new numerical methods were avail-
able, offering possibilities to resolve multiple scattering
problems. First numerical studies were conducted with
two cylinders9,10 or circular arrays of cylinders around a
point source11. Over the years, iterative methods have
been developed to calculate the exact solution by using
parallel computing. Several methods were designed to
resolve problems with particular geometry, such as lat-
tices or uniform distributions in a slab. A wide overview
of these numerical methods has been presented recently
by Amirkulova and Norris12. Among all these methods,
the Fast Multipole Method (FMM), proposed by Green-
gard and Rokhlin13 for particle simulations, was later
extended for acoustic and electromagnetic scattering cal-
culations. It is worth noting that many efforts have been
put on FMM in 3D multiple scattering problems taking
into account a large number of spherical particles. More
details can be obtained by referring to14,15 and the book
written by Gumerov and Duraiswami16 presenting an up-
to-date discussion of the FMM including different expan-
sions and convergence analyses. Surprisingly enough, the
FFM has received less attention in 2D where it has been
implemented by Zhang and Li17 with a special attention
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to phononic crystals.
The objective of this paper is to develop a numerical
method of resolution based on the equations of the mul-
tiple scattering theory. We focus on demonstrating how
the number of non-zero matrix entries can be decreased
by introducing a cutoff radius around each cylinder. This
radius makes the system sparse and easier to solve using
relevant iterative methods. For implementation, we use
a library developed to solve large linear sparse systems
(Portable, Extensible Toolkit for Scientific Computation,
PETSC18–20). This library is used with Message Passing
Interface (MPI) architecture, which is the key tool to en-
sure the scalability of the resolution. Indeed, the same
implementation works as well on a computer of 24 pro-
cessors as on a computer of 512 processors: there is no
limit to the size of the problem. This implementation
allows computation of the most general multiple scat-
tering cases: any number of scatterers, any number of
modes (i.e. any frequency) can be treated, as well as
any random geometry (with any concentration) or any
cylinder type and incident wave type (plane wave, point
source, etc.). Validation tests open a comparison between
homogeneous (statistical) predictions and our resolution
(called MuScat in this paper, for Multiple Scattering).
The last part is dedicated to the study of the directiv-
ity diagram of a circular cluster of randomly distributed
cylinders. In this case computations are perormed with
matrices of size N ×N = 85100 × 85100 on a computer
of 64 processors.

II. THEORETICAL MODEL

This section is dedicated to the presentation of the
model of multiple scattering of sound waves in two di-
mensions. The acoustic pressure is written pe−iωt, and
satisfies the Helmholtz equation

∆p+ k2p = 0, (1)

where k = ω/c is the wavenumber and c the speed of
sound in the host medium. For the sake of simplicity, the
time dependence e−iωt is omitted throughout the text.
The pressure field is expressed in the coordinate system
(r, θ) which is linked to an arbitrary center O. In two
dimensions, any wave can be decomposed in the basis
of the cylindrical harmonics; that gives for the incident
pressure p0

p0(r) =

+∞∑
n=−∞

bnJn(kr)einθ, (2)

where coefficients bn are the amplitudes of each mode
and Jn is the Bessel function of order n. For instance,
for a plane wave propagating along the x-axis, the coeffi-
cients bn are (−i)n. The total sound field in a particular
configuration of Ns scatterers can be expressed as the
sum of the incident wave and the waves scattered by all
scatterers

p(r) = p0(r) +

Ns∑
j=1

p(j)
s (rj). (3)

Figure 1 indicates the notations used in the following,
illustrating that our resolution is not limited to a unique
type of cylinder. Eq (3) expresses waves diverging from
each cylinder with respect to their own coordinate sys-
tems rj = (rj cos θj , rj sin θj)

t
. It follows that

p(j)
s (rj) =

+∞∑
n=−∞

A(j)
n H(1)

n (krj)e
inθj , (4)

where H
(1)
n is the Hankel function of the first kind and

order n and the scattering amplitudes A
(j)
n are the un-

knowns of the problem. Every scattered wave becomes
an incident wave for the other cylinders. Hence, the in-

cident wave on scatterer j, p
(j)
inc, is written as

p
(j)
inc = p

(j)
0 +

Ns∑
k=1
k 6=j

+∞∑
n=−∞

A(k)
n H(1)

n (krk)einθk . (5)

FIG. 1. Arbitrary planar configuration of parallel cylinders.

Using the addition theorem21, cylindrical harmonics
with origin at rp can be expressed as a sum of cylindrical
harmonics with origin at rq thanks to the relations



zn(krp)e
inθp =

+∞∑
ν=−∞

zn−ν(krpq)e
i(n−ν)θpqJν(krq)e

iνθq

if rq < rpq,

zn(krp)e
inθp =

+∞∑
ν=−∞

Jn−ν(krpq)e
i(n−ν)θpqzν(krq)e

iνθq

if rq > rpq,

(6)
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where zn can either be Jn or H
(1)
n , and rpq = rp − rq.

Substituting Eq (6) in Eq (5) yields

p
(j)
inc =

+∞∑
ν=−∞

+∞∑
n=−∞

N (0j)
νn bn +

Ns∑
k=1
k 6=j

M (kj)
νn A(k)

n

 Jν(krj)e
iνθj ,

(7)
with M

(kj)
νn = H

(1)
ν−n(krkj)e

i(ν−n)θkj ,

N
(0j)
νn = Jν−n(kr0j)e

i(ν−n)θ0j .
(8)

Taking into account the scattering coefficients T
(j)
n of the

T(j) matrix, it follows from Eqs (4) and (7) that we have

A(j)
n = T (j)

n

 +∞∑
n=−∞

N (0j)
νn bn +

Ns∑
k=1
k 6=j

+∞∑
n=−∞

M (kj)
νn A(k)

n

 .
(9)

For circular cylinders, the T(j) matrix is diagonal, with

coefficients T(j)
np = T

(j)
n δnp. Its coefficients are calculated

imposing continuity of displacements and stress vector at
the boudaries of cylinders and fluid. For instance, they
are for the case of a soft cylinder of radius a

T (j)
n = − Jn(ka)

H
(1)
n (ka)

. (10)

Note that the cylinders considered in this paper are
either soft cylinders (see section IV. A) or elastic cylin-
ders (see all other sections), and that their elastic prop-

erties can be chosen by changing T
(j)
n

22,23. Eq (9) can be
formulated in a vectorial way as follows

A(j) = T(j)

N(0j)b +

Ns∑
k=0
k 6=j

M(jk)A(k)

 . (11)

If the modal sum is truncated at order Nm, Eq (11)
involves 2Nm − 1 equations for each scatterer. The total
size of the system is then N×N , with N = Ns×(2Nm−1)
and can be written as

[I − TM]A = T E, (12)

with the following notations
A = (A(1),A(2), ...,A(Ns))t

Ep = N(0p)b,

Tpq = T(p)δpq,

Mpq = M(pq)(1− δpq).

(13)

Solving the linear system (12) gives all the amplitudes
of the waves scattered by the Ns arbitrarily distributed
scatterers. The calculation of the inverse of the matrix
[I − TM] is a very demanding process because of its
large size and the fact that it is a dense system. The next
part is devoted to our numerical strategy and method to
resolve it.

III. NUMERICAL METHOD

A. Truncation of the modal sum

The matrix of the linear system (12) is complex-
valued, dense, of size N ×N , with N = Ns × (2Nm − 1).
The first parameter to set is the number of modes to take
into account (Nm), which increases as a function of fre-
quency. A common empirical approach to truncate the
modal sum is to choose Nm as24

Nm = [ka+ (1/(2
√

2) ln(2
√

2πkaε−1))2/3 + 1],

where a is the radius of the scatterers, [x] is the integer
part of a real number x and ε is the desired error bound
on the scattering amplitudes. This threshold can be
insufficient for configurations with very close cylinders.
Valier-Brasier and Conoir25 recently showed that a large
number of modes has to be taken into account in the
case of resonant interactions between close scatterers
(for instance bubbles or soft cylinders). In this paper, to
be sure to converge, we chose to calculate the number
Nm by resolving a two cylinders problem, with an
in-between distance equal to the minimal distance
between cylinders in the distribution we want to focus
on. Then, starting with Nm = 1 and increasing it more
and more, calculation stops when |A1,2

Nm+1| < tol and

|A1,2
Nm+2| < tol simultaneously; tol parameter is set at

10−6.

B. From dense to sparse systems

If the size of the matrix becomes large, two problems
occur. First of all, there is a possible overflow of the
memory space.

A close look at the matrix shows that each line
corresponds to the interaction of a scatterer with all
other scatterers. But these interactions clearly become
smaller as the distance between them increases: the wave
scattered by one cylinder does not contribute to the field
incoming upon on another scatterer located at a very
long distance. That leads to the idea of a cutoff radius
(D) around each scatterer, that represents the horizon
beyond which cylinders do not interact anymore. This
radius is related to the quantities of the problem: the
wavelength of the source, the concentration of cylinders,
the geometry of the cluster and the elastic properties of
the cylinders being the most important.

Imposing this cutoff radius leads to a new problem
to solve, written as[

I − T M̃
]
Ã = T E, (14)

with M̃ the new sparse matrix of the problem and Ã the
new amplitude vector.
Now that a new sparse problem has been constructed,
one has to know how to resolve it.
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FIG. 2. (color online) Comparison between three iterative

methods (GMRES, BCGS and LCD), in terms of convergence

time (above) and number of iterations (below). Calculations

are performed on 480 steel cylinders of radius a = 1 mm

randomly distributed in water, with a global concentration of

φ = 8%.

C. Iterative methods designed to work through Message

Passing Interface

To resolve such huge sparse linear systems, direct
methods are known to be inefficient, because of their
time and memory costs: for instance, Gauss-Jordan
method requires O(N3) operations, and LU decomposi-
tion 2N3/312. Iterative methods are then more suitable.
Those based on Krylov subspaces have concentrated a
lot of efforts through the last two decades24,26,27. A set
of these methods is computed in PETSC’s library18–20,
which we chose here to perform the resolution.
This library works using Message Passing Interface
(MPI). This parallel computing architecture is char-
acterized by the fact that each processor has its own
memory storage. Data communication is performed
from one processor to another. An important advantage
of this architecture is the scalability of the resolution.
Indeed, after implementing the resolution on a computer
of 64 processors, one can immediatly launch it on
computers of 24 or 512 processors without any difficulty,
and therefore increase the maximum size of problems
that can be resolved.

For each matrix type, a particular iterative method
has to be chosen, because it has to take into account

the global and local properties of the matrix
[
I − T M̃

]
.

In our case, it is a complex-valued asymmetrical matrix.
Many studies are limited to cases with periodic lattices,
for which the problem is easier to solve. For instance,
Biwa et al.28 focused on the propagation of shear waves
in periodic lattices (even though they presented the gen-
eral model), studying propagation in composite media.
More recently, Amirkulova and Norris12 compared the
LAPACK and TOEPLITZ libraries, and treated prob-
lems of phononic crystals composed of a few hundred
cylinders.
The objective of the study here is to resolve the problem
for the most general case, for which the matrix does not
have particular symmetries. Three of the suitable meth-
ods for such matrices were studied in terms of conver-
gence rate: Stabilized version of BiConjugate Gradient
(BCGS), Generalized Minimal Residual method (GM-
RES) and Left Conjugate Direction (LCD). The precon-
ditionner Block Jacobi is chosen for the three methods.
Two comparisons are presented in Figure 2 for a random
distribution of 480 steel cylinders with a concentration
of φ = 8%: time needed to reach converge (above) and
number of iterations to converge (below). Here, the spar-
sity of the system is such that approximately 20% of the
interactions between scatterers are taken into account:
all cylinders interact with the closest 20% cylinders.
GMRES is chosen to perform all the simulations through-
out this paper, because of its better resolution speed in a
classical frequency range. One can note that the BCGS
method gives close results in terms of time, and better
results in terms of number of iterations (but each itera-
tion takes more time).
Numerical methods for solving large linear sparse systems
are now well established.

D. Controlling the error introduced by the cutoff radius

Now that one knows how to make the system sparse
and that an efficient method to solve sparse asymmet-
rical systems has been chosen, the error created by the
introduction of the cutoff radius has to be quantified: the
question is now how to choose D and what error is cre-
ated by this choice.
This error is evaluated through the error made on the
acoustic field (which is directly related to the amplitudes
themselves, but closest to physical considerations). Sev-
eral simulations are performed on circular random distri-
butions of steel and epoxy cylinders in water. This geom-
etry is chosen because it minimises the number of scat-
terers close to the domain boudaries. To cancel boundary
effects, no cutoff radius is applied to cylinders too close
from the boundary (i.e. for which the exclusion circle is
totally included in the cluster).
The radius of each distribution is six times larger than the
wavelength of the incident field, which is a plane wave.
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The error created by the cutoff radius is calculated by
the relation

∆E =

√√√√(∑Nr
r

∑Nθ
θ |p(r, θ)− p̃(r, θ)|2∑Nr
r

∑Nθ
θ |p(r, θ)|2

)
, (15)

where p(r, θ) is the exact pressure field (calculated by
resolving the dense system) and p̃(r, θ) is the approxi-
mate pressure field. Nr is the number of sampling points
in radial direction, and Nθ in angular direction. These
two parameters, as soon as they are taken large enough
(few tens by wavelengths in our case) do not impact the
value of ∆E . Here, we chose to impose ∆E = 10%. The
calculations are performed for different frequencies and
concentrations in such a way that the dense version of
the matrix can fit in the memory of a 125Gb computer.
The maximum values of the cutoff radius, normalized by
the wavelength, to obtain an error equal to 10% are given
in Figures 3, for steel cylinders and epoxy cylinders, as
a function of φ ∈ [5%, 20%] and the frequency parameter
ka ∈ [0.1, 1.0]. Twenty-four points have been calculated
in frequency and twelve in concentration.

φ (%)
6 8 10 12 14 16 18 20

ka
0.2

0.4
0.6

0.8
1.0

D̃

3.5
4.0

4.5

5.0

5.5

λ

(A)

φ (%)
6 8 10 12 14 16 18 20

ka
0.2

0.4
0.6

0.8
1.0

D̃

2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0λ

(B)

FIG. 3. (color online) Maximum values for cutoff radius

for which the error is ∆E = 10%, as a function of frequency

and concentration, for two types of elastic cylinders: (A) steel

(ρc = 7850 kg.m−3, cL = 5700 m.s−1, cT = 3000 m.s−1) and

(B) epoxy (ρc = 1200 kg.m−3, cL = 1500 m.s−1, cT = 800

m.s−1).

This surface can be fitted by a function of two pa-
rameters. For each study, one can then determine which

cutoff radius should be imposed in order to have a tolera-
ble error. Writing D̃(ka, φ) = D(ka, φ)/λ as the products
of two polynomials of degree deg

D̃(ka, φ) =

[
deg∑
i=0

ai(ka)i

]deg∑
j=0

bjφ
j


=

deg∑
i=0

deg∑
j=0

cl(ka)iφj , with l = j + ideg

(16)

one can use a least square method to determine appropri-
ate values for coefficients. In the case of steel cylinders,
Figure 3 (A) shows that D̃ behavior is quite smooth. In
this case, interpolated surface gives good approximation
with deg = 2. Coefficients are given in Table I. In the
case of epoxy cylinders (B), an elastic resonance around
ka = 0.88 makes the behavior much more complicated,
for which deg = 4 has to be chosen in order to get a
correct interpolation. For the sake of legibility, the 23
coefficients for this second surface are not given in the
text.

c0 c1 c2 c3 c4 c5 c6 c7 c8

1.6 29.0 7.1 -48.8 -72.6 -4.3 29.6 130.5 -81.1

TABLE I. Coefficients of surface of cutoff radius calculated

for steel cylinders.

We chose here to link the dimension of cutoff radius
to the wavelength. Other lengths can be chosen, such as
radius a, elastic mean free path le, cluster size Rc or even
mean distance between cylinders d (depending on the
concentration). The elastic mean free path can appear
as a very relevant quantity because of its strong depen-
dency on frequency and concentration, but there are two
main problems with it. The first problem is related to
cylinder resonances. The second problem is linked with
the fact that, outside of low concentration regimes, it
is difficult to calculate the elastic mean free path with
good precision (note that for low concentration, Eq (20)
in last section gives the standard expression). Here, the
wavelength is chosen to scale the cutoff radius. Our
choice is motivated by the fact that the wavelength is
the main quantity playing a role in the behavior of the
Hankel functions, which drives the scattering. Zhang
and Li17 also used this quantity to scale their groups of
scatterers. Another proof of the complex dependency of
cutoff radius on frequency follows in the next part of
this article.

The choice of the threshold ∆E = 10% is arbitrary,
other values are of course possible. To get a physical
meaning for this value, a circular, randomly distributed
distribution of 2130 steel cylinders (ρc = 7850 kg.m−3,
cL = 5700 m.s−1, cT = 3000 m.s−1) in water (c = 1500
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m.s−1, ρ = 1000 kg.m−3) is considered. The global con-
centration is φ = 15%. A plane wave propagates to-
wards the x-direction (from left to right), with frequency
f = 46.8 kHz, (ka = 0.2).
Figures 4 (A), (B), (D), (F) and (H) show the scattered
energy field (in dB), in four cases: (A) shows the exact
field (obtained by resolution of the dense problem), and
(B), (D), (F) and (H) three sparse systems, with smaller
and smaller cutoff radius ((F) corresponding to the Born
approximation case, for which no interaction is taken into
account). (B) corresponds to the rate proposed in this
work ∆E = 10%. All the quantities are reported in Table
II.

D (m) ∆E (%) % of interactions Figures: field, error

0.19 10.0 96.0 (B), (C)

0.15 22.0 77.0 (D), (E)

0.09 49.0 39.0 (F), (G)

0.001 91.0 0.0 (H), (I)

TABLE II. Energy error, for four different cutoff radius D

on the same distribution.

The considered distribution has a radius of Rc = 0.1
m, which corresponds to 100a. This gives a ratio
kRc = 20. Considering the cluster cylindrical form, we
observe here a scattering behavior similar to the one
of a single cylinder scattering at high frequency regime
for which most of the energy goes forward. The error
on the acoustic fields is represented in Figures 4 (C),
(E), (G) and (I). Although ∆E takes large values, one
can observe how weak the error on the field is. This is
due to the fact that the error estimator ∆E includes
the error made on the total areas (which are two times
bigger than the considered distribution). For both cases
(C) and (E), the error is almost everywhere below 15dB,
even if ∆E = 22% for case (E). It should be pointed out
that the choice of ∆E can depend on other parameters,
for instance the geometry of the cluster. In our case
corresponding to a cylindrical cluster, most of the energy
is located on the forward scattering region.

IV. VALIDATION TESTS

This section is devoted to validation cases for which
MuScat simulations are compared to other simulations
performed using other calculation methods. First, a
numerical calculation based on Discontinuous Galerkin
Method is performed, on situations with a few soft cylin-
ders. Then, a comparison with Foldy’s Model29 gives
very good results, in terms of effective parameters, for low
concentration (φ = 6%) and frequency range ka ∈ [0, 1].

A. Comparison with numerical simulations of the wave equa-

tion

Time-domain calculations based on the wave equa-
tion is another strategy to investigate multiple scattering
problems. For instance, Pennec et al.30 performed Fi-
nite Difference Time Domain simulations to study mul-
tiplexing and demultiplexing of waves in waveguides.
Chekroun et al.31 used a time simulation to compute the
effective wave numbers of heterogeneous media in order
to compare them with the effective medium theories we
listed in the introduction of this paper. These methods
are limited by the number of scatterers, due to mesh size
limitation. The idea of this section is to compare the
scattered field of simple configurations of soft scatterers,
calculated by MuScat and by the Discontinuous Galerkin
calculator Paradigm32,33.
Paradigm is based on time simulation. The source de-
fined in both simulation is a plane wave and the radius
of the cylinders is a = 1 mm. Ideal plane waves are never
reached in time domain simulations, because that means
infinite extension. To stay free from diffraction consid-
eration, we decided to compare only the scattering field
rather than the total field. Two time simulations have
been performed for each case presented here: one with
cylinders and the other without (the second one is a free
space simulation). In this way, substracting both fields
gives the scattering part of the total field. Afterwards,
a frequency treatment is performed to get the harmonic
picture of the field, instead of the time simulation.
Two different configurations are presented here. One is
composed of four cylinders placed on the corners of a
square, 1cm by 1cm. The other is composed of 6 ran-
domly distributed cylinders. This last case is interesting
because cylinders very close to each other are considered.
Figures 5 (A),(B) show the scattered fields on two differ-
ent space lines for two configurations. The space line is
represented in green at the top left corner and it is paral-
lel (a) or perpendicular (b) to the propagation direction
of the source. The frequency of the source is ka = 0.7
for (A) and ka = 1.06 for (B). MuScat and Paradigm
agree with a very good precision in both cases. These
are the first tests proving the validity of the implemented
method.
More than just a validation case, it is also an inter-
esting case of comparison between two different mod-
els, one using discretization of elastodynamics equations
(Paradigm) and the other being only based on acoustical
quantities, where the mechanical aspects are all included
in the T-matrix of each cylinder.

B. Comparison with the Independant Scattering Approxima-

tion (ISA)

For low concentrations of scatterers, effective
medium theories are often used to calculate the effec-
tive celerity and the effective attenuation of the coherent
wave through the heterogeneous medium. The idea of
the current section is to compare the effective parame-
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FIG. 4. (color online) Acoustical energy fields calculated on circular randomly distributed distributions (φ = 15%, ka = 0.2).

A plane wave is propagating from left to right. Figures on the top represent the acoustic energy normalized by the maximum of

(A). (A) is calculted thanks to the dense system (12), and the others with (14), with smaller and smaller cutoff radius, reported

on Table II. Figures at the bottom represent the energy error introduced by the cutoff radius, with respect to (A).

ters given by Foldy’s model and those given by MuScat.
Let us consider a rectangular geometry of size H × h, H
being the dimension towards the y-axis and h towards
the x-axis, as presented in Figure 6. A plane wave is
chosen as source and propagates towards the x-axis. At
position x = h, one can write the pressure as

{
p0 = Aejkh in homogeneous medium,

p1 = Aejkeffh in heterogeneous medium.
(17)

The effective wave number is complex and decom-
posed as keff = ω/ceff + jαeff, where αeff is the effective
attenuation and ceff the effective phase velocity. Consid-
ering that the phase delay arg(p1/p0) is simply given by
ωh(1/cφ − 1/c0), αeff and ceff are calculated as follows

αeff = − 1

h
ln

(∣∣∣∣p1

p0

∣∣∣∣) ,
ceff =

ωh

ωh

c0
+ arg(p1p0 )

.
(18)

Foldy’s model gives an expression for the effective
wavenumber8.

k2
eff = k2 − 4in0

∑
n

Tn, (19)

where n0 is the number of cylinders by square meter and
Tn the scattering coefficients of one single cylinder. Ex-
pressions (18) (used for calculation with MuScat) and
(19) are compared numerically.

Calculations with MuScat are performed for
randomly distributed distributions of steel cylinders
(ρc = 7850 kg.m−3, cL = 5700 m.s−1, cT = 3000 m.s−1)

in water (c = 1500 m.s−1, ρ = 1000 kg.m−3). The
concentration is φ = 6%, which is low enough to consider
Foldy’s model as a reference. The radius of the cylinders
is a = 400 µm. The slab sizes are H = 60 cm and
h = 18 mm (each slab is composed of 1289 cylinders).
A plane wave propagates towards x-direction. To be
as close as possible to experimental conditions, the
acoustic field is calculated on the surface Hc = 0.2H
on which the average is performed. In order to stay
free from diffraction considerations (which can occur
near the boundaries), the average on 30 different slabs
is then calculated instead of moving the measurement
line towards the vertical direction. Calculations are
performed with Nm = 3, which is relevant for the
frequency range investigated 0 ≤ ka ≤ 1.
Figures 7 (A) and (B) show the dependency of the
effective attenuation αeff and phase velocity ceff on
frequency. Even if the cylinders (steel cylinders) are
more rigid than the host medium (which is water), the
effective phase velocity is predicted to be lower than
in the host medium for the entire frequency range.
Considering the phase velocity as being controlled by a
competition between the stiffness of the medium and its
density, it is interesting to note here that the effective
density increases more than the effective stiffness, which
explains why the coherent wave front slows down.
For both parameters, results calculated using the Born
approximation are also reported. The Born approxi-
mation only gives good results for very low frequencies
(ka < 0.2).
Otherwise, the agreement is excellent when using the
cutoff radius (D = D(λ), dark green line) previously
calculated. This shows that the surface calculated
and presented above can be successfully used in other
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FIG. 5. (color online) Comparison between the absolute

value of the scattered pressure field calculated by Discontinu-

ous Galerkin Method (black lines) and by MuScat (red lines)

on a space line represented on green on the top left corner

with respect to the positions of the cylinders.

 H

h

Hc

FIG. 6. (color online) Configuration used to extract effective

parameters of random distributions with MuScat.

configurations, which differ by the geometry and by the
quantities calculated. Considering the D = 2λ curve, it
is worth noting that the phase velocity does not fit with
Foldy’s predictions for ka > 0.5. This shows that the
wavelength dependency can be quite complicated and
very different from a linear behavior.
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FIG. 7. (color online) Effective attenuation (A) and phase

velocity (B) calculated with MuScat with different cutoff

radii.

The tests presented in this section clearly show that
the implementation is validated for the tested frequencies
and concentrations.

V. RANDOMLY DISTRIBUTED MEDIA - COMPARISON

BETWEEN AVERAGE PROCESS CALCULATED WITH

MUSCAT AND BY HOMOGENIZATION

The main interest of homogenization theories is to
compute the effective parameters associated with multi-
ple scattering media, not only the effective wave num-
ber, but also density and stiffness34. Basically, there are
two interests in calculating effective parameters. Either
we look for exotic behaviors such as for example nega-
tive refraction and cloaking, leading to the investigation
of acoustic metamaterials, such as those that have ap-
peared on the scene in the last few years35. In such cases,
we focus on unusual concepts such as negative density
and negative compressibility. Or we use the effective pa-
rameters to build a homogenized/effective medium which
has the same physical behavior as the multiple scattering
medium. This is what was done previously in section IV
when the multiple scattering slab was assimilated to an
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effective slab in order to calculate keff.
The question in this paper is: does the assimilation be-
tween multiple scattering and effective media carried out
with a slab still work for a cluster having another geom-
etry?
It should be noted that keff is calculated by comparing
the two transmission coefficients associated with the mul-
tiple scattering and effective media. What about the re-
flection? Reflection coefficients do not enable this ob-
jective to be achieved because the coherence manifests
itself through the coherent backscattering, which is an-
other physical phenomenon. Coherent waves result from
the average of all the acoustic waves traveling from one
cylinder to another in the same direction (that of the
incident plane wave), and the coherent backscattering is
due to reflected paths that are traveled twice in one or
other directions36. It should also be noted that, even in
transmission, it is not possible to assimilate the multi-
ple scattering transmission coefficient TMS to the effec-
tive transmission coefficient Teff if the slab thickness h is
greater than the elastic mean free path le. This quantity
is usually defined by the relation37

le =
1

2αeff
. (20)

If h > le, the coherent wave is too attenuated to
propagate through the slab and the transmitted field be-
comes diffusive in nature. Furthermore, if it is well estab-
lished that Teff ≈ TMS for h > le at normal incidence, this
result has never been established at oblique incidence.
At oblique incidence, a question remains open: is there a
refraction effect obeying the Snell-Descartes laws at the
interface between a homogeneous and a multiple scatter-
ing medium? At normal incidence, the wave front of the
incident wave coincides with the interface; this is a favor-
able situation to generate a coherent wave. At oblique
incidence, all the waves do not have the same phase refer-
ence when they are excited. There is a phase delay that
depends on the angle of incidence. In such a case, how
is the coherence built? What is the direction of propaga-
tion of the coherent wave?
It is these first elements of analysis that led us to consider
a multiple scattering cluster more complex than the slab.
We have chosen a cluster of cylindrical shape because it
has a geometry simple enough to be homogenized and
because its radius of curvature is not infinite. It follows
that the angle of incidence between the direction of prop-
agation of the incident plane wave and the surface of the
cluster range from 0 to π/2. Moreover, it is expected that
the backward and forward scattering reveal different and
interesting behaviors. The purpose of this last part is to
use the effective parameters in order to compare the wave
propagation through the cylindrical multiple scattering
cluster and the homogenized one. It is worth noting that
similar studies have been investigated by Torrent and
Sánchez-Dehesa38 and Reyes-Ayona et al.39 in the case
of cylindrical clusters made up of two dimensional sonic
crystals and in the case of random clusters of cylinders40

with the idea of identifying effective parameters at low

frequencies.
The diameter Dc = 2Rc of the cluster is given in function
of the cylinder radius a = 1 mm and the elastic mean free
path le. Two different cases are considered which corre-
spond to the parameters given in Table III. The concen-
tration is φ = 10% and the source frequency is fixed at
ka = 0.3. The concentration is a bit higher than the one
considered in the previous section but still low enough
to consider Foldy’s predictions as valid. The physical
parameters of the homogenized cylinder are given by
cL = ceff, α = αeff and ρeff = φρc + (1 − φ)ρ. For
ka = 0.3 we have ceff = 1454 m.s−1, αeff = 2.032 m−1 and
ρeff = 1690 kg.m−3. The effective wavenumber is given
by kL = ω/ceff + jαeff and the scattering coefficients Tn
of the homogenized cluster are the following

Tn =

Jn(kRc)

Jn(keffRc)
− ρeffkJ

′
n(kRc)

ρkeffJ ′n(keffRc)

ρeffkH
′(1)
n (kRc)

ρkeffJ ′n(keffRc)
− H

(1)
n (kRc)

Jn(keffRc)

(21)

It is important to note here that the scattering by ho-
mogenized clusters falls within the framework of the high
frequencies because kRc = 36.9 in the first case (Rc =
le/2) and kRc = 123.6 in the second one (Rc = 1.675le).
The convergence of the modal series requires therefore to
take into account up to Nm = 45 and Nm = 135 modes of
vibration respectively. This shows that the vibration be-
havior of clusters can be very complicated due to all the
interactions that occur at the microscopic level. For the
multiple scattering simulations, the average is performed
over twenty different random distributions. We calcu-
late the total scattered energy; the directivity diagrams
are plotted at a radial distance l = 1.25Rc. Normaliza-
tions are performed from the maximum of energy given
by MuScat simulations, and the dynamic range is fixed at
-15dB (except for the Figure 11(B) for which it is -30dB).

Dc/a Dc/le Ns Nm N ×N

i) 246 1.0 1516 3 7580 × 7580

ii) 824 3.35 17020 3 85100 × 85100

TABLE III. Cluster dimensions considered for the multiple

scattering simulations for a concentration φ = 10% and a

frequency of ka = 0.3.

Figure 8 shows results for an incident plane wave
propagating from left to right. In Figures (C), (D) the
construction of coherent waves resulting from the averag-
ing process appears very clearly. The averaging process
is fully effective only from a certain distance away from
the boundary of the cylindrical cluster, which is enlight-
ened by the incident plane wave. The place where the
coherent wave is generated describes a semi-circle and
makes a boundary layer appear on the left side of the
cluster, where the multiple scattering is not coherent.
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This effect, which has already been discussed by Linton
and Martin21, could be quantified from simulations by
MuScat.
In Figures (A), (C), for which the diameter is equal to the
elastic mean free path, the coherent wave seems to prop-
agate through the cluster as a bulk wave. These figures
show a broadly satisfactory agreement between homoge-
nized and numerical simulations. However, if Figure (E)
shows a very good agreement in forward scattering, the
situation is very different for the backward scattering.
This difference can be explained in a fairly simple way.
The homogenized simulation assumes that the coherent
wave occupies the whole cluster, which is not the case
since we have brought to light the existence of a bound-
ary layer (close to the reflection) where the multiple scat-
tering is not coherent. It should also be noted that the
forward scattering is very strong, more than 15dB higher
than the backscattering.
In Figures (B), (D), the elastic mean free path le is much
smaller than the cluster diameter. As shown in Figure
(D) the coherent wave is attenuated before reaching the
opposite side of the cluster. In this case, we expect to
see a difference between homogenized and numerical sim-
ulations, even in forward scattering. Surprisingly, this is
not what is observed in Figure (F), where the agreement
is excellent in forward scattering. In this case, the co-
herent wave does not propagate through the cluster, as
previously studied, but around the cluster. It seems that
coherent waves follow the cluster curvature in a clockwise
and anticlockwise direction. Can we talk about surface
coherent waves? We do not really have a way of analyz-
ing this surface phenomenon, but we can choose another
source in order to verify whether or not it still exists.
Figure 9 shows results for a point source located on the
axis y = 0 at a distance of 1.1Rc on the left of the clus-
ter. The elastic mean free path le is much smaller than
the cluster diameter. The previous result is fully con-
firmed, Figures (A), (B) show that most of the energy is
radiated from the boundary of the cluster. Homogenized
and multiple scattering models seem to give the same re-
sults, but, even if the directivity patterns have the same
shape, a difference of approximately 10dB is visible on all
directions in directivity diagrams (cf. Figure (C)). This
difference can be explained by the fact that the wave
front of the coherent wave is cylindrical, as we can see
in Figure (B). So the wave number of the homogenized
cluster, which is calculated for a coherent wave with a
plane wave front, is probably not well adapted to the sit-
uation.
In conclusion, all the results show that homogenization
theories are not fully adapted in order to describe the
multiple scattering by a cluster of cylindrical shape. In
particular, the backward scattering is far from being well
described. However, the forward scattering seems always
to yield good results if the incident wave is a plane wave,
whatever the value of the elastic mean free path com-
pared to the cylindrical cluster diameter.

(A) (B)

(C) (D)

(E) (F)

FIG. 8. (color online) Scattered energy, calculated by ho-

mogenization of the heterogeneous medium ((A), (B)) and

by MuScat ((C), (D)). The cylindrical distribution has a ra-

dius Rc = 123a (left) or Rc = 412a (right), which correspond

to Rc = le/2 (left) or Rc = 1.625le (right). Directivity di-

agrams (E), (F) are calculated on doted lines indicates in

figures above. Source is a plane wave propagating from left

to right. Cyan lines in the middle indicated the size of le.

VI. CONCLUSION

We have implemented an innovative resolution
method to treat the multiple scattering of sound in two
dimensions. Our resolution method can deal with any sit-
uation, with many randomly distributed cylinders, com-
bining numerous different T-matrices and a very large
number of cylinders. We have shown applications with
matrices of sizes bigger than 80000 × 80000 for random
positions. The scalability of the resolution method al-
lows us to think about considering much bigger problems.
The next step of this work will deal with generalising this
method in three dimensions and efforts will be concen-
trated on comparison with experimental data.
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(A) (B)

(C)

FIG. 9. (color online) Scattered energy, calculated by ho-

mogenization of the heterogeneous medium (A) and by MuS-

cat (B). The cylindrical distribution has a radius Rc = 412a,

which correspond to Rc = 6.7le. Directivity diagram (C) is

calculated on doted lines indicates on figures above. Source

is a point source located on position (1.1Rc, 0) (green point).

Cyan lines in the middle indicate the size of le
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