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Ataxia with Oculomotor Apraxia type 2 (AOA2) is one of the most frequent types of autosomal degenerative
cerebellar ataxia. The first objective of this work was to identify specific cerebellar atrophy using MRI in
patients with AOA2. Since increased iron deposits have been reported in degenerative diseases, our second
objective was to report iron deposits signals in the dentate nuclei in AOA2. Five patients with AOA2 and
5 age-matched controls were subjects in a 3T MRI experiment that included a 3D turbo field echo
T1-weighted sequence. The normalized volumes of twenty-eight cerebellar lobules and the percentage of
atrophy (relative to controls) of the 4 main cerebellar regions (flocculo-nodular, vermis, anterior and posterior)
weremeasured. The dentate nucleus signals using 3D fastfield echo sequence for susceptibility-weighted images
(SWI) were reported, as a measure of iron content. We found that all patients had a significant atrophy of all
cerebellar lobules as compared to controls. The percentage of atrophy was the highest for the vermis, consistent
with patients' oculomotor presentation, and for the anterior lobe, consistent with kinetic limb ataxia. We also
describe an absence of hypointensity of the iron signal on SWI in the dentate nucleus of all patients compared
to control subjects. This study suggests that patients with Ataxia with Oculomotor Apraxia type 2 present MRI
patterns consistent with their clinical presentation. The absence of SWI hypointensity in dentate nucleus is a
new radiological signwhichwas identified in all patients. The specificity of this absence of signal must be further
determined in AOA2.

© 2013 The Authors. Published by Elsevier Inc. All rights reserved.
1. Introduction

Autosomal recessive cerebellar ataxias (ARCAs) belong to the wide
group of disorders known as inherited ataxias (Anheim et al., 2012).
This group encompasses a large number of diseases, the most frequent
ones being Friedreich ataxia (FRDA, estimated prevalence 2–4/100,000)
and ataxia telangiectasia (AT, 1–2.5/100,000). In the past 15 years, new
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forms of ARCAs have been identified, and among themwere ataxiawith
oculomotor apraxia type 1 (AOA1) (Moreira et al., 2001), and type 2
(AOA2) (Anheim et al., 2010; Bomont et al., 2000).

AOA2 was first described in Japanese (Watanabe et al., 1998) and
Pakistani (Nemeth et al., 2000) families and according to geographic
origin, may be the second most frequent ARCA after FRDA (Campuzano
et al., 1996; Durr et al., 1996; Le Ber et al., 2004; Nicolaou et al., 2008).
Clinical features include onset between 10 and 22 years of age, progres-
sive cerebellar ataxia, oculomotor apraxia (OMA), strabismus, chorea
and/or dystonia, axonal sensorimotor neuropathy, elevated serum
alpha-fetoprotein (AFP) levels, and cerebellar atrophy as shown by MRI
(Anheim et al., 2009; Bomont et al., 2000; Nemeth et al., 2000;
Watanabe et al., 1998). Although oculomotor apraxia appears to be a
mandatory symptom as the name of the disease implies, it is described
in only 50% of patients in AOA2. Furthermore, oculomotor apraxia is
not a pathognomonic sign since it is described in other ARCAs, such as
AT and ataxia–telangiectasia-like disorder (ATLD) (Le Ber et al., 2006).
Oculomotor apraxia is best defined by the failure of voluntary gaze shifts
with preservation of random eyemovements (Cogan, 1952) and normal
served.
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saccadic velocity (and main sequence) (Zee et al., 1977). In congenital
forms (including hereditary diseases), oculomotor apraxia is usually
associated with a characteristic head thrust (Cogan, 1952). In both
AOA1 (Le Ber et al., 2003) and AOA2 (Panouilleres et al., in press), clin-
ical descriptions and ocular motor recording mainly indicate stair-case
hypometric horizontal saccades, which contribute to gaze failure. Both
saccadic hypometria and stair-case saccades could be attributed to a
dysfunction of the superior colliculus (Robinson, 1972; Schiller and
Stryker, 1972) or the basal ganglia (Sauleau et al., 2007, 2008; Shaikh
et al., 2011); although an impairment of cerebellar vermis (Solomon et
al., 2008), involved in the control of saccade metrics, is predominantly
suggested in those patients with predominant cerebellar symptoms.

Anatomically, the cerebellum is divided into three lobes: the
flocculonodular lobe, the anterior lobe (lobules I to V) and the poste-
rior lobe (lobules VI to IX). Functionally, the cerebellum is divided
into three parts that do not strictly correspond to the anatomical sub-
divisions: the vestibulocerebellum, the spinocerebellum and the
pontocerebellum. The vestibulocerebellum [flocculus, paraflocculus,
nodulus and uvula (lobule IX)] is connected to the fastigial and ves-
tibular nuclei and is important for steady gaze holding, smooth pur-
suit, the vestibulo-ocular reflex and postural control mechanisms
(Kandel et al., 2000). The spinocerebellum [superior vermis (lobules
I to V), adjacent medial half of the anterior lobe, inferior vermis
(lobules VI to VIII)] is divided into the vermal zone, connected to the
fastigial and vestibular nuclei, and the paravermal zone, connected to
the interpositus nuclei (Kandel et al., 2000). Most of the vermal zone
is involved in postural control, while the so-called oculomotor vermis
(lobules VI, VII) is mainly involved in the control of saccades, but also
contributes to smooth pursuit and vergence (Manto et al., 2012). The
paravermal zone ismainly involved in themetrics and sensory feedback
of limbmotor control (Kandel et al., 2000). Finally, the pontocerebellum
(lateral cerebellar cortex of lobules VI to VIII) is connected to the den-
tate nucleus and is involved in the planning of complex motor actions
(Kandel et al., 2000). It may also be added that hemispheric lobule
VIIa (crus I and crus II) participates in both saccadic and smooth pursuit
control (Nitschke et al., 2004; Panouilleres et al., 2012; Ron and
Robinson, 1973). Given this anatomo-functional organization of the
cerebellum, one aim of this study was to search for region-specific
atrophy which correlates with clinical dysfunction. Indeed, in patients
with AOA2, the particular saccadic patterns seen, point mainly to the
oculomotor vermis.

Apart from the anatomical degeneration, some neurodegenerative
disorders have been shown to be associated with abnormal iron
deposits that can be observed using susceptibility weighted imaging
(SWI) on MRI (Gasparotti et al., 2011). On SWI MRI, a high concentra-
tion of paramagnetic iron is known to have a shortening effect on
the longitudinal relaxation time and, thus, iron deposits appear as
hypointensities (i.e., dark) (Deoni and Catani, 2007; Dimitrova et al.,
2002). Iron plays an important role in normal brain metabolism
(Connor et al., 2001; Koeppen, 1995). It is known, for example, to
be a cofactor for enzymes involved in neurotransmitter synthesis,
and a component of cytochromes essential for energy production.
However, iron is also known to react with oxygen resulting in the
production of neurotoxic free radicals. Iron accumulation has thus
been associated with normal aging and neurodegenerative diseases.
In particular, the iron concentration in the dentate nucleus increases
with age in healthy human subjects (Hallgren and Sourander, 1958;
Maschke et al., 2004). Excessive iron accumulation is considered to
be a pathogenetic factor in various neurodegenerative diseases such
as Parkinson's disease, Hallervorden–Spatz syndrome, Alzheimer's
disease, Huntington's disease as well as different types of hereditary
cerebellar ataxia like Friedreich's ataxia and aceruloplasminemia
(Berg et al., 2001; Chiueh, 2001; Miyajima et al., 2001; Smith and
Perry, 1995; Waldvogel et al., 1999). To our knowledge, there is no
data on susceptibility weighted images of the dentate nucleus in
ARCAs except for FRDA. Our hypothesis is that, in a similar manner
to FRDA, the iron concentration is increased in the dentate nucleus
of AOA2 patients.

The aim of this work was to identify specific MRI abnormalities in
patients with AOA2. We first investigated the regional specificity of
cerebellar degeneration using T1-weighted MRI sequences. We then
measured iron deposits in the dentate nuclei using susceptibility-
weighted MRI.

2. Subjects and methods

2.1. Subjects

Approval was received from the National French ethical committee
on human experimentation, in agreement with French law (March 4,
2002) and the Declaration of Helsinki (n° 2002-303). Written informed
consent was obtained from all subjects participating in the study. Five
patients (3 females), including twopairs of siblings, andfive (3 females)
controls were included. The median age was 37 in the patient group
[range: 26–42] and 34 in the control group [range: 26–44].

Clinical data of the 5 patients are summarized in Table 1. The
median age at onset was 17 [range: 12–20]. The median disease dura-
tion at examination was 17 [range: 10–30]. The initial symptom was
gait ataxia in 80% of patients, which was present in 100% of patients
at examination. Patients also presentedwith major kinetic limb ataxia
with decomposition and dysmetria of knee–tibia movement and
finger-to-nose tests associated with intention tremor. Clinical signs
of peripheral neuropathy (i.e. sensory loss, reflex depression or aboli-
tion) were constant, moderate to severe. Three patients were confined
to a wheelchair at examination. Two had difficulty swallowing, one
had head tremor, one had chorea of the left hand and two had sphincter
disturbance. Finally, symptoms in one patient were increased after
pregnancy.

Four patients (I-1, I-2, II-1, II-2) presentedwith a similar oculomotor
phenotype including gaze-evoked nystagmus, saccadic smooth pursuit,
an absent fixation inhibition of the vestibulo-ocular reflex and lastly
staircase hypometric horizontal and vertical saccades. The two sibling
patients (I-1, I-2) presented with an additional positional induced
central vestibular nystagmus (in either direction), and vestibulo-ocular
hyper-reflexia. The last patient (III) showed mainly isolated periodic
alternating nystagmus.

To quantify the patients' symptoms, we used the one-hundred-
point semi-quantitative International Cooperative Ataxia Rating
Scale (ICARS) (Trouillas et al., 1997). This test translates the classical
symptomatology of ataxia into semi-quantitative scores and 4 com-
partments (I, postural and stance disturbances; II, limb movements
disturbances; III, speech disorders; IV, oculomotor disorders); the
higher the scores on the scale, the more severe the ataxia. The median
score was 62 [range: 39–69].

Cognitive impairmentwasmild on theMiniMental State Examination
(MMSE) (median score 27.3 [range: 24–29], limited on themost part by
writing difficulties). The patient with a score of 24 had not attended
school and had not learned arithmetic. Patients were mildly impaired
on the Frontal Assessment Battery (FAB; median score 16.8 [range:
13–18]) (Dubois et al., 2000).

2.2. Methods

2.2.1. Image acquisition
MR imaging acquisitions for patients and control subjects were all

performed on the same 3T MR system (Achieva 3T, Philips Medical
system, Best, The Netherlands). The MRI protocol included a non-
contrast 3D turbo field echo T1-weighted sequence (TR/TE = 6.59 /
2.95; Matrix = 268 × 164) yielding 200 sagittal 0.9-mm thick
sections, for cerebellar volume measurements. A 3D fast field echo
sequence was also used to acquire 143 axial 1.4-mm thick sections
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of susceptibility-weighted images (TR/TE = 20.50 / 28.93; Matrix =
316 × 314), for iron deposit evaluation.

2.2.2. Post-processing and image analysis
The cerebellum was isolated from the T1-weighted volumes

using a knowledge-based image segmentation procedure applying a
spatially unbiased atlas template of the cerebellum and brainstem
(SUIT, http://www.icn.ucl.ac.uk/motorcontrol/imaging/suit.htm). We
first isolated the cerebellum using John Ashburner's segmentation
algorithm (Ashburner and Friston, 2005). We registered the individual
cerebellum into the SUIT atlas template. Next we resliced the images
using the deformation map in order to resample them into the new
atlas space, and then back into the individual subject's space.
Twenty-eight lobular volumes (V) were finally extracted using the
Schmahmann atlas (Schmahmann et al., 1999). The volumes were
then normalized to the participant's size by dividing volumes by the
participant's height (in mm) (Cotton et al., 2005) and expressed in
mm3/mm. For further analysis, we pooled the volumes into four cere-
bellar regions corresponding mainly to the functional parts of the
cerebellum: 1) vermis (vermal spinocerebellum: vermis of lobule VI
to VIII); 2) anterior lobe (lateral part of lobule IV and V, corresponding
mainly to the paravermal spinocerebellum, located anteriorly to the
postero-superior sulcus); 3) posterior lobe (lateral part of lobule VI to
VIII); and 4) flocculo-nodular lobe (lateral and vermal parts of lobule
IX and X). For each of these regions, and for each patient (Vp), an atro-
phy indexwas calculated with respect to the median volumemeasured
in controls (VCmedian), as follows:

AI ¼ 100 – VP = VCmedianð Þ � 100ð Þ:

Volumetric measurements of cerebral area focussing on the frontal
and parietal eye fields were also performed using Freesurfer image
analysis (see Supplementary data 1).

2.2.3. Statistics
Analyses were performed using R software (Team, 2011). Given the

size of the samples, non-parametric tests were used, as implemented
within the Coin package (Hothorn et al., 2006, 2008). When comparing
cerebellar volume for each of the 28 lobules between controls and
patients, bilateral exact 2-sample permutation tests were used. When
comparing patients' atrophy index across the 4 regions, the Friedman
test for multiple dependent samples was used. Finally, when pairwise
comparisons were performed, adjusted p-values were obtained from a
single-step max-T procedure (Westfall and Stanley Young, 1993).

The susceptibility-weighted images were visually compared in the
patient and the control groups.

3. Results and discussion

3.1. Cerebellar volume measurements

This study confirmed the presence of cerebellar atrophy in patients
with AOA2 by showing that patients had a cerebellum volume of
53 ± 15% (median value) less than controls. Fig. 1 presents representa-
tive examples of T1 images for a control subject and for a patient. In the
sagittal view, the cerebellar atrophy of the patient is emphasized by the
empty space surrounding the cerebellar vermis. In the frontal view, the
deeper sulci on the patient's MRI relative to the control are easily no-
ticeable. In the patient group, themedian (standard deviation) normal-
ized cerebellar volumewas of only 36 ± 9 mm3/mmwhereas it was of
70 ± 3 mm3/mm in the control group (Fig. 2).

Each of the twenty-eight cerebellar regions was significantly
smaller in patients than in controls (bilateral exact 2-sample permu-
tation tests, all p ≤ 0.012).

Moreover, we revealed a region-specific pattern of atrophy, which
was more severe in the vermis and the anterior lobe of the cerebellum.

http://www.icn.ucl.ac.uk/motorcontrol/imaging/suit.htm


Fig. 1. An example of non-contrast 3D turbo field echo T1-weighted sequence of brain MRI in one control and one patient, in sagittal (left) and coronal (right) views.
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As described in Methods section, these twenty-eight volumes were
pooled into four different cerebellar regions: the vermis, the anterior
lobe, the posterior lobe and the flocculonodular lobe. For each region,
an atrophy index was computed for each patient with respect to the
Fig. 2. Median cerebellar volumes (in mm3/mm) measured in the 28 lobules, in controls (gr
lobules was significantly smaller in patients versus controls (all p ≤ 0.012), illustrating a g
control group. Statistical tests showed that this atrophy was different
across regions (exact Friedman test: χ2(3) = 14.04, p = 0.0001).
Indeed, pairwise comparisons showed that the anterior lobe (59 ± 6%)
and the vermis (57 ± 15%) were more atrophied than the flocculo-
ay bars) and in patients (dark bars). Error bars = standard deviation. The volume of all
eneral cerebellar atrophy.



Fig. 3. Mean atrophy index in the 4 cerebellar regions in patients. Error bars = standard
deviation. * = p b 0.05.
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nodular lobe (42 ± 16%) (p = 0.003 and 0.039, respectively) (Fig. 3).
The posterior lobe (46 ± 14%) did not show any significant difference
in atrophy compared to other regions.

In ARCAs, studies mainly highlight a predominant vermian atro-
phy of the cerebellum. In FRDA, a progressive mild cerebellar atrophy
and mild vermian atrophy are found in advanced stages of the disease
(Ormerod et al., 1994). A moderate cerebellar atrophy similar to that
encountered in FRDA was found in Ataxia with Vitamin E Deficiency
(AVED) (Anheim et al., 2010). MRI of autosomal recessive spastic
ataxia of Charlevoix–Saguenay showed a predominantly vermian
cerebellar atrophy as well as linear hypointensities on T2 and T2
fluid-attenuated inversion recovery-weighted images in the pons
(Martin et al., 2007). In AOA2, previous imaging studies revealed exten-
sive vermian atrophy (Anheim et al., 2009; Bernard et al., 2008; Le Ber et
al., 2004; Nicolaou et al., 2008; Schols et al., 2008), which is observed
shortly after the onset of the disease and remains stable at more ad-
vanced stages (Anheim et al., 2009). Our study confirms the predomi-
nance of vermian atrophy in AOA2. Although not specific with regards
to the anatomical data in ARCAs, the predominant involvement of the
vermis in AOA2 is consistent with the saccadic abnormalities. Indeed,
as for AOA1, “oculomotor apraxia” seems to correspond mainly to
Fig. 4. Representative axial slices of 3D fast field echo sequences of susceptibility-weighted
hilus; c: toothed appearance after which the dentate nucleus is named.
hypometric saccades (stair cases). Hypometry of saccades suggests a
dysfunction of lobules VI and VII of the cerebellar vermis (Barash et al.,
1999; Noda, 1991; Takagi et al., 1998), which calibrate saccade ampli-
tude (Sato and Noda, 1992). Our study further underlines an atrophy of
the anterior part of the cerebellum. This last result is consistent with
the findings of a postmortem examination in one 79 year-old AOA2 pa-
tient showing that the cerebellar atrophywasmost evident at the level of
the vermis and the anterior lobe (Criscuolo et al., 2006). The predomi-
nant involvement of the anterior cerebellum can be associated with the
kinetic ataxia of limb movements observed in all of our patients.

Finally, we found a discrete and non-significant atrophy of frontal
gyri including the frontal eye fields (Supplementary data). This dis-
crete frontal atrophy could also explain in part the oculomotor distur-
bances of oculomotor apraxia.
3.2. Iron deposition on susceptibility-weighted images

We did not find the expected iron deposits in the dentate nucleus in
patients with AOA2 (Fig. 4). In contrast, because the normal appearance
of the dentate nucleus is a highly convoluted structure in deep cerebel-
larwhitematter with a typical dark signal related to brain iron deposits,
it was easily detectable in all control subjects (arrows). The other iron
cerebral structures such as nucleus rubrum, nucleus lenticularis, and
cerebellar peduncles were all identifiable in the susceptibility sequence
in all patients and controls (data not shown).

To our knowledge, this is the first report in a degenerative disease of
a disappearance of the iron-induced signal normally observed in the
dentate nucleus. Our hypothesis was to find increased iron-induced
signal in AOA2, such as that found in FRDA (Koeppen et al., 2007;
Waldvogel et al., 1999). This finding is however consistentwith a previ-
ous anatomo-pathological study in AOA2 that showed a reduced num-
ber of dentate nuclei neurons, which could be linked to the decrease of
iron concentration (Criscuolo et al., 2006). The dentate nucleus is part of
the functional ponto-cerebellum, which is involved in the coordination
and timing of fine and skilled voluntary movements. Efferent fibers
from the dentate nucleus pass through the superior cerebellar pedun-
cles and cross over the midline at the pontomesencephalic junction to
synapse in the red nucleus and the ventrolateral thalamus, which then
projects to themotor cortex. It is responsible for the planning, initiation
and control of volitional movements (Ito, 1993; Leiner et al., 1986;
Mathiak et al., 2002). In addition to the degeneration of the cerebellar
images in controls (top raw) and in patients (bottom raw). a: Dentate nucleus; b: the
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anterior lobe, the lack of iron signal of dentate nuclei in our AOA2 pa-
tients could be associated with the kinetic aspect of cerebellar syn-
drome. There is some discordance between our findings of
predominant atrophy in the anterior lobe as compared to the posterior
lobe and the lack of iron signal of dentate nuclei. However, given the
weak signal of interpositus nuclei in normal subjects, we could not ver-
ify the integrity of its signal using susceptibility weighted images in pa-
tients. It is therefore possible that the abnormal signal applies to all deep
cerebellar nuclei. Furthermore, even if less atrophied than the anterior
lobe and the vermis, the non-vermal areas of the posterior lobe (espe-
cially Crus I) which are connected to the dentate nucleus, still showed
large atrophy (46%) as compared to control subjects.

4. Conclusion

We identified and quantified cerebellar atrophy in five patients
presenting with ataxia with oculomotor apraxia type 2. In addition
to the general atrophy of the entire cerebellum, a significantly larger
atrophy was found for the vermis, consistent with their oculomotor
deficits, as well as an atrophy in the anterior lobe of the cerebellum,
also concordant with their kinetic limb ataxia. For the first time, an
absence of SWI hypointensity was observed in the dentate nucleus
for all patients. It remains to be determined whether this poor iron
concentration is specific to AOA2.
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