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Abstract. The staircase transport regime reported in kinetic simulations of plasma turbulent
transport in magnetic confinement is recovered with a simple 2D fluid model allowing for reduced
damping of the zonal flows. Some of the complex dynamics of the kinetic zonation regime are
recovered but the pattern of the corrugation appears to be sinusoidal with a characteristic scale
comparable to that of turbulence modes with largest spectral energy, in contrast to regimes
observed in global and flux-driven kinetic simulations. Enhanced zonal flows govern both an
overall reduction of the SOL width and a gradual steepening of the gradients with distance to
the separatrix.

1. Introduction
A major step towards a better understanding of confinement performance has been achieved
when more relevant handling of the zonal flow physics [1] has been implemented in turbulent
transport simulations [2]. A major difference that has emerged from these studies is that the
required temperature profiles to achieve the target amplification factor in ITER [3] appeared to
range between the linear and non-linear ITG threshold. In this region of turbulence dynamics,
zonal flows self-generated by turbulence have sufficient shearing to strongly inhibit turbulent
transport. Exploration of this regime is rather complex since it tends to be quite sensitive to
many features such as spreading, collisionality etc. We are interested here in the staircase or
corrugation regime [4]. The latter is characterised by the build-up of several shear layers acting
as weak transport barriers. These layers are not pinned to specific radial locations and appear
to undergo continuous reorganisation and build-up [4, 5]. Between the shear layers, regions
governed by so-called avalanche transport develop. This avalanche transport is characterised by
ballistic heat transport on long distances coupled to momentum dipoles and Reynolds stress
convection. The interplay between the localised shear layers and the avalanching layers is
most likely a key feature in determining the geometry and strength of the staircase transport
regulation.
Although zonal flow dynamics have been mostly investigated in the kinetic framework for fusion
plasmas, they are ubiquitous in quasi 2D turbulence as reported in geophysics and atmospheric
physics, where the standard fluid framework is used. Along this line, we investigate here the
corrugation dynamics using the simplest available turbulence model in the fluid framework
analogous to Rayleigh-Bénard convection [6]. Changes to the vorticity equation allows one to
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independently tune the amplitude of the zonal flows and investigate the zonal flow pattern
and impact on plasma confinement. The model was initially developed for Scrape-Off-Layer
turbulence. Parallel transport to the limiter then governs volumetric losses, which we retain
here, but considering a linearised form. By many aspects, these are found to be comparable to
parallel loss terms for closed magnetic surfaces. Regarding core heat transport, hence replacing
the density field by a temperature field, a similar model can be obtained in the case of strongly
radiating layers, a regime of interest in future reactors. However, beyond such speculative
projections, one should consider this approach as a tentative representation of the very complex
kinetic staircase regime with the simplest available fluid turbulence model in the flux-driven
regime. The scope is then to identify the key physics that govern the confinement performance
of such a regime. Section 2 of the paper addresses the model together with the linear analysis and
the changes introduced to generate corrugations, in Section 3 the simulations in the non-linear
transport regime are described and in Section 4 are found the Discussion and Conclusion.

2. Scrape-Off Layer turbulence with flute approximation
2.1. Model for Scrape-Off Layer turbulence
To address the physics of corrugation generation in profiles, and their significance with respect
to transport, we address the simplest possible turbulent system, named for simplicity after the
code as the TOKAM2D system. This model is developed to describe the interchange instability
in the Scrape-Off Layer of fusion plasmas [7, 8]. The system of equations describes the evolution
of the electron density n and that of vorticity W . These stem from particle and charge balance
equations taking into account the drift expansion solution for the transverse momentum [7].
The vorticity is related to the electric potential φ by the relation W = ∇2

⊥φ in the cold ion
limit. For the sake of simplicity a-dimensional equations are considered in 2D slab geometry
with x = (r− a)/ρ0 and y = aθ/ρ0, where r and θ are the radial and poloidal coordinates, a the
plasma minor radius and ρ0 the length scale normalisation, namely a characteristic ion Larmor
radius.

∂n

∂t
+
[
φ, n

]
−D∇2

⊥n = S − σnn eΛ−φ (1a)

∂W

∂t
+
[
φ,W

]
− ν∇2

⊥W = − g
n
∂yn+

σφ
n
n
(
1− eΛ−φ) (1b)

Given the flute approximation all fields are averaged along the parallel direction. The poloidal
angle is then a transverse coordinate to the field line, in the magnetic surface. The diffusion
operators with amplitude D for particles and ν for vorticity stand typically for sub grid processes
and include collisional effects for the vorticity (single species collisions do not yield particle
transport). The volumetric loss terms with coefficients σn and σφ describe the average parallel
loss terms for particles and charges. In the SOL, these losses can be determined by the plasma
sheath at the wall boundary, assuming adiabatic electrons in the direction parallel to the
magnetic field, and Λ standing for the reference potential jump in the sheath, the wall being
grounded. In the sheath theory, one finds that σn = σφ. Extending the model, in particular
to core physics, we consider these parameters to be independent control parameters, table 1.
The Poisson brackets that appear in the two evolution equations stem from the electric drift
convection and stand for the divergence of the particle flux and that of the polarisation current.
They are defined by: [φ, f ] = ∂xφ∂yf − ∂yφ∂xf .
In the system (1), one considers constant thermal energies and constant magnetic field, the
variation of magnitude of the magnetic field being taken into account by the g term. Expressions
for g can be derived [6], it is considered here as a control parameter, for simplicity constant in
time and space. The set of equations is homogeneous with respect to the density but for the
source term. The density can thus be multiplied by any constant, only leading to a change of
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the source amplitude. Conversely, the source normalisation determines the magnitude of the
density. This property is specific of density transport and is not recovered when addressing
heat transport. The change in symmetry is governed by the fact that the plasma polarisation
is proportional to (n/B2)∇⊥φ hence to the density and not to the thermal energy. In addition
to the flute approximation, reducing the problem to 2D, we have also used the Boussinesq
approximation, leading to the definition of the vorticity introduced above. In this framework,
one approximates the density by n in the polarisation current, allowing n to commute with the
divergence operator. In that approximation, n is a constant, which is in fact used to normalise
the density, therefore setting n = 1 in the equation. We further simplify the system by linearising
the parallel loss terms, hence for the density equation n − n(Λ − φ) (with n = 1) and for the
vorticity equation −(Λ − φ). Since Λ is set to be a constant, one can readily change variable
φ− Λ→ φ.
When extending the model to core physics, and considering a closure of the parallel current of
the form j‖ = σ‖∇‖φ, where σ‖ is the parallel conductivity, one finds that the divergence of the

parallel current ∇‖j‖ must vanish with the parallel wave vector k‖, equivalently that σφ = k2
‖σ‖.

In the flute approximation, the parallel wave vector k‖ is replaced by the poloidal wave vector
ky, and, one finds therefore that the restoring force vanishes for ky = 0. To take this property
into account, we must therefore modify the equation that governs the average potential 〈φ〉. A
priori, this average is a flux surface average removing divergences of parallel flux terms; in the
present model the average is along the poloidal coordinate y. In order to take into account the
change in restoring force for 〈φ〉 compared to other modes ky 6= 0, we introduce a further control
parameter αz and modify the volumetric charge loss: σφφ → σφ(φ − (1 − αz) < φ >). With
these simplifications and changes one can step to the following set of equations:

∂n

∂t
+
[
φ, n

]
−D∇2

⊥n = S − σnn (2a)

∂W

∂t
+
[
φ,W

]
− ν∇2

⊥W = − g
n
∂yn+ σφ

(
φ− (1− αz) 〈φ〉

)
(2b)

The effect of the control parameter αz is discussed in Section 2.3. Most of the modelling effort
of SOL and divertor physics assumes flux-driven regimes, hence in the present case a prescribed
mean particle flux driven by the source term S [6]. Results that have been obtained underline
the importance of the non-linear features in the dynamics of the system. However, as a guideline
to investigating the physics, it is interesting to consider the response to a prescribed gradient as
done in standard linear analysis.

2.2. Linear analysis
A key aspect in the linear analysis is the choice of the reference state that is investigated. We
assume here that this state is defined as being constant in the poloidal direction and that its
evolution in time is small compared to the growth rate that is computed. For the sake of
simplicity we consider a reference density gradient L−1

n = |∇xn|/n with no structure of the
electric potential, hence setting the latter to zero. The evolution of the mean values is addressed
in the next subsection. For the other modes, the analysis in Fourier space then yields the
dispersion relation where ωR is the mode frequency and γ the mode growth rate:(

ωR + i
(
γ + 1

2(An +Aφ)
))2

+B = 0 (3a)

An = Dk2 + σn ; Aφ = νk2 + σφ/k
2 (3b)

B = C −AnAφ + 1
4(An +Aφ)2 ; C =

g

Ln

k2
y

k2
(3c)
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The coefficients An and Aφ govern the damping in the density and vorticity, equations. They
depend on the wave vectors in the x and y directions, kx and ky respectively, and on k2 = k2

x+k2
y.

By convention negative values of the growth rate γ govern mode damping. For C ≥ 0, one finds
B ≥ 0 so that the dispersion equation can readily be split into real and imaginary part since all
coefficients are real. One then obtains ωR = 0 and therefore the largest growth rate γ+:

γ+ = −1
2(An +Aφ) +B1/2 (3d)

Consequently the instability threshold condition, γ+ = 0, is determined by B ≥ 1
4(An + Aφ)2,

which can be written as C ≥ AnAφ. Scanning the values of the wave vector ky, one then finds
a maximum value of Ln such that γ+ ≤ 0 and is equal to zero at the maximum. To simplify
the analysis we define the anisotropy ratio axy = k2

x/k
2
y as a control parameter so that one can

analyse the threshold and marginality with respect to k2
y or k2 = k2

y(1 + axy). Defining the

function G(k2) = k2(AnAφ−C), the instability condition is then G(k2) ≤ 0 and the marginality
condition when varying k, equivalently ky, is ∂k2G(k2) = 0. One can show that:

G(k2) =
k2

2
∂k2G(k2) +

ν σn
2k2

(
k4 + 2

Dσφ − C
ν σn

k2 +
3σnσφ
ν σn

)
(4a)

The threshold G(k2) = 0 and marginality ∂k2G(k2) = 0 conditions then lead to a second order
equation and the constraint on C to obtain the unique critical root is then:

C∗ = D σφ + σn
√

3ν σφ (4b)

k∗
2 =

√
3
σφ
ν

(4c)

In these expressions the control parameter C is defined as C = g L−1
n /(1 + axy). It does

not depend on k2 but on the control parameters g, Ln and axy. These only appear in C
leading to similarity properties. Considering the threshold to anisotropic turbulence, one has
1/L∗n = C∗(1 + axy)/g, namely the critical gradient increases for a decreasing anisotropy of
”streamer-like” structures, kx ≤ ky, 0 ≤ axy ≤ 1, and it also increases for a growing anisotropy
of ”zonal-like” structures kx ≥ ky, hence axy ≥ 1. It is to be underlined that the scale separation
between the gradient length and the mode wave vector can only be assumed for kxLn � 1. The
present analysis therefore implicitly assumes a lower bound on the value of kx.
The critical value k∗ translates into a critical value of k∗y at given turbulence anisotropy. The
linear analysis thus yields two different scales, the macro scale Ln for the self-organised profiles
and the micro scales λ∗y that governs turbulent properties, typically λ∗y = 2π/k∗y of the most
unstable mode for given kx. It is to be noted that the asymmetry between radial and poloidal
directions is only due to the ratio k2

y/k
2 in C, equation (3c). For the chosen values of the control

parameters, see table 1, setting kx = 0, hence axy = 0, the critical gradient is then found to be
L∗n ≈ 478ρ0 and drives modes with poloidal wave length λ∗y = 2π/k∗y ≈ 39ρ0. Such a critical
gradient length is comparable to the radial extent of the simulation domain that has been used,
Lx = 512ρ0.
Two aspects are found to play an important role in the behaviour of the system, the drive
governed by C and the damping characterised by AnAφ, which exhibits a dependence in k2.
The inverse of this function determines the region of minimum damping, therefore the most
favourable region for instability development. On Figure 1, the damping rates Aφ, blue plain
line and open circles, and AnAφ, black plain line closed circles, are plotted versus k. The
minimum is governed by the specific structure of Aφ combining a monotonically increasing
viscous damping νk2, blue dashed line, and the monotonically decreasing damping σφ/k

2, thin
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Table 1. Reference values of the control parameters in equation (2).

D ν σn σφ g αz axy

10−2 2−2 10−2 2−14 2−16 10−4 1 1

blue plain line. Interestingly enough, the minimum of Aφ, at k4 = σφ/ν, is close to the critical
value given in equation (4c). The impact of An, on the product AnAφ, thin plain lines and closed
circles, is to shift the minimum to lower k and make it more hollow: hence more discriminating
for instability onset. The damping properties thus favour a characteristic wave vector k for
the instability, and, for a given k, the larger kx the smaller the associated ky. The term C,
equation (3c), is proportional to the density gradient length Ln that obviously will scale with g.
As already discussed, this term also exhibits a symmetry breaking between poloidal and radial
wave vector, the larger kx the smaller the ratio k2

y/k
2 and thus the critical gradient length.

Considering the points (γc, Lcn, λcy), namely the maximum growth rate γc, associated to
mode wave length λcy for a given density gradient length Lcn, one can extend the discussion
for the critical onset of instabilities to that with finite growth rate, Figure 2. For increasing
values of the growth rate, one finds that the density gradient length required to trigger the
instability decreases close to exponentially, Left Hand Scale, blue plain line for kx = 0, axy = 0,
and dashed black line for kx = ky, axy = 1. Note that this dependence on k2

y/k
2 governs the

factor 2 difference between the required density gradient length of these two cases. This factor
is determined by the value of the ratio of 1 + axy when going from axy = 0 to axy = 1. The
corresponding instability wave length is plotted on Figure 2 Right Hand Scale for kx = 0 axy = 0
blue plain line and open triangles, and kx = ky axy = 1 black plain line closed triangles. It tends
to decrease with increasing growth rate but this decrease is very small and flattens out with γ.

Figure 1. Contributions to mode
damping, equation (3c) versus wave
vector k. The terms are normalised
to the minimum value of Aφ or AnAφ
to fit the on same graph.

Figure 2. For increasing growth rate γ,
variation of the required gradient Ln, Left
Hand Scale and of the wave length λy
of the most unstable mode, Right Hand
Scale.
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The ratio between the most unstable mode with kx = 0 and the homogeneous case kx = ky is a

factor
√

2, consistently with the values of the ratio k/ky =
√

1 + axy.

2.3. Flux-surface-averaged fields
In the present model, in the flux-driven regime and outside the source region, the flux-surface-
averaged fields 〈n〉, 〈φ〉 and 〈W 〉 = ∂2

x 〈φ〉, have no source but the non-linear coupling between
turbulent modes.

∂ 〈n〉
∂t

+ ∂x

〈
−ñ∂yφ̃

〉
−D∂2

x 〈n〉 = 〈S〉 − σn 〈n〉 (5a)

∂ 〈W 〉
∂t

+ ∂x

〈
−W̃∂yφ̃

〉
− ν∂2

x 〈W 〉 = αzσφ 〈φ〉 (5b)

The flux-surface-averaged vorticity 〈W 〉 is the shear of the zonal flow Vz = ∂x 〈φ〉 = 〈vEy〉. The
z subscript for Vz and αz refers to zonal flows. Taking this definition into account, one can write
an alternative form for equation (5b):

∂x

(∂Vz
∂t

+ ∂xRs − ν∂2
xVz

)
= αzσφ 〈φ〉 (5c)

where Rs is the Reynolds stress tensor Rs =
〈
−∂xφ̃∂yφ̃

〉
. The structure of this equation is

remarkable insofar that is exhibits two damping terms and is such that the only possible drive is
via the non-linear contribution, namely the Reynolds stress. Similarly for the particle transport
equation (5a), apart from the source term, homogeneous in y and Gaussian in x with half-
width 8.5 ρ0 and localised at x = 0, there is no other source but the non-linear turbulent radial
particle flux Γx = nvEx where vEx is the x component of the electric drift velocity. In flux-driven
systems, the reference background state is generated self-consistently by non-linear constructive
interferences of fluctuations. These can act as sources or sinks. However, in contrast, all other
terms are sink terms. Numerical simulations are used to address the development and statistical
steady state of the mean fields. Before analysing these results, a final remark can be made on
the use of the parameter αz that governs the volumetric damping of 〈φ〉 via a restoring force
towards 〈φ〉 = 0. While σφ governs the damping rate of all modes ky 6= 0, damping of the flux-
surface-averaged field is reduced when setting 0 ≤ αz ≤ 1. Introducing such a control parameter
aims at both adapting fluid codes to a better handling of zonal flows, as well as modifying the
behaviour of the zonal flows in kinetic codes in the adiabatic electron limit. Indeed, the limit
αz → 0, i.e. no restoring force, seems to overestimate zonal flows in kinetic codes leading in
some cases to a very stiff barrier response [9, 10].

3. Numerical simulations of SOL turbulent transport
3.1. Reference case of damped zonal flows
Simulations are performed with the TOKAM2D code that has been extensively verified, in
particular with the novel PoPe scheme [11]. We analyse here steady state regimes with αz = 1
on a time window corresponding to 30 SOL characteristic time, the inverse of σn with the present
definitions. The mean density profile is plotted on Figure 3, plain-thick black curve in log-scale.
The radial simulation domain on this figure is slit into 3 regions, the source being centred on
x = 0. The first region, on the Left Hand Scale from x = 0 to x ≈ 340, is characterised
by a close to exponential density decrease. Since the simulation domain is periodic, the third
region, on the Right Hand Scale, must exhibit a positive, therefore stable gradient. The second
region, close to x = 400, in a region of turbulence spreading with weaker g-drive due to the
decrease and inversion of the density gradient. The maximum and minimum density profiles,
due to the fluctuations during the analysed statistical steady time window, are also shown, thin
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Figure 3. Mean density profile
〈n〉y,t, maximum and minimum
value profiles as well the mean
density ± its rms.

Figure 4. Profile of L−1
n = 〈−∇xn/n〉

and its rms, Right Hand Scale, and
profile of Ln, Left Hand Scale.

blue curves with open up-triangles for the maximum and open down-triangles for the minimum.
One observes bumps in these profiles that are indicative of where large avalanche-like transport
events have stopped. Convergence towards smoothed-out curves requires very large statistics.
They have been found to be particularly slow in such intermittent simulations [12]. Potentially,
the realisation of convergence towards statistical steady state of turbulence given such long
transients can be impeded by the evolution of other processes leading to global changes on
shorter time scales. The density profile is completed by the plot of the mean profile ± the root
mean square (rms) of the density fluctuations, black dashed line. The rms can be observed to
be rather constant, while the density decreases, leading therefore to an increase of the relative
fluctuation level. The latter increases almost linearly from 20 % to 40 % for x ranging from
0 to 340. For the profiles in the stable region, the rms is squeezed to a small value as readily
expected for weak spreading capability.
To complete the analysis of this mean density profile, we consider the density gradient length
defined as Ln = 〈−∇xn/n〉−1, as well as its inverse 1/Ln = 〈−∇xn/n〉 and the rms of the
fluctuations of ∇xn/n, Figure 4. In contrast to the smooth aspect of the mean density profile,
one finds that Ln is not smooth, plain line with closed triangles, Left Hand Scale. One can
however identify a clear trend characterised by a decrease of Ln by a factor close to 2, a change
that is quite significant in view of the sensitivity of divertor operation to this scale, from 200 at
x ≈ 25 to ≈ 100 at x = 340. Between x = 0 and x ≈ 25, typically the source region, there is a
marked decrease of Ln down to ≈ 100. This analysis indicates that the physics that govern the
SOL width are more complicated than described by a single e-folding length, and require detailed
and precise measurements to recover experimentally these properties. The profile of L−1

n that
is effectively computed, Figure 4 plain line and open triangles Right Hand Scale, is presented
for the sake of comparison to its rms. One finds that the latter is characterised by a rather flat
profile, plain line, thick open circles and Right Hand Scale, and is typically four times larger
than the mean value. The Probability Distribution Function (PDF) reflects this property, the
maximum probability is observed at ∇xn/n = 0, the mean value L−1

n stands in its vicinity and
heavy tails, decaying more or less exponentially, skewed towards the positive value of −∇xn/n
are observed. Given the very large fluctuation level, relating these mean-field properties to the
linear analysis of Section 2 cannot be justified. However, one can consider that it provides a
qualitative guideline when investigating the non-linear, highly intermittent SOL transport. For
isotropic turbulence kx = ky the upper value of Ln, Ln ≈ 200 is just above marginality while
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Figure 5. Mean density profile 〈n〉y,t
with scan of the parameter αz in
equation (5c).

Figure 6. Profiles of the rms of
potential fluctuations with αz-scan.

Ln ≈ 100 yields a growth rate 2.5 10−4, comparable to σn, table 1. The physics suggested by
these numbers is that turbulence self-organises to generate marginal e-folding profiles in the
vicinity of the source. The decrease of the particle flux governed by the volumetric losses would
then require a larger turbulent drive, hence reduced density gradient length. It seems therefore
possible to relate the mean-field properties to the linear analysis. More systematic comparison is
however required to investigate if such an interpretation, analogous to that proposed for neutral
fluids in reference [13, 14], can be used to analyse the SOL width.

3.2. Impact on SOL transport of zonal flows damping rate
Is has been recognised that fluid models are characterised by over-damping of the zonal flows
[1, 2]. In that perspective, a first attempt to adapt the TOKAM2D fluid simulations, consisted
in reducing the viscous damping of this mode. Although a small effect was noticeable, the overall
impact did not lead to a behaviour in agreement with kinetic simulations. A more interesting
result has been obtained when introducing the parameter αz governing the restoring force of
the small kx zonal modes, equation (5c) [15]. From the macroscopic point of view changing αz
reduces significantly the SOL width, Figure 5. As a consequence the reversal of the mean density
gradient is shifted towards the small values of x as αz is decreased. This is a consequence of the
numerical implementation with periodic conditions in x. The improved confinement also leads to
an increase of the maximum value of the density, enhancing the volumetric particle losses in the
source region. For the smallest value of αz, αz = 1/128, the density at the minimum is close to
zero, more than 103 times smaller than at x = 1, and the profiles tends to be more symmetric in
the vicinity of the minimum. In such a case, the profile is governed by diffusion since turbulent
transport is quenched. The latter effect is noticeable on the profiles of the potential fluctuations,
characterised by the rms, Figure 6. One can observe a decrease of the fluctuation level, governed
in first place by the decrease of the density. For αz = 1/128 the relative density fluctuation, rms
divided by the mean, is reduced to less than 10−2 at the minimum, typically a factor 100 smaller
than the value before entering the stable region. The other important feature of the rms-profile
of the electric potential is the development of modulations, Figure 6. These become visible for
αz = 1/8, are largest for αz = 1/16, and then appear to decrease for αz ≤ 1/32. Interpretation
of this fluctuation level is rather complicated since it combines variations in x and in y that can
have different impact on turbulent transport. Regarding the radial flux Γ, one finds a decrease
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Figure 7. Zonal flow Vz = 〈vEy〉y versus
radial position and time for the reference
case αz = 1, no specific zonal flow damping.

Figure 8. Zonal flow Vz = 〈vEy〉y versus

radial position and time for αz = 1/128,
a case with large reduction of zonal flow
damping.

with decreasing αz but less pronounced modulation.

3.3. Zonal flow pattern and generation
The trace of the zonal flow profile is shown in the 2D plot of Figure 7 in the standard case with
αz = 1, and Figure 8 for αz = 1/128. Note that the time units on the figures is 32 Ω−1

i that
corresponds to the diagnostic stepping. For αz = 1, a pattern with characteristic magnitude
0.02 cs where cs is the sound speed, and with rapid reorganisation in time and radial position
x is noticeable. The typical wave length is 50 ρ0. Several time scales can be identified. These
typical times appear to become longer when increasing the distance to the source. A characte-
ristic time scale in the region at x ≈ 50 is roughly 640 Ω−1

i . In contrast, for αz = 1/128, one
can observe a regular pattern, Figure 8. The magnitude of the zonal flows Vz is more than a
factor 10 larger and exhibits close to equally spaced reversals. The amplitude of the zonal flows
|Vz| decays as the distance to the source increases. Zooming on the first maximum of Vz, Figure
9, reveals however short time scale changes that are reminiscent of the reorganisation reported

Figure 9. Radial zoom of Figure 8 on the
first maximum, x ≈ 55 ± 30. The white
contour line correspond to Vz = 0.

Figure 10. Trace of the evolution of the
maximum of Vz on the structure radial
extent and of its radial location.
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Figure 11. Mean zonal flow profile
〈Vz〉t for αz = 1/128. The origin is
shifted with x ≤ 0 stable and x ≥ 0
unstable, the source is centred on
x = 0.

Figure 12. Effective ballistic transport
velocity, the dashed white lines localise the
zero contour of the zonal flow pattern, in
the vicinity of the maximum shear.

for gyrokinetic simulations [5, 16, 17]. They appear as inward or outward ballistic propagation
of either minima or maxima with a typical velocity of 0.04 cs. This range of Mach number,
comparable to that of the zonal flow in the case αz = 1 , is characteristic of SOL intermit-
tent avalanche transport [18]. Considering the variation of the maximum of Vz in the range
30 ≤ x ≤ 80 relative to the time average value, Figure 10 plain blue curve with closed circles,
one can observe time dependent fluctuations up to the 10 % range, with relaxation like events.
The radial position of the maximum also appears to fluctuate, also in the 10 % range relative
to the half width of the zonal flow maximum structure (50 ρ0). In some cases, anti correlation
between position and amplitude can be observed, but this is not systematic. On longer time
scales, one can also notice a drift of the position of this zonal-flow structure away from the
source. The mean zonal flow profile is shown on Figure 11. Note that the x-axis is shifted. The
region left to the source maximum (at x = 0), is stable and only exhibits small fluctuations.
The pattern is that of a standing wave with asymmetric damping, the fall-off being on a shorter
distance in the stable region. The structure on Figure 11 could suggest that the phase of the
pattern is locked to that of the source since a minima coincides with x = 0. In fact longer
simulation times are characterised by slow drifts of the extrema and possible reorganisation of
the pattern. However, it seems that the zonal flow structure is constrained and either a minima
or maxima is aligned on x = 0 at the source maximum. The phase of the wave-like pattern
at x = 0 thus tends to increase in jumps of π. Such a wave-like pattern, and the development
of the mode in the stable region, is indicative of a global structure which appears to be ”more
linear” than the self-organised pattern reported in gyrokinetic simulations. The physics of this
difference in behaviour is still unclear. One can also notice that the wave length is in the range
of 100 ρ0, hence about twice that reported for αz = 1. This could be understood by the fact that
the minimum damping region is shifted to higher wave length, by a factor 2.4 for αz = 1/128,
together with a reduction by a factor 10 at the minimum damping.

Regarding the decrease of the pattern in the radial direction, it can be explained by the
turbulence reduction in the radial direction. Let us consider the effective velocity of transport
defined by Veff (x, t) = 〈Γx(x, y, t)〉y / 〈n(x, y, t)〉y, Figure 12, where Γx(x, y, t) is the turbulent
particle flux taking into account the correlation between density and potential fluctuations. Di-
viding by the average density allows one to remove the obvious impact of the density level on the
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Figure 13. Radial component of the
electric drift velocity vEx at given poloidal
position versus radius x and time t for the
reference case αz = 1.

Figure 14. Radial component of the
electric drift velocity vEx at given poloidal
position versus radius x and time t for the
case αz = 1/128.

particle flux. As obtained is previous SOL turbulence simulations [6], one readily notices events
with ballistic radial transport. In this plot the vertical dashed white lines locate the contours
with vanishing zonal flow Vz = 0, that indicate approximately the position of maximum shear
layers. The structure of the zonal flow pattern tends to decrease the number of such events in the
course of the radial propagation by introducing a delay and a filtering process of the events with
smallest magnitude. Using the ratio of the turbulent radial particle flux divided by the total
particle flux (diffusive and turbulent) as done in reference [19] does provide a means to identify
transport barrier features. However, the volumetric loss term for the density, which is enhanced
by the barrier, as pointed out in [19], tends to limit the build-up of large density gradients at
the barrier location so that the effect appears to be quite small using this criterion. In fact,
the most noticeable difference between the case with zonal flows and the reference case with
over-damped zonal flows appears to be the duration of the transport event and the repetition
rate of the avalanche transport events. For αz = 1, the avalanche events are very frequent, and
appear to exhibit long radial range when considering the y-averaged transport.
Analysing the radial component of the electric drift velocity vEx at given poloidal position ver-
sus radius x and time t, for αz = 1 Figure 13, compared to αz = 1/128 Figure 14, one also
notices that the duration of the structures in the potential with outward velocity, respectively
inward, is much shorter with large zonal flow amplitude. Furthermore, vEx tends to decrease
in the large shear region, Figure 14. At times with heads-on directions of vEx in neighbouring
zonal flow structures, these tend to cancel out large scale transport. The reduced duration of
time windows such that vEx is aligned in the neighbouring zonal flow structures also reduce the
efficiency of transport at large scale. These two mechanisms can be partly understood as the
impact of zonal flow shearing on streamer like transport structures.

Finally, analysing the onset of the zonal flow structure, Figure 15 for αz = 1 and Figure 16
for αz = 1/128, one can notice that the specific properties of the patterns set in very rapidly
after the linear phase, typically from Ωit = 0 to Ωit/32 = 100. For αz = 1 the zonal flow
pattern seems to build according to the selection that takes place during the linear phase, hence
favouring the idea of a structure determined by the damping process. For αz = 1/128, it seems
that at the end of the linear phase, the structure of the zonal flow is comparable to that for
αz = 1, and that the pattern then builds via a merging of two structures, as in [20], followed by
a radial displacement and further increase of the radial extent, Figure 16.



12

1234567890 ‘’“”

Varenna2018 IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 1125 (2018) 012011  doi :10.1088/1742-6596/1125/1/012011

Figure 15. Build-up of the zonal flow
radial profile from the linear regime into
the non-linear regime, transition typically
at Ωit/32 ≈ 100. Case with large restoring
force, αz = 1, and consequently fast
reorganisation in space of the zonal flow
pattern is readily observed.

Figure 16. Build-up of the zonal flow
profile from the linear regime into the non-
linear regime, case with small restoring
force, αz = 1/128. Large scale and slow
reorganisation is observed with possible
structure merging towards the end of the
linear phase.

4. Discussion and Conclusion
With relatively small changes of the initial SOL turbulence model we have recovered a regime
with corrugated profiles [16, 17, 21]. In this regime, transport is regulated by zonal flow shear
layers distributed radially in the plasma volume. The control parameter that determines the
amplitude of the zonal flows allows one investigating a large class of regimes. In the reference
case, where zonal flows are damped similarly to all modes, one finds a regime with rather
homogeneous turbulence and a scrape-off layer that can appear to be characterised by an
exponential e-folding length. The precise investigation shows that zonal flows are generated, but
at too low amplitude and with too fast reorganisation in time and space to generate patterns
that can be identified on transport meso-scales. In that reference regime, with the same restoring
force for all modes of the system, one finds that the e-folding length decreases up to a factor 2 as
the radial distance from the source is increased. When reducing the restoring force for the zonal
flows, the SOL e-folding length is reduced and exhibits a larger variation in the radial direction.
It is interesting to note that in the reference case, the mean gradient achieved in the non-linear
turbulent regime, and close to the source, coincides with the critical gradient for homogeneous
turbulence (kx ≈ ky). This could be indicative that some of the mean-field features generated
by turbulence can be captured by the linear analysis as done in neutral fluid physics [13, 14].
However, more effort is required along this line to step towards a conclusion.
Allowing the zonal flow structure to develop by reducing the restoring force acting on the electric
potential leads to corrugated profiles with improved confinement, therefore reduced SOL width.
Such regimes are characterised by long lived zonal flow patterns [22]. It is to be underlined
that the corrugated aspect in terms of the gradients is less pronounced due to the volumetric
losses, a feature already reported in Ref.[19]. The analysis of the zonal flow patterns, which is
observed to be quite robust, is however modified according to two different time scales. The
fast time scale, typical of avalanche transport across the layer, governs a form of modulation in
magnitude and position of the zonal flow structure, and consequently of the zonal flow shearing
rate. Conversely, a meso-scale slow reorganisation of the pattern can also be noticed, especially
in the cases with less developed zonal flow structure, i.e. when the amplitude of the zonal flow
pattern is levelled-off by the restoring force acting on the potential.
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A major difference with the reported kinetic results [16, 17] is the organisation in space. Kinetic
simulations appear to be characterised by a structure with regions that exhibit reduced shear
and ”free” avalanching transport while the present results exhibit a wave like structure of the
zonal flows. The wave length of the pattern seems to be governed by a combination of the
damping properties of the zonal flows and inverse cascade of the turbulence that shifts the
largest amplitude mode from the injection scale, assuming that is corresponds to the most
unstable linear mode, towards larger modes and smaller wave vector. The importance of the
damping features in the pattern formation could also explain the specific dynamics of the SOL
and its large fluctuation levels. Indeed the properties of the damping terms, enhanced by the
parallel losses onto the limiter, determines a narrow window of mode numbers with minimum
damping. The reduced number of effective degrees of freedom in this turbulent transport regime
would, in a self-consistent way, narrow the range of self-organised patterns and govern larger
fluctuation levels. These are particular signatures of SOL turbulent transport, that would then
be governed by the specific SOL damping process, namely the volumetric loss terms, in the
parallel direction, onto the wall components.
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