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Abstract. Verification of a 1D-1V kinetic code with the PoPe method [1] is presented.
Investigation of the impact of reducing the precision of the numerical scheme is analysed
by following 3 indicators of the physics solved by the code, namely the plasma response to
an external high frequency electric field wave. The response of the distribution function in
the vicinity of the particle-wave resonance is found to be most sensitive to the resolution.
Consistently, a rapid growth of the error indicator determined with PoPe is observed. However,
no critical value of this indicator allowing us to retain the physics in a situation of degraded
precision could be observed. The response of the amplitude of the electric potential fluctuations
is characterised by a transient growth followed by a plateau. It is found that the loss of this
plateau is governed by the resolution in v-space, but due to the generation of a symmetry in the
problem rather than to errors in the numerical scheme. The analysis of the transient indicates
that the growth rate of the amplitude of the electric potential is very robust down to very low
resolution, step in velocity of 2 thermal velocities. However, a transition prior to this resolution,
with step 0.5 thermal velocity, can be identified corresponding to a PoPe indicator of order zero,
namely for errors of order 100 %.

1. Introduction
With the increasing computing capability, simulations are playing a growing role in research and
innovation. Consequently, reliability of High Performance Computing must be addressed and
quantifying each simulation quality becomes mandatory. Verification is usually performed on a
small set of test cases, as in the Method of Manufactured Solution, which can depart from the
conditions actually encountered in production runs. Projection on Proper elements, or PoPe [1],
is a novel framework developed to quantify the simulation error, potentially for each production
run. It requires typically 1% CPU overhead, some storage and post-processing, and is a power-
ful and versatile tool for verification: checking the implementation of models, determining the
numerical convergence, and characterizing the residual error. The basic idea is to measure the
departure from the expected bijection between the code data output and the set of equations
that are considered to generate it.

http://creativecommons.org/licenses/by/3.0
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As an illustration PoPe is used to verify the 1D-1V VOICE code dedicated to investigating ki-
netic plasma physics [2]. In a standard fashion the VOICE code has been verified confronting the
code output with analytical results on Landau damping, resonant interaction with an external
electric field and collisional relaxation towards equilibrium temperature. Furthermore, each part
of the code has been verified with the reference Method of Manufactured Solution. Kinetic pro-
blems have a unique feature insofar that they depend on a precise description of the phase space,
including in particular the more challenging computation of the high velocity tail of the distri-
bution function. However, standard quantities used for the physics, typically the electric field,
are projections based on velocity integrals, and tend to smear out the high velocity contribution.

On more general grounds, one can use PoPe when investigating procedures to reduce the
impact of the numerical errors, such as changing (i) the numerical method or its order, (ii) the
mesh resolution or (iii) filtering the solution to only retain the contributions which are consistent
with the precision of the numerical scheme. Cost and benefit of each improvement scheme can
be analysed. Present development of PoPe in VOICE is focused on verification of the code on
the fly, then providing a figure of merit of accuracy for each run of the code as a standard data
output. This absolute criterion allows one to check that aspects (i) and (ii) are fulfilled.

The aim of this work is to address the situation where the PoPe figure of merit is degraded,
hence suggesting significant numerical errors. Such a case is likely encountered when the requi-
red resolution exceeds the available computing capability. It is then important to determine a
limit in the PoPe figure of merit beyond which some aspects of the simulation become questi-
onable. In the case of an under-resolved simulation it is crucial to evaluate what part of the
output can still be retained as significant for scientific purposes. Alternatively, one can address
this problem as addressing a reduced model, the under-resolved simulation, to investigate the
physics in the chosen conditions beyond the available computer resources. The question is then
to evaluate how does this ”numerically reduced” model do in matching the results of interest.
A likely difficulty of working in such conditions is that the universality of the PoPe verification
gives way to more open discussion on the code output where the criteria of interest play a ma-
jor role. More detailed investigation of the code output is then required to assess the level of
confidence for each particular observable.

In the present paper we consider the case of an electron population subject to an external
electric field with given amplitude, frequency and wave vector in the frozen ions asymptotic
limit. For weak amplitude of the electric field the resonant response of the electrons to the
perturbation can be computed analytically, Section 2. We first show that this linear resonant
response is recovered by the VOICE code while the version of the code used for the calculation
is characterised by a PoPe indicator of zero, 100 % error, at high velocity, Section 3. With an
improved version of the code, such that the numerical scheme does not produce such errors at
large velocity, we then investigate the degradation of the numerical resolution when coarsening
the mesh in velocity space, Section 4. Discussion and Conclusion close the paper, Section 5.

2. Electron response to an external high frequency electric field
In the simplest form, we thus address a 1D-1V kinetic model with the standard Vlasov-Poisson
system. A Eulerian scheme, pseudo-spectral in both velocity and position directions, is used in
the VOICE code for the work presented here and in Section 3. In Section 4, a finite difference
scheme in the velocity direction is used instead of the pseudo-spectral one. With standard
normalisation, plasma frequency for time, Debye length for length scales, reference density for
the distribution function and thermal velocities for particle velocity, the set of equations for the
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distribution function of the electrons fe(x, v, t) in the frozen ions asymptotic limit, is then:

∂tfe + v∂xfe + ∂x
(
φ+ φext

)
∂vfe = 0 (1a)

∂2xφ(x, t) =

∫
dvfe(x, v, t)− 1 (1b)

Here −∂xφext is the driving external electric field while φ the self-consistent electric potential
induced in the plasma. In the literature, such externally driven Vlasov equation is also addressed
as the KEEN wave [3, 4] (Kinetic Electron Electrostatic Nonlinear wave). However, the emphasis
is then put on a second phase of self sustained self-organisation once the external drive is set
back to zero.

The linear response, for small amplitude of φext, has been analysed [5]. It is characterised
by a resonant effect that can be seen in the amplitude of the electric potential generated by the
plasma.

φ̂(ω, k) = − Ge(ω/k, 0, fe,0)

k2 +Ge(ω/k, 0, fe,0)
φ̂ext(ω, k) (2a)

This response is computed in Fourier space, φ̂(ω, k) and φ̂ext(ω, k) being the Fourier transforms
of the self-consistent and external electric potentials. The response function Ga(ω/ka, νa/ka, fa)
for species a is defined by:

Ga(ω/ka, ν/ka, fa) =

∫
dv

1

v − ω/ka − i ν/ka

(
− ∂vfa(v)

)
(2b)

where ka = k/
√
ma/me. For a Maxwellian distribution function, fa = fM and dropping the

subscript a, setting the restoring force at zero, ν = 0, G is related to the plasma function Z(z),
G(
√

2z, 0, fM ) = 1 + zZ(z). The time trace from the VOICE simulation is shown on Figure

1 for an amplitude of the drive of |φ̂ext(ω, k)| = 10−5. In the chosen case the linear analysis

predicts an amplitude ratio, AG = |φ̂(ω, k)|/|φ̂ext(ω, k)| of 8.4154, which appears to be in close
agreement with that achieved in the VOICE simulation. Repeating such simulation at given k
and varying ω allows one to determine the variation of AG and compare it to the linear analysis,
as shown on Figure 2.

One recovers expected features, at high frequency ω � 1, the electron do not respond to
the external field while in the adiabatic regime ω � 1, there is an order 1 response. Near the
plasma frequency one finds the resonant feature, with a Lorentzian-like shape. As expected for
a Lorentzian, the resonance is also characterised by a change of phase by π between the low
frequency regime, where the plasma electrons tend to screen the external electric potential, and
the high frequency regime where the electric potential generated by the plasma tends to be in
phase with the external drive.

The VOICE simulation data, black closed circles in Figure 2, is in very good agreement with
the analytical formula. The numerical value of AG is obtained by integrating the full non-linear
Vlasov-Poisson system, Equation (1), with an external drive of amplitude |φ̂ext(ω, k)| = 10−5

at given wave vector k and case by case variation of the pulsation ω. After an initial transient,
Figure 1, the amplification of the potential oscillations AG is found to reach a steady state value.
The latter is reported on Figure 2.
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Figure 1. Time trace of the electric
potential generated by the plasma, φ(x, t)
normalised by the amplitude of the external
drive, |φ̂ext(ω, k)| = 10−5, with k = 1/2.8,
ω = 1.2. The linear approximation yields the
saturation level indicated by the thick dashed
black line.

Figure 2. Amplitude ratio AG between
the potential generated by the plasma and
that of the external drive for k = 1/2 as a
function of ω. The linear approximation
yields the blue curve, VOICE simulation
are indicated by the closed black circles.
The VOICE simulations are performed
with |φ̂ext(ω, k)| = 10−5.

3. PoPe analysis of the numerical scheme
3.1. Short introduction to the PoPe verification method
For completeness we remind here the PoPe method for numerical scheme verification. On very
general grounds numerical calculations solve equations of the form:

Oc(X) =
∑
m

amOm(X) (3a)

where Oc is the computed operator depending on X and is equal to a linear combination of the
generating operators Om(X) with weight am. For simplification we shall consider here that all
weights of the system are equal to 1, hence that actual numerical values of the control parameters
are included in the definition of the operators Om(X). In the case of Equation(1a), the space of
calculation is 3D, X = (x, v, t) and the right hand side operators are O1(x, v, t) = −v∂xfe(x, v, t)
and O2(x, v, t) = −∂x(φ+ φext)∂vfe(x, v, t). In-bedded in this definition of O2(x, v, t) is the in-
version of the Poisson equation (1b). The left hand side operator, the computed operator Oc,
is ∂tfe(x, v, t). As apparent in the notation there is a lot in freedom in defining the operators.
This property can be used at best for in-depth investigation of the numerical scheme. During
the simulation run, the code output can be stored for a large number of points X. This data
can then be used to reconstruct independently the set of operators Om(X) as well as operator
Oc(X). The PoPe overhead in computation is either the CPU time required for this recalcula-
tion on the fly, or storage capability for recalculation as post-processing.

As can be readily expected, a basic requirement of the operator recalculation is that this is
performed at least with the same precision as done in the code for a given resolution in X. It
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is important to stress that the decomposition in sub-operators can be carried to the point that
each elementary operator can be verified independently.
Due to numerical approximations, the effective relation that is solved in the code is :

O(s)
c (X) =

∑
m

amO(s)
m (X) (3b)

O(r)
c (X) =

∑
m

(am + δam)O(r)
m (X) + E(X) (3c)

The equation solved numerically is (3b), the superscript (s) standing for simulation. The code

output O(s)
c (X) is compared to the reconstructed system, superscript (r). In equation (3c), the

operators O(r)
m (X) are the reconstructed operators and E(X) = O(r)

c (X) − O(s)
c (X). Provided

O(r)
m are independently reconstructed and verified, one can consider them as a sufficient proxy

for the actual operators Om provided their numerical resolution is at least that implemented in
the code. The numerical errors of the code can then be interpreted as errors of the projection of
Oc(X) on the operators Om leading to changes of the weights from am to am+δam as well as the
occurrence of a residual error E(X), which by construction has zero projection on the generating
operators Om. A least square method then allows one computing δam as well as statistics or
dependences, for instance the evolution in time. The residual error can also be investigated.
Making a projection of the latter on diffusion operators provides a means to actually check the
often claimed but rarely quantified numerical diffusion. This has been done, indicating negligible
diffusion in the numerical scheme of VOICE, but is not the scope of this paper.

3.2. PoPe verification of VOICE in v-Fourier space
Advancement in time in VOICE is performed with a fourth order Runge-Kutta scheme, hence a
high order scheme with no specific conservation properties. Given periodic conditions in x, one
readily considers Fourier modes in this direction as done for the linear analysis. The solution
of the Poisson equation is then straightforward and corresponds exactly to that used in the
linear analysis. The calculation of the non-linear term O2(x, v, t) = −∂x(φ + φext)∂vfe(x, v, t),
if performed by inverse Fourier to real space, product in real space and back Fourier transform
with standard pseudo-spectral code de-aliasing. It seemed appealing to perform also a Fourier
transform in velocity space, hence implicitly ”periodising” the distribution function in v using the
same procedure to compute the two non-linear terms O2(x, v, t) as well as O1(x, v, t) = −∂x(vfe).
The rational for this choice of numerical scheme is that the filamentation governed by the
convection part of the kinetic equation, ∂tf + v∂xf = 0, for a mode k is position x leads to a
phase k x = k v t, equivalently to a wave vector in velocity K = k t. A Fourier transform in
velocity space seems therefore appropriate to follow the filamentation process exemplified by the
relation K = k t.
It has been found that the error in the velocity direction of kinetic codes is rather specific [1].
The various errors determined by the PoPe projection are therefore analysed here retaining the
velocity as a parameter, Figure 3.

Let us consider the advection operator O1(x, v, t) and the error on its weight δa1, which is also
the relative error since a1 = 1. The plot of δa1 versus velocity, Figure 3, allows one identifying
three regions. At small velocities the error is in the range or smaller than 10−6, while at large
velocities the error exceeds 1 for negative v and is of order 1 for positive v. In the intermediate
range of values of v the error shoots up exponentially. One can remark also a loss of precision
in the vicinity of v = 0 which can readily be understood since O1(x, v = 0, t) = 0. At the
wave-particle resonance, where filamentation occurs, the scheme based on the Fourier transform
in v-space is observed to be quite efficient, as illustrated by the dip in the error at v/vthe = 3.6
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for the chosen parameters of this simulation.

Although the VOICE code seemed to be well verified by the linear calculation, as summarised
in Figure 2, it thus appears that very significant errors exist in the high velocity regions. However,
owing to the small weight of these regions in the moment of order zero used in the linear
calculation, those errors have no visible impact in the verification against the linear analysis.
A possible reason for the ill-behaviour of this numerical scheme could be some bump on tail
instability. Indeed, in simulations, a noisy flat shoulder of the distribution function is observed
to develop at largest velocity and gradually penetrates towards the low velocity. On finite times,
this region thus extends, and can reach parts of the distribution of interest [5]. However, an issue
solely governed by physics, would not be identified by PoPe as a numerical error. An alternative
would be the accumulation of numerical errors on the large K modes (in v space). If these modes
mostly shape the distribution in the vicinity of the vanishing derivative at maximum velocities,
governed by the periodicity condition, then the error could lead to the phenomenology described
above.
The code has been improved by switching to finite difference for the mesh in velocity with
a fourth order scheme to compute the derivatives. The analysis with PoPe then indicates a
significant improvement in accuracy, Figure 4. The high velocity regions now exhibit errors on
the coefficient a1 that are of the order of 10−4 while in the low velocity region the error if of order
10−7, the dips being related to changes of sign of the δa1. These features are readily observed
at two different times ωpt = 50 and ωpt = 100. However, at the latter time, a change, and in
particular an increase of the error, can be observed in the vicinity of the resonance, Figure 4.
The finite difference scheme thus appears to be less efficient to handle the filamentation process
at the wave-particle resonance. This effect is further discussed in Section 4. The increase of
the error at high velocity can be observed to fit roughly a |v|4 dependence, dashed black line

Figure 3. Velocity profile of the error on
weight a1, δa1 for the version of VOICE
with pseudo-spectral in v scheme. Simulation
performed with Nv = 29 points in velocity
space and |φ̂ext(ω, k)| = 10−5.

Figure 4. Velocity profile of δa1 for
the version of VOICE with finite difference
scheme in v-space. Two times are presented,
ωpt = 50 and ωpt = 100, plain black and
dotted blue lines respectively, simulations
with Nv = 29 points in velocity space and
|φ̂ext(ω, k)| = 10−5.
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on Figure 4, with additional effects governed by the changes of sign of the error δa1 as well
as an altogether different behaviour for the velocities of the bulk of the distribution function.
The dependence in |v| can be expected since both operators O1(x, v, t) = −v∂xfe(x, v, t) and
O2(x, v, t) = −∂x(φ+ φext)∂vfe(x, v, t) ≈ ∂x(φ+ φext)vfe(x, v, t) are typically proportional to v.
The scaling with a power 4 is most likely governed by the order of the finite difference scheme
used in velocity space, since for a Maxwellian (∂4vfe(x, v, t))/fe(x, v, t) = v4 − 6v2 + 3 for a
Maxwellian. The fit plotted on Figure 4, (v4 − 6v2 + 3)(δv)4/(4!)/

√
2, with δv = 2vmax/Nv,

exhibits a qualitative agreement with the error on δa1. The factor 1/
√

2 has been introduced for
a closer match. It is to be noted that the zeros are not located according to the approximation
based on the fourth order derivative. However, the specific behaviour in the vicinity of the
wave-particle resonance can distort the distribution function sufficiently to yield this difference.
It seems therefore that the structure of the error δa1, analysed here, can be driven by the fourth
order scheme used for the derivatives by finite difference in the v-space. The difference between
the implemented operator and the actual one would then simply be transferred into the variation
of the weight δa, possibly with a splitting between the two errors δa2 as well as δa1.

4. Investigating the steps towards low resolution failure of VOICE simulations
4.1. Identifying key physics features
The dependence on mesh size is performed by changing Nv = 2N . Let us consider as reference
case the simulation with Nv = 512 (29, hence N = 9) points in velocity space, Figure 4. All
simulations in the following are performed with a drive characterised by k = 1/2.8 and ω = 1.2

and |φ̂ext(ω, k)| = 10−5. The phase velocity of the external wave is therefore ω/k = vres = 3.36.
For vmax = 8.09017, the step in v is δv ≈ 0.03, and the velocity point closest to the wave-particle
resonance is at v ≈ 3.35. Due to the wave feature of the drive and of the response, point in
position space x behave identically with only a shift in time. Without loss of generality, one
can then analyse all simulation output at a single location, we have chosen xmid namely the

Figure 5. Quasi stroboscopic trace of
the amplitude of the electric potential (Left
Hand axis), blue dotted line with closed
circle, symbol 1 point out of 8, and of the
distribution function for v− vres < δv (Right
Hand axis), open black square, symbol 1
point out of 2. The solid horizontal line
corresponds to the analytical prediction.

Figure 6. Velocity profile of
δf(x, v, tf,max) = f(x, v, tf,max) − f(x, v, 0)
in the vicinity of the wave particle resonance
at three quasi-stroboscopic times defined
according to the maximum of δf(xmid, v, t)
at v = vres − 0.01, dashed-dot vertical line.



8

1234567890 ‘’“”

Varenna2018 IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 1125 (2018) 012005  doi :10.1088/1742-6596/1125/1/012005

point in the middle of the x-domain. In such a case the transient regime to the quasi-steady
state amplification of the electric potential is traced on Figure 1. The analysis of the plasma
response is more conveniently analysed using the maxima of the amplitude of the oscillations of
the signal of interest f(xmid, tg,max), where tg,max are the times where the field g goes through a
local maximum governed by the oscillatory nature of the time dependence. The obtained data
|f(xmid, tg,max)| is very close to a stroboscopic sampling at the period of the drive by the external
electric field. However, the knowledge of tg,max allows one capturing the phase shift between
the external drive and the field g as well as the small departure from the characteristic phase
shift that appears to occur especially during the first oscillations. The result for the electric
potential, |φ(xmid, t|φ|,max)|, is plotted versus t|φ|,max, Figure 5, left hand axis with closed circles
and dotted line. On this quasi-stroboscopic trace, one can observe the transient growth followed
by a quasi-steady state flat-top and, towards the last points of the shown time window, a dip
followed by a rapid growth. As will be discussed later, this change in behaviour is an artefact
determined by the resolution in velocity space. Ignoring these features, one then observes a
saturation of the growth of the amplitude of the plasma electric potential at a value comparable
to that given by the analytical linear calculation. Conversely, the response of the perturbation
of the distribution function δfe(x, v, t) = fe(x, v, t)− fe(x, v, t = 0) is found to be quite sensitive
to the value of the velocity. Of particular interest is the behaviour in the neighbourhood of the
resonant velocity vres: δfe(v, xmid, tδf,max) at velocity v = 3.35 ≈ vres. The response is close
to a linear growth with no saturation, Figure 5, right hand axis, open black squares. For other
velocities, in particular for the bulk of the distribution function, a behaviour comparable to that
of the electric potential is observed. This is readily expected since the electric potential is the
sum over all velocities of the distribution function, the most important terms in this sum must
therefore exhibit the same behaviour as the electric potential. The response of the distribution
function as well as the flattop of the electric potential amplitude or the transient are universal
features of this model with a low amplitude drive. They appear to be well recovered in this

Figure 7. Velocity profile of
δf(x, v, tf,max) = f(x, v, tf,max) − f(x, v, 0)
in the vicinity of the wave particle resonance
at three quasi-stroboscopic times defined
according to the maximum of δf(xmid, v, t)
at v = vres − 2.9 10−4.

Figure 8. Velocity profile of δa2. Two times
are presented, ωpt = 50 and ωpt = 200, plain
black line with open circles and plain blue line
with open triangles respectively, simulations
with 213 points in velocity space.
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Figure 9. Velocity profile of the error on
weight a1, δa1. Simulation performed with
8192 points in velocity space.

Figure 10. Profile of δa1 in the vicinity of
v = 0. Three times are presented, ωpt = 50,
ωpt = 95, ωpt = 200, open circles, open down
triangles and open up triangles respectively.
Simulations with Nv = 8192 points.

reference case with resolution Nv = 29 points.

Let us now consider the evolution of the distribution function in the vicinity of the reso-
nant velocity, Figure 6. The v-profile of δfe(x, v, t) is plotted at times when δfe(xmid, vres, t)
is maximum, as in Figure 5. One can observe a smooth oscillation in v at time t ≈ 54, curve
with open triangle symbols on Figure 6. The amplitude and Kv wave vector of the oscillations
are relatively small. The wave vector Kv is defined here such that Kvδv = 2π where δv is the
distance in velocity between two successive minima or maxima, typically a period. For this first
case, one finds a period of 0.5 vthe, as observed on Figure 6, leading to Kv ≈ 12.6. At a later
stage, t ≈ 101, the amplitude and Kv wave vector have grown. The amplitude has increased by
a factor or order 2 and several periods in v are observed with Kv ≈ 42. The structure in velocity
appears to mostly develop towards the bulk velocities. Already at this stage, the maxima are
rather triangular, hence with a single point describing the vicinity of the maximum. At still
a later stage t ≈ 252, the peak value at v ≈ vres has further increased and Kv is typically
Kv ≈ 100. Regarding this result, the resolution limit suggested by this analysis seems to be
reached for ωpt ≈ 100. When considering the response of the distribution function in the vici-
nity of the resonant velocity, it thus appears that resolution issues can be observed well prior to
the time when the amplitude of the electric potential departs from the predicted flattop, Figure 5.

When degrading or improving the resolution of the simulation with VOICE, we propose to
confront the PoPe indicators with the three physical results discussed here, namely the flattop
in the amplitude of electric potential fluctuations and its duration, the growth of this amplitude
during the transient and finally the response of the distribution function in the vicinity of the
resonance.
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4.2. Impact of the resolution in velocity on the distribution function
We address here the evolution of the distribution function in the vicinity of the resonant velocity,
ω/k = vres = 3.36 for the chosen case of the simulations, Figures 6 and 7. Reducing the step in
v, by increasing the number of points at given minimum and maximum velocity yields, a clear
improvement in the description of the distribution function in the vicinity of the resonance is
observed for Nv = 213, Figure 7, compared to Nv = 29, Figure 6. For the times ωpt = 54,
black curve closed triangles, and ωpt = 101, blue curve open circles, one finds several points per
period, note that the symbols correspond to 1 point out of 8. Even at later time, ωpt = 252,
black curve with closed circles, where the larger symbols correspond to one point out of 8 and
the smaller closed circles to every point, the behaviour of the distribution function with these
constraints is well resolved.
The profiles of the error δa2 along v, at two different times and for Nv = 213, are plotted on
Figure 8. The error profile is plotted for two times, an early time ωpt = 50, black curve open
circles, and time ωpt = 200, blue curve open triangles. The vertical dash-dot line is localised
at the resonance velocity and the dashed line at v/vthe = 6 a value used in the following.
As for the error δa1, Figure 4. One finds that the error is small, in the range of 10−11 for
|v|/vthe ≤ 4 corresponding to high accuracy, and increases with |v| up to typically 10−9. The
overall dependence of the error is reminiscent of that on Figure 4, so that the same understanding
holds. However, with time the error δa2 increases by 4 order of magnitude in the vicinity of
the resonant value vres/vth = 3.36, between ωpt = 50 and ωpt = 200. A similar analysis can
be performed with the coefficient a1 with a similar behaviour, Figure 9. For this coefficient the
error in the vicinity of v = 0 is significant compared to other values of v. However, unlike the
evolution of the error at vres, the error in the vicinity of v = 0 does not vary significantly, as
can be seen on Figure 10. This specific error for v ≈ 0 can be understood since the associated
operator v∂xf vanishes for v = 0. This singularity tends to enhance the error on a1. A similar
trend occurs for a2 since ∂vf also vanishes at v = 0 but is less pronounced.
The most striking aspect of analysis with PoPe is the evolution of δa1 and δa2 in the vicinity of
the resonance. The traces of δa1 and δa2 are plotted on Figure 11 for v ≈ vres. Given the large
variation of the error δa noticeable one Figures 8 and 9, the values plotted on Figure 11 and 12
are in fact the maximum of δa from vres − 3δv to vres + 3δv, where δv is the step in v. These
are labelled by [δa]res. The dashed lines on Figure 11 are the values of δa at the resonance. The
trends are similar for δa and [δa]res. The error on a1 is at least two order of magnitude smaller
than that on a2. The dips towards the small values corresponds to changes of sign. Comparing
the traces for different values of Nv indicates that the latter behaviour depends on Nv. When
analysing the error in terms of the resolution in v-space, the operator that depends on this mesh
size is O2 = −∂x(φ+ φext)∂vf . This operator being solved at order 4, the lowest order used in
VOICE, one can expect the error δa2 to be the largest. As can be seen on the profiles along v,
Figure 8, rapid changes occur from one mesh point to the other. . For the two chosen values
Nv = 211 and Nv = 213, the error exhibits a comparable behaviour, a nearly constant value, until
a fast increase in time. In the latter regime, the growth of δa2 scales typically like t8.7. At lower
precision, this exponent is found to be smaller, t6.5 for Nv = 29. This still governs a very strong
increase. The nearly constant error δa2 in the early evolution times scales with Nv like N−4v ,
hence according to the order of the finite difference scheme, circle cross symbol ⊕ on Figure
12. The value reached by δa2 at time ωpt = 150 is also found to scale like N−4v , symbols � on
Figure 12. When considering the time needed to reach a critical value, δa2 = 10−5 in the chosen
example, dash-dot line on figure 12, one finds that it scales roughly like

√
Nv. Consequently, for

a prescribed value of the upper bound on the error δa2, the duration of the simulated time with
bounded error increases quite modestly with the number of points Nv along v.
In summary, the PoPe output in terms of the errors δa1 and δa2 indicates the build-up of an
error at the resonance characterised by a rapid increase of the error for ωpt ≥ 70. As such, it
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Figure 11. Traces of δa1 and δa2 for
Nv = 211 mesh size in v-space, δa at
the resonance, dashed lines, and [δa]res the
maximum in its vicinity, plain line. The curve
is not prolonged beyond t = 512, the error
remaining large with no sign of saturation.

Figure 12. Comparing the error [δa2]res (see
text and Figure 11) for two different values
of Nv. The symbols indicate the various
characteristic values and times, the dashed
horizontal line give the initial error level and
the dashed curves of the fits with tα, α ≈ 8.

is an indicator of an increase in numerical errors and consequently of a loss of accuracy in the
description of the distribution function in the vicinity of the resonance. This is expected since
the filamentation in v-space, namely the generation of small structure in v, is readily found to
scale like 1/(kt) where k is the wave vector of the external electric field and t the evolution time.
The limit of accuracy is therefore expected to be set by a relation of the form δv k t ≈ 1, hence a
limit in time of the form t ≤ 1/(k δv). However, one cannot identify a change in the evolution of
either δa1 or δa2 that would allow us setting an upper bound for the accuracy in the calculation.
The only criterion of that form is obtained by defining a priori an upper bound on the error
and determine the time required to reach this value. As discussed above this criterion indicates
an increase of the simulation duration with the prescribed accuracy, but scaling as

√
Nv and not

Nv as suggested by the analysis of the filamentation process.

4.3. Impact of the resolution in velocity on the amplitude of the electric potential
A striking feature of the response to an external electric field in the linear regime is the plateau
in of the electric potential generated by the plasma, Figure 1 and 5. One can then analyse the
impact of the resolution in v-space on this plateau, Figure 13. One finds that the plateau in the
amplitude of the fluctuations of the electric potential is lost earlier and earlier in time as the
number of points in v is reduced. The loss is not observed for either Nv = 210 and Nv = 211,
and it occurs at ωpt ≈ 600 for Nv = 29, ≈ 300 for Nv = 28 and ≈ 150 for Nv = 27. For
Nv = 26, the departure from the high precision curves occurs before the plateau is reached. It
can then be argued that the physics at hand, the development of a plateau in the amplitude
of the electric potential generated by the plasma, is only recovered when sufficient precision
is v-space is achieved. The rough values given above suggest a scaling like Nv for the upper
bound of validity in time. However it can be shown that this property is in fact akin to the
bounce effect that is familiar in Landau damping. This effect occurs when tδv = 2π hence when
the initial phase in x is restored for all points of the mesh in v-space. This effect relies on
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Figure 13. Trace of the amplitude of
the oscillations of the electric potential
zoomed on the value determined by the linear
analysis, and for 5 different number of points
in v-space, Nv = 2N , N ≥ 7.

Figure 14. Trace of the amplitude of the
oscillations of the electric potential in log
scale for the low resolution cases, such that
the linear saturation level is not recovered,
for 5 different number of points in v-space,
Nv = 2N , N ≤ 7.

the fact that a finite number of mesh points are used but more importantly that the scheme
allows for such a periodicity. Remapping the points on different meshes in v in the course of the
calculation would alleviate this issue. As a consequence, the loss of the plateau in the electric
potential amplitude is driven by the use of a finite number of mesh points rather than by a loss
of accuracy of the numerical scheme. Conversely, the fact that this bounce effect is observed
indicates that he numerical scheme is accurate enough to recover the periodicity of the bounces
in time as set by the relation tδv = 2`π, with ` ≥ 1. The identified issue in recovering the
flat-top of the analytical calculation is not governed by numerical precision and is not therefore
captured by the analysis with PoPe. When considering the results for the largest values of Nv

on Figure 13, one can observe a gradual departure from the predicted saturation level. This
effect is governed by particle trapping in the island formed in phase space in the vicinity of the
resonance. This trapping time scales like 1/

√
|φ|, reducing the external drive thus allows one

prolonging the plateau.
The other property of the evolution of the amplitude of the electric potential fluctuations is

the growth regime from t = 0 to the flat-top that behave like 1 − exp(−γLt) where −γL is a
Landau growth rate, Figure 14. In that plot one can readily observe the shortfall governed
by the bounce effect, up to the stage where the bounce occurs during the transient growth.
However, during the first times of the transient, the various traces appear to overlay even with
the lowest resolution, Nv = 23 = 8, hence δv = 2 in units of thermal velocity since vmax ≈ 8.
To investigate this effect, we define |φmax|(xmid, tj) which is the maximum amplitude of the
jth oscillation of |φ| at position xmid which occurs at time tj . The growth is then defined as
|φmax|(xmid, tj)/tj since φ = 0 at t = 0, Figures 1 and 14. Four curves display the results for
the first, second, third and fourth consecutive maxima of |φ|, Figure 15. One finds that the
growth rate decreases slightly with step number, typically from 4.3 10−6 to 3.4 10−6, a change
of order 20 %. When varying Nv one finds that the growth rate is nearly constant down to
Nv = 32, which onsets a change in behaviour with variations in the range of 5 % to 10 % of the
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Figure 15. Variation of the growth rate
of the amplitude of the electric potential
during the transient sequence of the evolution
with accuracy in v-space. The four first
stroboscopic points are used. A change in
behaviour is noticeable for Nv ≤ 32 vertical
dash-dot line.

Figure 16. Dependence of δa2 on the
number of points in v-space, Nv, for v/vthe =
6. The data is fit by an order 4 variation.
Note that all the points of the time trace are
plotted, and observed to nearly superimpose,
for each chosen value of Nv indicating quasi
steady state behaviour.

growth rates. Although Nv can be seen as driving this rather clear change in behaviour, the
effective changes in growth rate are rather small and hardly noticeable on Figure 14. It should
also be underlined that, as the resolution is decreased, the distance of the nearest mesh point to
the resonant velocity increases and the filamentation of the distribution function as depicted on
Figures 6 and 7 is completely smeared out. Furthermore, the weight of the end points in v when
computing the v-derivative increases quite significantly. Indeed, in the order 4 finite difference
scheme the derivative computed at a given point depends on the two neighbouring points on
both sides. Rather than reducing the order of the finite difference scheme or using non-centred
difference schemes, we have set the v-derivative to zero for the two last points and at the two end
points. The derivative is ill computed therefore on 4 points; for Nv = 8 this is half of the points,
and the resonance then stands between the last point with properly computed derivative and
the first point with imposed 0-derivative. One would therefore readily expect a strong departure
with this resolution from higher resolution, while one observes in fact a clear difference but not a
strong impact on the growth rate of the amplitude of the electric potential. Another consequence
of this coding of the v-derivative is that the lower resolution, with N = 2 and therefore Nv = 4
does not model the Vlasov equation since the operator O2(x, v, t) = −∂x(φ + φext)∂vfe(x, v, t)
is set at zero on all mesh points. The analysis of the data therefore appears to suggest a lower
limit to Nv, Nv > 32 although the error on the growth rate remains small, indicating a very
robust feature with little impact of the resolution in v.
In order to complete this analysis we investigate the error δa2 in a region away from the
resonance, here for v/vth = 6, Figure 16. On this plot, all the data of the time trace of
δa2 is plotted for each value of the mesh resolution Nv. The vertical spread thus indicates the
variation of δa2 in time. In contrast to the vicinity of the resonance, one finds that the error
is nearly constant. For each value of Nv one can therefore assign a time independent error. A
forth order scaling of the error δa2 at v/vthe = 6 with Nv is recovered, which is again consistent
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with the fourth order scheme of the finite difference derivative. More interesting, in connection
to the previous discussion, one finds δa2 ≥ 1 for Nv ≤ 32, the error then exceeds 100 %.
Although the linear amplification regime of the external electric field appears to be very robust,
and nearly independent of the mesh size in v, the analysis with PoPe suggests that an upper
limit for the error δa corresponds to δa ≈ 1, which occurs for Nv < 32, Figure 16. For Nv = 64,
one finds an error given by PoPe in the range δa ≈ 0.1. The growth rate of the potential is then
quite comparable to values obtained with the highest resolution, Figure 15. This Vlasov-Poisson
system in the linear regime thus appears to be very robust when reducing the precision along
v. The only difficulty governed by such low resolution appears to be realignment of the initial
perturbation on a time shorter than that required to reach the potential flat-top predicted by
the linear analysis. This effect can certainly be alleviated by changing grid in v in order to
remove the possible periodicity driving the bounce effect.

5. Discussion and Conclusion
The Pope framework is used for the verification on the fly of the code VOICE. We have shown
that this method is precise and more complete than the rather standard verification based on the
comparison with the linear analysis. For each simulation a figure of merit can be determined,
namely the index IPoPe computed as the minimum value of −log10(δaj) considering all the
operators labelled by j.
Compared to other methods used for verification, PoPe also provides a means to investigate
precisely the numerical errors of the code. In particular it allows one to analyse the code
precision for the physics that matter in the simulations. As shown in this paper, comparisons
like matching the growth rates rely on integration on velocity space. Particular properties of
wave-particle interaction can then exhibit large errors, not detected in the test on the growth
rate if their weight in the integrals are too small. It is thus crucial to investigate the numerical
errors in the production runs, in the regime of physics of interest. On the fly testing, as reported
here for the VOICE code, are a step in that direction.
In the case of the kinetic code VOICE, one finds rather specific properties governed by the
filamentation in velocity space, linear in time, so that the error increases with time. In order
to identify changes in the PoPe criterion, that would be indicative of a loss of key physics, the
accuracy in v-space is degraded from the reference cases with high precision. Three indicators of
the physics are considered, the structure of the distribution function in the vicinity of the wave-
particle resonance, the occurrence of saturation level of the amplitude of the electric potential
oscillations, and the initial growth rate during the close to exponential transient prior to the
saturation.
The Pope analysis for the Vlasov equation indicates that the profile in v of the error is comparable
to the error term of the fourth order scheme that is implemented in VOICE to determine the
derivative with respect to v of the distribution function. However, in the vicinity of the resonance
the error is observed to exhibit a rapid increase with time, typically like t8. As one would expect,
the analysis with Pope thus indicates and demonstrates that resolution issues develop with the
filamentation process.
When analysing the existence and duration of a saturation of the amplitude of the electric
potential fluctuations, one finds that this feature is related to the number of points in v, but this
effect is not governed by numerical errors. As for the known bounce effect in numerical solutions
of Landau damping, the loss of the saturation of the amplitude of the electric potential is in fact
induced by the restoration of the initial symmetry of the distribution function governed by the
finite number of mesh points. Consequently the analysis with PoPe does not provide a particular
signature for this effect. It is to be noted however that the loss of the plateau takes place when
the error determined by PoPe at the wave-particle resonance has reached large values, typically
IPoPe ≤ 1. Conversely, the analysis of the growth rate of the amplitude of the electric potential
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does suggest that a lower bound must be considered for the number of points in v. It is also
observed that this growth rate is robust down to very low resolution in v, step size δv equal to
twice the thermal velocity. The critical value corresponds to the limit where errors of the order
of 100 % are obtained, hence IPoPe = 0. The safe side of this limit is characterised by errors of
the order of 10 %. In terms of the index defined above IPoPe = 1 is a lower limit beyond which
even the very robust features of the physics deviate from their expected values.
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