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S U M M A R Y
Gravimetry is a technique widely used to image the structure of the Earth. However, inversions
are ill-posed and the imaging power of the technique rapidly decreases with depth. To over-
come this limitation, muography, a new imaging technique relying on high energy atmospheric
muons, has recently been developed. Because muography only provides integrated densities
above the detector from a limited number of observation points, inversions are also ill-posed.
Previous studies have shown that joint muographic and gravimetric inversions better recon-
struct the 3-D density structure of volcanic edifices than independent density inversions. These
studies address the ill-posedness of the joint problem by regularizing the solution with respect
to a prior density model. However, the obtained solutions depend on some hyperparameters,
which are either determined relative to a single test case or rely on ad-hoc parameters. This
can lead to inaccurate retrieved models, sometimes associated with artefacts linked to the
muon data acquisition. In this study, we use a synthetic example based on the Puy de Dôme
volcano to determine a robust method to obtain the resulting model closest to the synthetic
model and devoid of acquisition artefacts. We choose a Bayesian approach to include an a
priori density model and a smoothing by a Gaussian spatial correlation function relying on
two hyperparameters: an a priori density standard deviation and an isotropic spatial correla-
tion length. This approach has the advantage to provide a posteriori standard deviations on
the resulting densities. Using our synthetic volcano, we investigate the most reliable criterion
to determine the hyperparameters. Our results suggest that k-fold Cross-Validation Sum of
Squares and the Leave One Out methods are more robust criteria than the classically used
L-curves. The determined hyperparameters allow to overcome the artefacts linked to the data
acquisition geometry, even when only a limited number of muon telescopes is available. We
also illustrate the behaviour of the inversion in case of offsets in the a priori density or in the
data and show that they lead to recognizable structures that help identify them.

Key words: Gravity anomalies and Earth structure; Joint inversion; Tomography.

1 I N T RO D U C T I O N

The 3-D density structure of volcanic edifices is classically inferred
from the inversion of gravimetric data (e.g. Camacho et al. 1997;
Cella et al. 2007; Linde et al. 2014). Gravimetry provides measure-
ments of the gravity field at multiple locations throughout the study
area, corresponding to the integrated effect of the whole Earth and
sensitive to the local density variations. The inversion of gravimetric

data is a non-unique process, requiring strong a priori geological
information to constrain the models or a combination with other
geophysical data such as seismic traveltimes (e.g. Onizawa et al.
2002; Coutant et al. 2012).

Muography is a method that emerged from the field of particle
physics. Using atmospheric muons, which result from the interac-
tion of cosmic rays with the atmosphere, muography provides 2-D
images of integrated densities. Muons are charged leptons, alike
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to electrons, but ∼200 times heavier. They interact with matter
through various stochastic processes, depending on their energies
and on the medium composition (e.g. Groom et al. 2001; Nagamine
2003). The higher the muon energy, the farther the muon travels,
but also the lower the muon flux. High energy muons can pene-
trate up to kilometres of rocks at TeV energies. Furthermore, due
to their strong relativistic boost, they travel along straight (ballis-
tic) paths. Muon telescopes, or muon detectors, are used to detect
them and reconstruct their trajectories after the muons have crossed
their target (Nagamine et al. 1995). The backward extrapolation of
the muon trajectory up to the target is referred to as the line of
sight. The rate of muons crossing the target along this direction
depends, to first order, on the subsurface density integrated along
the line of sight. Rock composition can modify this rate by up
to 10–15 per cent (Lechmann et al. 2018), particularly if rocks are
water saturated or not. Nagamine et al. (1995) published the first
muographic measurements that were used to probe the inner struc-
ture of a volcano, from experiments on Mount Tsukuba and Mount
Asama in Japan. In the last two decades, muography has been de-
veloped for the density imaging (e.g. Tanaka et al. 2001; Lesparre
et al. 2012; Kusagaya & Tanaka 2015) and monitoring (e.g. Tanaka
et al. 2014; Jourde et al. 2015b) of volcanoes. Muon tomography,
consisting of combining muographies from several viewpoints, al-
lows the reconstruction the 3-D density distribution. To conduct a
muon tomography, Nagahara & Miyamoto (2018) used the method
of filtered back projection, which has the advantage of not relying
on any a priori information. They show that the method requires
data from at least a dozen of viewpoints to allow a proper 3-D recon-
struction, which is for now impractical. Indeed, the main limitations
of muon tomography are the number of available telescopes, the ac-
quisition duration and the ability to only image densities above the
horizontal plane passing through the telescope. Because of these
limitations, it is helpful to combine muography with other types of
data.

Both gravimetry and muography being independent and comple-
mentary methods sensitive to the subsurface densities, they have
the potential to help each other through a joint inversion scheme
to better constrain the 3-D density models and perform a den-
sity tomography. Both types of observations can be linearly related
to densities, but the inverse problem is ill-posed, requiring addi-
tional constraints, such as a regularity of the solution relative to
a prior density model. Whether the problem searched is formu-
lated in a Bayesian framework or as a misfit minimization problem,
there is a need to determine some a priori parameters tuning the
regularization, further referred to as hyperparameters. So far, the
determination of the hyperparameters in joint inversions of muog-
raphy and gravimetric data has not been fully addressed. Nishiyama
et al. (2014b) use a Bayesian approach and determine the a priori
density standard deviation and correlation length by maximizing
the similarity of the reconstructed densities with a given checker-
board model. Because the determined a priori values depend on the
density contrast and the length of the checkerboard cells, there is
no guarantee that the determined parameters apply to in-situ recon-
structions. Nishiyama et al. (2017) choose the a priori density mean
and standard deviation according to the muographic observations
and arbitrarily fix the correlation length. Jourde et al. (2015a) and
Rosas-Carbajal et al. (2017) use a non-Bayesian framework, regu-
larizing the inversion with a prior model, weighted to counteract the
physical decrease of sensitivity away from the data. Rosas-Carbajal
et al. (2017) invert for a density model as well as a constant pos-
sible offset between the density inferred by muographic data and
the density inferred by gravimetric data. The authors determine the

weight of the smoothing by using a classical L-curve scheme in
which the best compromise between the data fit and the weight
of the prior model is obtained. Noteworthy, the inversion results
show artefacts related to the muographic acquisition geometry: re-
sulting densities tend to smear out along the telescopes’ lines of
sight. The determination of the regularization parameters should
be further studied. Indeed it is recognized as a key issue in many
geophysical problems with similar formulations such as the determi-
nation of slip distribution of faults (Fukuda & Johnson 2008), or the
joint determination of density and seismic slowness (Coutant et al.
2012). Comparing solutions determined using L-curves, Akaike
Bayesian information criteria, cross-validation and fully Bayesian
criteria, Fukuda & Johnson (2008) have shown that there is no ra-
tional way of selecting a single value from the L-curve, and that the
cross-validation and the fully Bayesian criteria provide more reliable
results.

In this paper, we present a robust workflow to linearly invert muo-
graphic and gravimetric data using a Bayesian framework (Taran-
tola & Valette 1982), suitable even when a limited number of muon
telescopes is available. A realistic synthetic model adopting the
topography of the Puy de Dôme volcano in the Chaı̂ne des Puys
in France and the acquisition geometry of gravimetric and muo-
graphic campaigns conducted on this volcano is used (Fig. 1). We
use a homogeneous a priori density model and impose smoothing
using a Gaussian spatial correlation function. We systematically
explore the two inversion hyperparameters that tune the result of
the inversion, that is, the density a priori standard deviation and
the spatial correlation length, and we discuss the use of L-curves,
Leave One Out (LOO) criterion and k-fold Cross-Validation Sum
of Squares (CVSS; e.g. Wahba 1990; Augier 2011; James et al.
2013) to determine the optimal set of hyperparameters in a robust
way and with limited artefacts related to the data acquisition. A
realistic synthetic model adopting the topography of the Puy de
Dôme volcano in the Chaı̂ne des Puys in France and the acquisi-
tion geometry of gravimetric (Portal et al. 2016) and muographic
(Ambrosino et al. 2015) campaigns conducted on this volcano is
used (Fig. 1). We perform the following inversions: (i) indepen-
dent inversion of gravimetric data, (ii) independent inversion of
muographic data from a single viewpoint, (iii) joint inversion of
gravimetric data and muographic data from a single viewpoint,
(iv) independent inversion of muographic data from three view-
points and (v) joint inversion of gravimetric data and muographic
data from three viewpoints. We show the potential of the Bayesian
framework for the inversion of muographic data. By comparing
joint inversion results to independent gravimetric inversion results,
we also assess the contribution of the muographic data to the re-
covery of the true density distribution. We illustrate the behaviour
of the inversions for both one and three muographic viewpoints. Fi-
nally, we test the influence of an offset between the averaged density
inferred from muography and the averaged density inferred from
gravimetry.

2 M E T H O D

We describe the medium using a 3-D cubic mesh of equally spaced
nodes of densities ρ. The density at any point with coordinates (x,
y, z) in the medium is obtained by trilinear interpolation of the
densities of the eight surrounding nodes so that the density varies
continuously in the medium.
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Figure 1. Shaded topography map of the Puy de Dôme volcano with the location of the gravimetric data (black dots) and of the muographic viewpoints CDC,
TDF and BDR used in this study. The grey dotted line shows the location of the section used in Fig. 2.

2.1 Forward modelling

2.1.1 Gravimetry

The gravimetric anomaly g produced by a volume V of density ρ(x,
y, z) at a given data location (x0, y0, z0) is given by

g(x0, y0, z0)

= G
∫ ∫ ∫

V

ρ(x, y, z)(z − z0)√
(x − x0)2 + (y − y0)2 + (z − z0)2

3
dxdydz,(1)

where G = 6.67 × 10−11m3kg−1s−2 is the universal gravitational
constant. The forward gravimetric computation is made using the
method and the associated code of Coutant et al. (2012) described
in Barnoud et al. (2016). The integration over the volume is made
numerically over x and y and analytically over z. The topography is
taken into account with the same resolution as the input digital ter-
rain model in the vicinity of the gravimetric stations and is averaged
with a larger step farther away.

As ρ(x, y, z) can be expressed as a linear combination of densities
at nodes ρ, the modelled gravimetric data g are also linearly related
to the densities at nodes ρ:

Gρ = g (2)

via the sensitivity matrix G of elements Gi j that contain the contri-
bution of each node j to each gravimetric data i (Fig. 2a).

2.1.2 Muography

Muography provides estimates of averaged densities along lines of
sight. These density estimates are retrieved from the flux of muons
crossing the medium and observed in conic bins of given widths

of azimuth and elevation, assuming that the estimates are uniform
averages of the densities over the solid angles. To take into account
the sensitivity to all the density nodes in a given cone, we integrate
numerically in azimuth and elevation over the cone using a beam of
lines of sight along which the density is integrated. The averaged
density � as seen from a muon detector located in (x0, y0, z0) and
in a cone with the azimuths and elevations centred on (α0, β0) is
expressed as

�(x0, y0, z0, α0, β0) =
∑

α

∑
β

∫
r ρ(α, β, r )dr∑

α

∑
β

∫
r dr

, (3)

where α and β are the azimuths and elevations of the beam lines of
sight and r is the length travelled in the medium. The integration
along each line of sight can be performed either numerically or
analytically.

With the density in the mesh represented as a linear combination
of densities at nodes, the averaged densities � inferred from muog-
raphy can also be written as a linear combination of the densities at
the nodes, similar to the gravimetric case

Mρ = � (4)

via the sensitivity matrix M whose elements Mi j contain the con-
tribution of each node of density j to the averaged density in each
cone i. The sensitivity of a muographic measurement to a node of
density decreases with the distance of the node to the muon detec-
tor (Fig. 2b). M is a sparse matrix, in contrast to the gravimetric
sensitivity matrix G which is full.
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Figure 2. Sensitivities of the gravimetric and muographic data of the Puy de Dôme. The west–east cross-section is located on Fig. 1. (a) Normalized sensitivity
of a single gravimetric measurement. Black triangle: gravity station location. (b) Normalized sensitivity of a single muographic measurement. Black square:
location of a muographic measurement looking in a 3◦ × 3◦ cone. (c) Normalized cumulative sensitivity of all gravimetric data to density nodes. (d) Normalized
cumulative sensitivity of all muographic data to density nodes. Gi is the ith line of the sensitivity matrix G, corresponding to the ith datum. M i is the ith line
of the sensitivity matrix M, corresponding to the ith datum. The sensitivities Sgrav and Smuog of all data are computed by summing the lines of the sensitivity
matrices, following eqs (16) and (17), respectively.

2.2 Inversion method

Both the gravimetric and the muographic problems being linear,
with respect to the same physical property of rocks, in this case
density ρ, the joint problem is expressed as[

G
M

]
ρ =

[
g
�

]
. (5)

Setting the vector of observed data d = [
gobs �obs

]T
and the sensi-

tivity matrix with the contribution of each node of density to each

data A = [
G M

]T
, the inverse problem to solve is

d = Aρ + ε (6)

where ε accounts for measurement and modelling errors.
To solve the inverse problem in eq. (6), we use a Bayesian for-

malism, following Tarantola (2005), which has the advantage of
taking into account the errors on the data and to easily include an
a priori model to regularize the inversion. We assume a zero-mean
normal distribution of the data errors ε with a covariance matrix
CD, N (0, CD), and we write the likelihood as

p(d|ρ) ∝ exp

(
−1

2
(d − Aρ)T C−1

D (d − Aρ)

)
, (7)

where CD, the data covariance matrix, contains the data variances
σ 2

d on its diagonal and optionally covariances between data on its
off-diagonal terms. This might be the case for muographic data de-
pending on the processing applied to obtain the averaged densities.
In this paper, we work with synthetic data sets and only consider
independent data, leading to a diagonal data covariance matrix. We
also assume an a priori normal probability density distribution for
the densities at nodes, N (ρprior, CP), with an average density ρprior

and a covariance matrix CP

p(ρ) ∝ exp

(
−1

2
(ρ − ρprior)

T C−1
P (ρ − ρprior)

)
. (8)

The a priori density covariance matrix CP is a full matrix that
includes the standard deviation σρ on the a priori densities ρprior

and a Gaussian spatial correlation function

cλ(d) = exp

(
−d2

λ2

)
(9)

where d is the distance between two nodes of the model and λ is
the spatial correlation length that controls the smoothness of the
density model.

Bayes theorem states that the a posteriori probability distribution
of the model densities is

p(ρ|d) = p(d|ρ)p(ρ)

p(d)
(10)

where p(d) is the marginal likelihood that does not depend on ρ.
Hence, the a posteriori probability density function of densities is
also normal and such that

p(ρ|d) ∝ exp

(
−1

2
φ(ρ)

)
(11)

with the objective function φ given by

φ(ρ) = (d − Aρ)t C−1
D (d − Aρ) + (ρ − ρprior)

t C−1
P (ρ − ρprior)

= ||d − Aρ||2D + ||ρ − ρprior||2P. (12)

The first term represents the fit of the data. In the following, we
will note χ 2 = 1

nd
||d − Aρ||2D the fit normalized by the number of

data nd, and we will refer to χ 2 as the data misfit. The second term
accounts for the proximity of the model to the prior ρprior, and the
correlation between nearby parameters. The second term will be
further referred to as the model regularization.

Maximizing the posterior probability density function is equiva-
lent to minimizing the objective function φ(ρ) of eq. (12) and leads
to a unique solution that can be written (Tarantola 2005)

ρ̃ = ρprior + CPAt (ACPAt + CD)−1(d − Aρprior). (13)

The estimated density ρ̃ is the centre of the a posteriori density dis-
tribution p(ρ|d), with the associated a posteriori density covariance
matrix (Tarantola 2005)

C̃P = CP − CPAt (ACPAt + CD)−1ACP. (14)
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The diagonal terms of C̃P are the variances σ̃ ρ
2 of the estimated

densities at nodes ρ̃.
The solution of the inversion, eqs (13) and (14), is tuned by

the two hyperparameters included in the a priori covariance matrix
CP: the standard deviation σρ of the a priori density distribution
and the spatial correlation length λ. To estimate the optimal set
of hyperparameters, (σρ , λ), we explore them in a systematic way
and compare different criteria. On the one hand, we use classical
L-curves, where the optimal set of (σρ , λ) usually corresponds to
the corner of the curve representing the model regularization versus
the data misfit, indicating that the best balance between the data
fit and the model regularity is achieved. Typically, the larger λ or
the smaller σρ , the smoother the solution, but the larger the data
misfit. Following Harris & Segall (1987), we also use a modified
L-curve, where we assume that the optimal (σρ , λ) minimizes the
a posteriori density standard deviation as well as the data misfit.
On the other hand, we use k-fold CVSS, including the LOO case
(e.g. Wahba 1990; Augier 2011; James et al. 2013). The CVSS
method is based on the assumption that appropriate values of the
hyperparameters lead to a resulting model that is able to accurately
predict new data. The k-fold CVSS consists in separating the data in
k subsets and performing k inversions excluding one of the subsets
each time. The excluded subset is modelled using the inversion
result. To assess how well we recover the initial synthetic model,
the Mean Square Error (MSE) between modelled and observed data
of this subset is evaluated. The value to minimize is then the sum
or the average of the k successive MSEs. Here, we use a weighted
MSE that includes a normalization by the data errors, to account
for the different physical quantities involved in the joint inversion,
that is, densities for the muographic data and accelerations for the
gravimetric data. The quantity to minimize is therefore (James et al.
2013)

Ck(σρ, λ) = 1

k

k∑
l=1

χ 2
l = 1

knk

k∑
l=1

||d − Aρ||2Dl
, (15)

where nk is the total number of gravity and muography observed
data in each data subset Dl. We compute Ck(σρ , λ) for k equal to
a quarter of the data (k = 4) and to all but one data (k = n), the
latter case corresponding to the so-called LOO solution. The data
are randomly distributed between the subsets.

3 A P P L I C AT I O N T O A R E A L I S T I C
S Y N T H E T I C C A S E

3.1 Setup

Here, we apply the inverse scheme to a realistic synthetic case in
which we use the topography and acquisition geometry of recent
gravimetry and muography campaigns at the Puy de Dôme vol-
cano. The gravimetric data (Fig. 1) consist of 650 points (Portal
et al. 2016). The synthetic gravimetric data correspond to a free-air
anomaly, without any regional field component. Three muography
viewpoints are used. Two of the muographic viewpoints (CDC: Col
de Ceyssat and TDF: telecommunications room) are actual mea-
suring stations from preliminary campaigns on the Puy de Dôme
volcano (Ambrosino et al. 2015) while the third one (BDR: Bois
de Rochetoux) is a fictitious viewpoint added for the purposes of
this study. The muographic synthetic data consist in 2067 averaged
densities in cones of 1◦ × 1◦.

The volume is discretized using a mesh of nρ = 209 525 den-
sity nodes with a 25 m spacing in the three dimensions, only 107

Figure 3. Synthetic density model ρtrue used to compute the synthetic gravi-
metric and muographic data. The densities are constructed using a Gaussian
random field with a standard deviation σρtrue = 100 kg m−3 and a Gaussian
spatial covariance with a correlation length λρtrue = 200 m.

164 nodes with non-zero sensitivities to be taken into account for
the inversion. This implies that the covariance matrix CP used for
the model regularization would account for ∼85 Go of memory.
The order of operations has to be handled appropriately to reduce
memory needs. Based on eq. (13), the largest matrix we compute
and store is the matrix product CPAt (Barnoud et al. 2016), only
accounting for ∼2 Go of memory.

The sensitivity of a gravimetric datum i to the density nodes is
given by the ith line Gi of the absolute values of the sensitivity
matrices G (Fig. 2a). Similarly, the sensitivity of a muographic
datum i to the density nodes is given by the ith line M i of the
absolute values of the sensitivity matrices M (Fig. 2b). In Figs 2(c)
and (d), we show the cumulated sensitivity of each node to all data.
For the ngrav gravimetric data, it is expressed as

Sgrav =
ngrav∑
i=1

Gi , (16)

and for the nmuog muographic data, it is expressed as

Smuog =
nmuog∑
i=1

M i . (17)

The sensitivity of the gravimetric data is high in the top central part
of the dome, thanks to a very good data coverage on the summit part
of the Puy de Dôme. The sensitivity of muography increases when
the depth of rock crossed by the muons decreases, hence closer
to the topography. Note that the sensitivity expressed by eqs (16)
and (17) corresponds to the theoretical sensitivity linked to the data
distribution and does not take into account any error in the data nor
prior information on densities. Therefore, it should not be seen as
the expected sensitivity for the inversion results, but rather as how
the data network illuminates the volume of interest.

For the purpose of this paper, we design an ideal synthetic density
model with the same geometrical properties as the a priori density
distribution used to regularize the inversion, that is to say a model
with normally distributed densities and following a spatial Gaussian
correlation function according to eqs (8) and (9). This ideal case
allows us to better illustrate and discuss the methods to determine
the hyperparameters.

3.2 Construction of the synthetic model and data

The synthetic density model (Fig. 3) is a Gaussian random model
such that the densities are drawn from N (ρ true, Cρtrue ), that is to say
a normal distribution with an averaged density ρ true = 1800 kg m−3

corresponding to the estimated averaged density of the Puy de Dôme
(Portal et al. 2016), a density standard deviation σρtrue = 100 kg m−3

and following a Gaussian spatial correlation with a correlation
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Figure 4. Synthetic data computed from the synthetic density model shown in Fig. 3. (a) Gravimetric data on the shaded topographic map. A Gaussian noise
with a standard deviation of 0.1 mGal has been added to the gravimetric data. Black squares: location of the muon detectors. The dotted square shows the
limits of the inversion volume. The solid black lines show the locations of cross-sections AA’ and BB’ shown in this paper. (b) Muographic data from CDC,
TDF and BDR viewpoints. A Gaussian noise with a standard deviation of 100 kg m−3 has been added to the data.

length λtrue = 200 m, as indicated in the covariance matrix Cρtrue .
In the Appendix, we recall that a synthetic density model with the
required statistical properties can be constructed using

ρtrue = ρ true + LX, (18)

where X ∼ N (0, I) is a random vector drawn from a zero-mean
normal distribution with an identity covariance matrix and L is
the Cholesky decomposition of the covariance matrix Cρtrue = LLT

with a Gaussian correlation function of standard deviation σρtrue and
of correlation length λtrue. For computational reasons, the random
realization is generated on an subsampled mesh with a node spacing
of 100 m and a spline interpolation is used to obtain the model over
the 25 m mesh.

We generate synthetic data to which we add Gaussian noise with
realistic standard deviations (Fig. 4). For the gravimetric data, we use
a standard deviation of 0.1 mGal, which has a comparable order of
magnitude as the errors from the gravimetric measurements (Portal
et al. 2016). For the muographic data, we use a standard deviation
of 100 kg m−3, corresponding to the order of magnitude of errors
estimated for acquisition campaigns on the Puy de Dôme with an
exposure of about 50 d m2 (Cârloganu et al. 2016; Cârloganu & the
TOMUVOL collaboration 2018; Niess et al. 2018b) and determined
for similar campaigns on other volcanoes as well (e.g. Lesparre et al.
2012; Nishiyama et al. 2014a, 2016; Oláh et al. 2018). We assume
that the data errors are accurately estimated when dealing with real
data and use these values as data standard deviations in the data
covariance matrix CD.

3.3 Inversion of the synthetic data

3.3.1 Determination of the inversion hyperparameters

We perform the independent and joint inversions for 128 sets of
hyperparameters (σρ , λ), with an a priori density standard devi-
ation σρ ranging from 5 to 400 kg m−3 and a spatial correlation
length λ ranging from 50 to 800 m. In order to identify the most

suitable criterion, the L-curve and CVSS criteria are compared for
the independent and joint inversions of the gravimetric and the
muographic data from the three viewpoints. Comparison of the
density model from the joint inversion with the true density model
(Fig. 5) shows that the closest model in terms of root mean square
error (RMSE) and mean absolute error (MAE) is obtained for hy-
perparameters (σρ, λ) = (100 kg m−3, 200 m), corresponding to the
parameters used to construct the synthetic density model (Fig. 3).
We use this set of hyperparameters as reference in the remainder
of this paper, indicated with a black dot in Figs 5–7. Note that the
RMSE and MAE cannot be used as criteria to determine the hy-
perparameters for real data inversion as the true densities are not
known.

L-curves of the model regularization versus the data misfit
lead to (σρ, λ) = (400 kg m−3, 50 m) for three configurations of
inversions, that is, the largest tested σρ and the lowest tested λ

(Fig. 6, top). The associated density models appear undercon-
strained: they are not smooth enough leading to density anoma-
lies spread out along the muographic lines of sight and small
areas of high density intensity anomalies located right beneath
the gravimetric data. As the L-curves of the model regularization
versus the data misfit do not show typical L-shapes and are not
conclusive to select the hyperparameters, we also plot L-curves
of the a posteriori density standard deviation σ̃ρ (averaging the
variances at all nodes) versus the data misfit (Fig. 6, bottom),
similarly to the L-curves used by Harris & Segall (1987) for in-
stance. This representation leads to (σρ, λ) = (50 kg m−3, 150 m)
for the gravimetric inversion, (150 kg m−3, 50 m) for the muo-
graphic inversion and (100 kg m−3, 100 m) for the joint inver-
sion. In this case, the corresponding density model is much
smoother for the gravimetric inversion, but not for the muo-
graphic inversion which is still badly constrained, with anomalies
spread out along the muography lines of sight. For the joint in-
version, the resulting model is better constrained than with the
previous L-curve, but not as smooth as the true density model
(Fig. 3).
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Figure 5. Systematic exploration of the inversion hyperparameters σρ and λ and comparison with the true density model (Fig. 3). (a) Root-mean-square error
(RMSE) between the inverted models and the true model. (b) Mean absolute error (MAE) between the inverted models and the true model. The black dots
indicate the minimal RMSE and MAE, obtained for (σρ, λ) = (100 kg m−3, 200 m). These values correspond to the true density model (Fig. 3). We use these
hyperparameter values and their associated model as reference in the following of this paper. (c) Optimal density model associated with these hyperparameter
values.

Fig. 7 shows maps of the LOO criterion Cn(σρ , λ) and of the
fourfold CVSS criterion C4(σρ , λ) computed by eq. (15). The op-
timal density models are obtained for the hyperparameters σρ and
λ that minimize the functions Cn(σρ , λ) and C4(σρ , λ) of eq. (15).
Both the LOO and the fourfold CVSS criteria give hyperparameters
(σρ , λ) (white dots) that slightly overestimate the reference value of
(100 kg m−3, 200 m) (black dots) by at most 100 kg m−3 and 50 m.
The fourfold CVSS leads to values closer to the reference values
than the LOO. In the three configurations of inversion, the LOO and
CVSS maps have areas of minimum Cn and C4 that are elongated
along the σρ axis, indicating that the spatial correlation length λ is
better constrained than the a priori density standard deviation σρ

(Fig. 7). However, we observe that the density models associated
with low LOO or CVSS criteria (areas in violet on hyperparameters
maps of Fig. 7) are very similar to each other. Indeed, even when the
LOO and fourfold CVSS criteria do not give the exact same hyper-
parameter values, the corresponding models are indistinguishable
(Fig. 7) and acceptably recover the amplitudes and shapes of the
synthetic density model (Fig. 3). This observation is supported by
the RMSE and MAE maps that have similar shapes as the LOO and
CVSS maps (Fig. 5), suggesting that the corresponding resulting
models are expected to be similar to each other (Fig. 5). Besides,
we no longer observe artefacts linked to the data acquisition ge-
ometry in the resulting density models, compared to the models
obtained using the L-curves (Fig. 6). The LOO and CVSS criteria
are therefore robust criteria and helpful tools to determine optimal
values for hyperparameters.

3.3.2 Inversion results

In order to allow the comparison between the joint and independent
inversions, we retain the results obtained using the reference hyper-
parameter values (σρ, λ) = (100 kg m−3, 200 m), keeping in mind
that density models obtained with hyperparameters inferred from
LOO or CVSS criteria are very close. We show the inversion results
for the five following configurations of inversion (Figs 8 and 9):
the independent inversion of the gravimetric data (Figs 8b and 9b);
the independent inversion of the muographic data from the CDC
viewpoint (Figs 8c and 9c); the joint inversion of the gravimetric
data and the muographic data from the CDC viewpoint (Figs 8d and
9d); the independent inversion of the muographic data from CDC,
TDF and BDR viewpoints (Figs 8e and 9e); and the joint inversion
of the gravimetric data and the muographic data from the three

viewpoints (Figs 8f and 9f), see Fig. 1 for the locations. Horizontal
and vertical cross-sections extracted from the 3-D resulting models
are shown in terms of central density ρ̃ and standard deviation σ̃ρ

of the a posteriori density distribution (Figs 8 and 9, top and mid-
dle, respectively), as well as a random realization of densities drawn
within this a posteriori distribution (Figs 8 and 9, bottom). The den-
sity models randomly drawn from the a posteriori distribution allow
for a better visualization of the resolution of the model because well
resolved areas show some spatial correlation while unresolved areas
display randomly distributed densities with no spatial correlation.
To quantify the differences between the results of the five inversion
configurations, we compute several estimators: the RMSE and the
MAE between the inverted models and the synthetic density model,
the mean of the a posteriori density standard deviation at all nodes,
and the data misfits (Table 1).

The independent inversion of the gravimetric data alone allows
retrieving lateral density variations with the lowest a posteriori
standard deviation in the upper 200 m below the topographic sur-
face (Fig. 9b). The standard deviation on the a posteriori density
(Fig. 9b, middle) as well as the model constructed by randomly
sampling the a posteriori density distribution according to their
standard deviation (Fig. 9b, bottom) show that the gravimetric in-
version suitably reproduces the anomalies at shallow depth but has
difficulties retrieving the shapes of the structures at depth.

The independent inversion of the muographic data from the CDC
viewpoint alone spreads out the density variations along the lines of
sight along which the muography is blind (Fig. 8c). The a posteriori
density standard deviation shows that the densities far away from
the detector are not constrained (Fig. 8c, middle). The retrieved
density model is quantitatively less good than the one obtained with
the independent gravimetric inversion, the RMSE and MAE with
respect to the synthetic density model increasing by 49.5 and 52.8
per cent respectively (Table 1).

The result of the joint inversion of the gravimetric and the muo-
graphic data from CDC viewpoint alone (Figs 8d and 9d) shows the
complementarity of the two types of data. The resolution at depth
is improved and the limit of low a posteriori standard deviation at
depth is extended from ∼200 m to ∼300 m below the summit. In
this case, muography brings resolution at depth in the central part of
the dome and helps to better localise the anomalies in the core of the
dome (compare Fig. 9d middle with Figs 9b middle and 9c middle),
while gravimetry constrains the parts of the model away from the
muon detector and the lateral variations (Fig. 8d). Quantitatively
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2186 A. Barnoud et al.

Figure 6. L-curve criteria to select the inversion hyperparameters σρ and λ, along with the associated optimal models (horizontal cross-sections extracted
at 1100 m of altitude). The dot colour indicates the prior value σρ , while the dot size is proportional to the correlation length λ. The white dots indicate
the optimal values obtained for the L-curves. The corresponding σρ and λ values are indicated in the legend. The black dots indicate the reference model
for (σρ, λ) = (100 kg m−3, 200 m) (Figs 3 and 5). Top: model regularization versus data misfit L-curve of the objective function and its associated optimal
model. Bottom: posterior density distribution versus data misfit L-curve and associated optimal model. (a) Independent inversion of the gravimetric data. (b)
Independent inversion of the muographic data from CDC, BDR and TDF viewpoints. (c) Joint inversion of the gravimetric and the muographic data from CDC,
BDR and TDF viewpoints.

speaking, the model RMSE and MAE and the a posteriori standard
deviation on density are improved with respect to the independent
inversions, the addition of the muographic data improving RMSE
and MAE by 2.8 and 3.1 per cent compared to the independent
gravimetric inversion (Table 1).

The independent inversion of the muographic data from the three
viewpoints CDC, TDF and BDR adequately retrieves the ampli-
tudes and locations of the density anomalies in the upper part of
the dome above ∼1000 m of altitude, that is, in the upper ∼400 m
below the summit (Fig. 9e). This corresponds to the part of the

dome illuminated by the muographic data (Fig. 2d). This result is
shown as well by the a posteriori standard deviation on density
(Fig. 9e, middle). Quantitatively, the RMSE and the MAE are in-
creased by 37.2 per cent and 37.7 per cent respectively with respect
to the gravimetric independent inversion (Table 1).

The joint inversion of the complete gravimetric and muographic
data sets (Fig. 9f) provides the best reconstruction with RMSE and
MAE improved by 7.7 per cent and 9.2 per cent respectively with
respect to the gravimetric independent inversion (Table 1). Similarly,
the mean a posteriori standard deviation on density is lower than
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Figure 7. Leave One Out (LOO) and fourfold Cross-Validation Sum of Squares (CVSS) criteria to select inversion hyperparameters σρ and λ and associated
optimal models (horizontal cross-sections extracted at an altitude of 1100 m). The white dots indicate the optimal values obtained from the LOO and CVSS
maps. The black dots indicate the reference values (σρ, λ) = (100 kg m−3, 200 m) (Figs 3 and 5). Top: LOO criterion map and its associated optimal model.
Bottom: fourfold CVSS criterion map and associated optimal model. (a) Independent inversion of the gravimetric data. (b) Independent inversion of the
muographic data from CDC, BDR and TDF viewpoints. (c) Joint inversion of the gravimetric and the muographic data from CDC, BDR and TDF viewpoints.

for the independent inversions (Table 1), indicating the retrieved
model is better constrained. As indicated by the χ 2 values, the data
are equally well fit by both the joint and independent inversions
(Table 1).

3.4 Influence of density shifts between gravimetric data,
muographic data and a priori model

The inversion method takes into account the statistical errors on the
data and on the a priori density, but it does not take into account pos-
sible systematic errors, that is, biases. Up to now, we have therefore

assumed that the a priori density corresponds to the true averaged
density and that gravimetric and muographic data are not biased.
However, the a priori density ρprior, the average density inferred
from gravimetric data ρgrav and the averaged density seen by muo-
graphic data ρmuog might differ. Indeed, gravimetry and muography
are not sensitive to the densities in the same way and data coverage
illuminate the volume differently (Figs 1b and c). Real gravimetric
data are sensitive to the bulk rock densities of the whole Earth and
are likely to be affected by the regional field that cannot be perfectly
corrected, leading to a possible inaccurate determination of the av-
eraged density, either underestimated or overestimated depending
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Figure 8. Horizontal cross-sections at 1100 m depth extracted from the 3-D density models resulting from inversions using (σρ, λ) = (100 kg m−3, 200 m). (a)
True density model. (b–f) A posteriori density distribution retrieved by the inversions. Top: mean density ρ̃. Middle: standard deviation σρ̃ of the a posteriori
density distribution. Bottom: an example of random realization of a density model from a normal distribution centred on ρ̃ and with a standard deviation of
σρ̃ . (b) Independent inversion of the gravimetric data. (c) Independent inversion of the muographic data from the CDC viewpoint only. (d) Joint inversion of
the gravimetric data and the muographic data from CDC. (e) Independent inversion of the muographic data from CDC, BDR and TDF viewpoints. (f) Joint
inversion of the gravimetric and the muographic data from CDC, TDF and BDR viewpoints. See Fig. 4 for the locations of the muographic viewpoints.

Figure 9. West–east and south–north vertical cross-sections extracted from the 3-D density models resulting from inversions using (σρ, λ) =
(100 kg m−3, 200 m). Sections AA’ and BB’ are located in Fig. 3. (a) True density model. (b–f) A posteriori density distribution retrieved by the inver-
sions. Top: mean density ρ̃. Middle: standard deviation σρ̃ of the a posteriori density distribution. Bottom: an example of random realization of a density model
from a normal distribution centred on ρ̃ and with a standard deviation of σρ̃ . (b) Independent inversion of the gravimetric data. (c) Independent inversion of the
muographic data from CDC viewpoint only. (d) Joint inversion of the gravimetric data and the muographic data from CDC. (e) Independent inversion of the
muographic data from CDC, BDR and TDF viewpoints. (f) Joint inversion of the gravimetric and the muographic data from CDC, TDF and BDR. See Fig. 4
for locations of the sections and of the muographic viewpoints.
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Table 1. Comparison of the independent and joint inversion results (Figs 8 and 9) in terms of root-mean-square error (RMSE) and mean absolute error
(MAE) with respect to the true synthetic model (Fig. 3), mean σ̃ρ of the standard deviation on the a posteriori density model and data misfits χ2, χ2

grav and

χ2
muog. The muographic and joint inversions use either a single muographic viewpoint CDC or the three muographic viewpoints CDC, TDF and BDR. The

percentages indicate the gain with respect to the independent gravimetric inversion. A negative percentage indicates an improvement in the density model
recovery, compared to the gravimetric inversion.

Gravimetric inversion Muographic inversion Joint inversion Muographic inversion Joint inversion
CDC CDC CDC+TDF+BDR CDC+TDF+BDR

RMSE (kg m−3) 65.3 97.6 (49.5 per cent) 63.5 (−2.8 per cent) 89.6 (37.2 per cent) 60.3 (−7.7 per cent)
MAE (kg m−3) 50.9 77.8 (52.8 per cent) 49.3 (−3.1 per cent) 70.1 (37.7 per cent) 46.2 (−9.2 per cent)
σ̃ρ (kg m−3) 62.8 95.6 (86.5 per cent) 60.9 (−3.0 per cent) 86.5 (37.7 per cent) 57.4 (−8.6 per cent)
χ2 = 1

nd
||d − Aρ||2D 0.905 0.958 0.939 0.992 0.978

χ2
grav = 1

ngrav
||g − Gρ||2D 0.905 0.910 0.911

χ2
muog = 1

nmuog
||� − Mρ||2D 0.958 0.967 0.992 0.999

on the real density distribution in the real Earth and on the data
coverage. Muography is sensitive to second order to the medium
composition, such as the water content (e.g. Lechmann et al. 2018).
Real muographic data might be contaminated by non-ballistic
muons (Nishiyama et al. 2014a, 2016), arising from the interac-
tions of muons with matter. This contamination strongly depends
on the shape of the target (Niess et al. 2018b). These non-ballistic
muons generally lead to underestimated densities (Nishiyama et al.
2016; Rosas-Carbajal et al. 2017).

Here, we perform the joint inversions, with one and three muo-
graphic viewpoints, shifting alternately the a priori density ρprior,
the density inferred from the gravimetric data ρgrav and the aver-
aged density inferred from the muographic data ρmuog by a plausi-
ble amount of 200 kg m−3 with respect to the true averaged density
ρ true = 1800 kg m−3. Note that these tests would remain valid what-
ever the initial value of ρ true. Similarly as for the unbiased data sets,
the CVSS criterion maps show that the spatial correlation length λ

is better constrained than the a priori density standard deviation σρ

(Fig. 10). Even though the retrieved optimal hyperparameter values
are shifted from the reference values, they still lie within the area of
lowest values so that the resulting density models (Fig. 10) are nearly
identical to the ones obtained using the reference hyperparameter
values. Interestingly, the hyperparameters are not better constrained
when using three muographic viewpoints (Fig. 10, right) than when
using a single muographic viewpoint (Fig. 10, left). For each inver-
sion configuration, we show the density model resulting from the
optimal hyperparameters derived from the fourfold CVSS criterion
(Fig. 11).

First, we illustrate the behaviour of the inversion when the a
priori density ρprior overestimates or underestimate the true averaged
density ρ true by 200 kg m−3 (Figs 11a and b). Comparison with the
results of the unbiased inversions (Fig. 9) shows that the location, the
geometry and the amplitudes of the density anomalies are equally
well reproduced in the upper part of the model which is well resolved
by the data, with slightly lower amplitudes.

Then, we show the behaviour of the inversion when the aver-
aged densities ρgrav and ρmuog inferred from the gravimetric and
muographic data respectively, are biased compared to the true aver-
aged density ρ true (Figs 11c–e). In practice, to bias the gravimetric
and muographic data, we compute them using the synthetic den-
sity model (Fig. 3) shifted by a single constant. We study three
cases: one corresponds to muography underestimating the density,
which is likely when there is background contamination, another
one corresponds to gravimetry overestimating the density and the
last one corresponds to muography underestimating and gravimetry
overestimating the density. In these three studied cases, we assume

that the a priori density is equal to the true averaged density. When
muography underestimates the density by 200 kg m−3 (Fig. 11c),
the recovered densities are underestimated in the upper part of the
dome which is adequately resolved by the muographic data, while
the densities are overestimated in the bottom part of the model to
compensate for the low upper density and to force the overall den-
sity model to be in accordance with the gravimetric data and the a
priori density. When the gravimetric data overestimate the density
by 200 kg m−3 (Fig. 11d), the shallower density variations are not
affected a lot as the muographic data also contribute to the reso-
lution. But high densities are recovered in the bottom part of the
model to explain the gravimetric data. The last case is a compro-
mise between the two previous cases: muography underestimates
the density by 100 kg m−3, gravimetry overestimates the density
by 100 kg m−3 and the true and a priori densities lie in between
(Fig. 11e). In this case, the top densities are underestimated while
the bottom densities are overestimated for the same reasons as in
the previous case. In terms of geometry of the recovered anomalies,
the shapes of the structures are strongly altered (Figs 11c–e).

4 D I S C U S S I O N

4.1 Complementarity of gravimetry and muography

The joint inversion of the gravimetric and muographic data signif-
icantly improves the resulting density models compared with the
independent inversions, especially when using three muographic
viewpoints (Figs 8 and 9). The final density model (Figs 8 and 9f)
suitably reproduces the true density and gives the lowest averaged
a posteriori density standard deviation (57.4 kg m−3). Note that the
improvement of the joint inversion with respect to the independent
inversions and the ability to recover the true density model strongly
depends on the errors of the data. We used realistic data errors given
the state-of-the-art of muography. However, future improvements in
muography data acquisition and analysis are likely to decrease the
expected errors, hence increase the contribution of the muographic
data in the resolution of the density model. Jourde et al. (2015a) ob-
served a gain in resolution below the volume sounded by muography
when adding gravimetric data, but we do not observe any signifi-
cant gain, possibly due to the different regularization used and the
limited spatial extension of the gravimetric data with respect to the
inverted volume. However, our results show that the gravimetric data
overcome the lack of spatial coverage even when only one view-
point is available in muography: gravimetry constrains the lateral
variations while muography brings resolution at depth (Fig. 9d).
When imaging a volcano, we are interested in both the shallow
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2190 A. Barnoud et al.

Figure 10. Fourfold CVSS criterion maps for the inversions with density shifts between the density inferred from gravimetric data ρgrav, the averaged density
measured by muography ρmuog and the a priori density ρprior with respect to the true averaged density ρtrue. The white dots indicate the optimal values obtained

from the fourfold CVSS criterion. The black dots indicate the reference model for (σρ, λ) = (100 kg m−3, 200 m) (Figs 3 and 5). Left: joint inversion of the
gravimetric data and the muographic data from the CDC viewpoint only. Right: joint inversion of the gravimetric data and the muographic data from the three
viewpoints CDC, TDF and BDR.
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Joint muographic and gravimetric inversion 2191

Figure 11. Effect of density shifts between the density inferred from gravimetric data ρgrav, the averaged density measured by muography ρmuog and the a
priori density ρprior with respect to the true averaged density ρtrue. The density models were obtained using the inversion hyperparameters determined with the
fourfold CVSS criterion (white dots on Fig. 10). All colour bars are centred on ρtrue. The range of the colour bars of panels (a) and (b) is the same as in the
other figures of the paper (±200 kg m−3), but the colour bars in panels (c)–(e) (±300 kg m−3) are different. Left: joint inversion of the gravimetric data and the
muographic data from the CDC viewpoint only. Right: joint inversion of the gravimetric data and the muographic data from the three viewpoints CDC, TDF
and BDR. See Fig. 4 for the locations of the sections and of the muon detectors.
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structure and the structure at larger depth, so that we recommend
using these two types of data jointly as previously established by
Jourde et al. (2015a): muography improves the determination of the
density structure at shallow elevations above the muons telescope,
while gravimetry has the ability to resolve the density structure
deeper than the muons telescope with a suitable network coverage.

4.2 A priori density model and determination of
associated hyperparameters

The a priori density model to regularize the inversion was intro-
duced using a Bayesian formalism. The a priori model is described
as normally distributed densities with a Gaussian spatial corre-
lation with a given correlation length as in eq. (9), resulting in
smooth recovered density models. In previously published inver-
sion of muographic data (e.g. Rosas-Carbajal et al. 2017), we could
observe smearing out of the density anomalies along the muographic
lines of sight. With our model regularization and three muographic
viewpoints, these artefacts disappear (Figs 8e–f). This makes our
approach particularly suitable for case studies with as few as three
muon telescopes to image a kilometre scale volcano.

Another advantage of our regularization is that it avoids using
weighting to counteract for the decreasing sensitivity. As shown by
the sensitivities on Fig. 2, a given density node of the model is
sensitive in different ways to the gravimetric and to the muographic
data so that counteracting the sensitivity decay by weighting requires
an arbitrary compromise between the two methods (e.g. Rosas-
Carbajal et al. 2017). Imposing a spatial correlation to the model
is a self-consistent approach in the sense that the a priori density
model information does not depend on the data.

We consider an isotropic density smoothing using a unique con-
stant isotropic correlation length. Cosburn et al. (2019) use both
vertical and horizontal correlation lengths to account for the hori-
zontal layering of the studied structures. In the case of a volcanic
dome, such as the Puy de Dôme volcano, we expect spherical shapes
rather than layered structures, therefore using an isotropic correla-
tion length is appropriate.

In this study, we designed a synthetic model (Fig. 3) consistent
with the assumption of a smooth Gaussian density distribution.
However, the real Earth is likely to encompass anomalies at several
scales and to present some discontinuities. Our approach is suitable
for applications with little geological a priori knowledge or as a first
step towards building a more complex model. In a second step, one
could use the resulting smooth model as an initial model for non-
linear inversions looking for geometrical features like the precise
location of interfaces between structures of presumed densities (e.g.
Camacho et al. 2007; Cella et al. 2007; Lelièvre & Farquharson
2013; Linde et al. 2014).

The same regularization approach was used by (Nishiyama et al.
2014b) for real data, with one muographic viewpoint. To the dif-
ference of the approach of Nishiyama et al. (2014b), where the
hyperparameters were determined based on a given arbitrary syn-
thetic model and then used for the real data inversion, our approach
is generic as determination of the hyperparameters only relies on
the data. For k-fold CVSS, usage shows that typical values for k
lie between 5 and 10 (e.g. James et al. 2013). We use a random
distribution of the data to mix the gravimetric and the muographic
data. In our case, a k-fold CVSS criterion with k = 4 and the LOO
methods are shown to give satisfying results. For such Bayesian
joint inversion of gravimetric and muographic data, we therefore
advocate using the LOO criterion or the CVSS criterion with k ≥ 4.

4.3 Dealing with biases

In real data, the average density seen by muography is usually
lower than the average density estimated with gravimetric data (e.g.
Nishiyama et al. 2016; Rosas-Carbajal et al. 2017). Rosas-Carbajal
et al. (2017) invert for a density model as well as a possible con-
stant offset between the densities inferred by muographic data and
gravimetric data. Lelièvre et al. (2019) investigate several methods
to invert for a constant offset and suggest that the best approach
is the automatic determination by least-squares minimization of a
constant offset added to the observed muographic data.

The Bayesian approach presented in this paper has the advantage
of taking into account the statistical errors on the data (variances
and covariances), but it does not take into account any systematic
errors. In Section 3.4, we show that biases in the a priori density,
in the muographic data, or in the gravimetric data lead to density
models that are likely to be misinterpreted.

When the mean a priori density is biased, the bias is difficult to
detect in the resulting density model, but it affects only the parts of
the model where the a posteriori density standard deviation is high
thanks to the data resolving power (Figs 9d and f middle, and 11a
and b). Where densities standard deviations are high, densities are
close to the a priori. Therefore both the resulting densities and the
associated a posteriori standard deviations should be considered for
any geological interpretation of the resulting models.

Biases between the gravimetric and the muographic data sets
are likely to alter not only the amplitudes of the recovered density
anomalies, but also their shapes (Figs 11c–e), leading to misinter-
pretations. In particular, we obtain overestimated densities in the
bottom part of the model to compensate either for muography un-
derestimating densities either gravimetry overestimating densities,
in accordance with the synthetic tests of Lelièvre et al. (2019). The
occurrence of extreme densities in parts of the model badly resolved
by the data could therefore be used as an indication of some shift
between densities inferred from gravimetric and muographic data.
This shift can be taken into account either automatically as shown
in Lelièvre et al. (2019) or by hand performing several inversions
with extreme values for the data to visualize the resulting range of
possible density models. Gravimetric data can be shifted by adding
the effect of a constant density offset in the model, computed us-
ing the forward formulation. Muographic data can easily be shifted
(real data plus or minus the estimated bias). In real muographic
data, the bias due to scattered low energy particles is likely not con-
stant. It depends on the observation direction, on the topography
shape and on the target surface structure, see for instance Gómez
et al. (2017) for the effect of the muon incidence elevation angle,
Niess et al. (2018b) for the effect of the topography or Cârloganu
& the TOMUVOL collaboration (2018) for the effect of the local
environment. In addition, uncertainties on the target composition
result in non-uniform systematics as well. Detailed simulations can
be used to estimate these effects. Reverse Monte-Carlo techniques
are particularly efficient for this purpose (e.g. Niess et al. 2018a).
The estimation of these biases would allow to get the possible range
for the data. Hence, the range of resulting density models could be
evaluated by inverting the data, plus and minus the biases estimates.

5 C O N C LU S I O N

We show that the Bayesian formalism is well suited for the joint
inversion of gravimetric and muographic data, even with a limited
number of muon acquisition viewpoints.
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The inversion results outline the potential of joint muography
and gravimetry inversions to retrieve the 3-D density distribution
of geological structures such as volcanic edifices. In particular,
the muographic data improve the resolution of structures at depth
above the altitude of the muon detectors. They are able to constrain
the vertical extension of structures, in contrast to gravimetric data
which better constrain the lateral variations. When as few as one to
three muographic viewpoints are available, gravimetric data bring
complementary information at shallow depth and constrain density
variations in the direction of the muography lines of sight, along
which muography is blind, as well as away from the muon detectors.
Below the muon detectors, gravimetry has the ability to resolve den-
sities depending on the network coverage, with a resolving power
rapidly decreasing with depth. We also determined that offsets be-
tween densities inferred by gravimetric and muographic data lead
to recognizable artefacts in the retrieved densities, which should be
taken into account in the inversions of real data.

The Bayesian formalism has the advantage to produce a model
of densities with the associated a posteriori standard deviations that
should be used to avoid misinterpretation of the resulting struc-
tures. We show that, for the joint inversion of gravimetric and muo-
graphic data, cross-validation criteria (k-fold CVSS or LOO) are
more robust criteria than the classically used L-Curves to select
the inversion a priori hyperparameters for such joint inversion of
gravimetric and muographic data. We also show that the regulariza-
tion overcomes the artefacts due to the acquisition geometry: when
three muographic viewpoints are used, we have no more smear-
ing out along the muographic lines of sight as it can be observed
in previously published studies. Therefore our method presents a
significant improvement to the robustness of the inversions.
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Monte-Carlo applied to muon transport, Comput. Phys. Commun., 229,
54–67.
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A P P E N D I X : C O N S T RU C T I O N O F T H E
G AU S S I A N R A N D O M D E N S I T Y M O D E L

A Gaussian random density model following the distribution defined
by N (ρ true, Cρtrue ) can be constructed from

ρtrue = ρ true + LX, (A1)

where X ∼ N (0, I) is a random vector drawn from a zero-mean
normal distribution with an identity covariance matrix and L is
the Cholesky decomposition of the covariance matrix Cρtrue = LLT

with a Gaussian correlation function of standard deviation σρtrue and
of correlation length λtrue. Indeed, given the mean and variance of
X{

E[X ] = 0

E[X X T ] − E[X ]E[X T ] = I,
(A2)

the mean and variance of LX are (e.g. Gentle 2009):⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
E[LX ] = LE[X ] = 0

E[LX (LX )T ] − E[LX ]E[(LX )T ] =E[LX X T L] − E[LX ]E[X T LT ]

=L[E[X X T ] − E[X ]E[X T ]]LT

=LLT = Cρtrue .

(A3)

Hence, LX ∼ N (0, Cρtrue ) and ρtrue =ρ true + LX ∼
N (ρ true, Cρtrue ).
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