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Inference of compressed Potts graphical models
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We consider the problem of inferring a graphical Potts model on a population of variables, with a
non-uniform number of Potts colors (symbols) across variables. This inverse Potts problem generally
involves the inference of a large number of parameters, often larger than the number of available
data, and, hence, requires the introduction of regularization. We study here a double regularization
scheme, in which the number of colors available to each variable is reduced, and interaction networks
are made sparse. To achieve this color compression scheme, only Potts states with large empirical
frequency (exceeding some threshold) are explicitly modeled on each site, while the others are
grouped into a single state. We benchmark the performances of this mixed regularization approach,
with two inference algorithms, the Adaptive Cluster Expansion (ACE) and the PseudoLikelihood
Maximization (PLM) on synthetic data obtained by sampling disordered Potts models on an Erdgs-
Rényi random graphs. As expected inference with sparsity requirements outperforms inference of
fully connected models (by ACE or PLM) when few data are available. Moreover we show that
color compression does not affect the quality of reconstruction of the parameters corresponding to
high-frequency symbols, while drastically reducing the number of the other parameters and thus the
computational time. Our procedure is also applied to multi-sequence alignments of protein families,
with similar results.
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I. INTRODUCTION

Extracting patterns and information from vast databases has become one of the biggest challenges for
scientists of many domains. Together with other machine-learning techniques, graphical models, are adequate
tools to infer effective couplings between variables from data in many disciplines. We hereafter refer to this
approach as the inverse Ising problem [1-3] in the case of binary variables, and as the inverse Potts problem in
the more general case of of multi-categorical variables[4]. Applications include inferring functional couplings
among a set of neurons from their neural activity recording [5-7], dynamical couplings birds in flocks[3]
and inferring couplings from collections of protein sequences that belong to the same homologous family [9].
PFAM [10, 11], for example, is a huge database providing protein sequences already aligned and organized
by protein family. Over the last decade, it was shown that describing these protein families by Potts models,
whose parameters are learned from the corresponding sequence alignment may provide information on the
protein structure [9, 12-20], predict fitness variations following mutations [3, 21-24] and design new working
proteins of the same family [25]. Given the computational untractability of achieving exact solutions, different
effective methods have been proposed to infer the Potts parameters from sequence data, including Gaussian
approximation with different priors [12, , 27], message passing [13], PseudoLikelihood Maximization|[9,

|, minimum probability flow [29], and the Adaptive Cluster Expansion (ACE) method [30, 31].

Even if modeling protein families as Potts models only approximates protein site interactions to, at most,
pairwise interactions, the number of parameters to be inferred is still huge. For an N-site protein, where
each site can be one of the 20 natural amino acids or an extra symbol standing for a site insertion or deletion,
the number of independent parameters is 20 - N 4 20% - N(N — 1)/2. This gives about 10° parameters for
N = 100 and almost 10% parameters for N = 500, while protein sequence alignments typically include few
thousands to few tens thousand sequences. Moreover, amino-acid frequencies, and, hence, sampling quality
may vary substantially from site to site, making it impossible to accurately reconstruct the complete set of
Potts parameters. To overcome the problem of undersampling regularization terms are generally included.
Standard Lo-regularization helps constraining parameter values, but does not change their number. Li-based
regularization, on the contrary, may effectively remove many interaction parameters associated to low (in
absolute value) connected correlations. However, poor sampling generally leads to very unreliable estimates
of the correlations, which may take large values, and make L-regularization ineffective.

In this paper we propose a simple procedure to reduce the number of Potts parameters. We infer a
compressed Potts model, where the number of states ¢; < ¢ depends on the site ¢. The main idea is
to group together rarely observed states on each site, defined as those below a given frequency threshold
fo. This way, the number of Potts states ¢; on each site 7 is variable, leading to the reduced number of
parameters va q + Zf\i i G- Slightly different schemes are based on grouping colors according to their
entropy contributions to the site variability [31] or to their mutual information [32] or compression to a
fixed number of colors [33], and comes to a similar outcome. This color compression can help in limiting
the computational time, in avoiding overfitting and, in a more theoretical framework, in understanding
the intrinsic dimensionality of the problem, by distinguishing the parameters that can be reliably inferred
from those only fixed by regularization. We also introduce and describe a procedure to recover, after
inference, a full model with parameters for all the possible ¢ states, which is needed to compare different
color compressions and will be referred to as color decompression.

In physics Potts states are often referred to as colors, so we call this state reduction procedure color
compression. Such color compression was already used by some of us in the ACE algorithm [31] in order to
reduce the computational time and have a simpler inferred model for the analysis of protein sequence data,
but its performance has not been systematically tested up to now.

We first benchmark the approach on some Potts models with quenched disorder defined on Erdés-Rényi
(ER) random graphs, as described in section IIT A2, and then present applications to protein data [25].
The first part of the paper briefly sketches the methodological background and the inference algorithms
(Sec. II). The procedure of color compression and decompression is exposed in Section III A. We then assess
the performances of the procedure on synthetic data generated from Potts model on random graphs in
Section IV. Our study is carried out with two inference methods: the Adaptive Cluster Expansion (ACE),
which was already implemented with color compression in [31], and PseudoLikelihood Maximization (PLM),
whose implementation of color compression was developed for the purpose of the present comparison. We
show that ACE can be straightforwardly forced to infer sparse interaction networks by stopping the expansion
with large cluster inclusion threshold. We evaluate the quality of the models inferred at different compression
levels and sparsity in terms of the Kullback-Leibler distance to the empirical distribution (Sec. IV A), of their



ability to reproduce the original low-order statistics (Sec. IVB), of the accuracy of reconstruction of the
interaction network (Sec. IV C) and parameters (Sec. IV D), and of gain in computational effort (Sec. IVE).
In Section V we show an illustrative example on fitness prediction for real proteins, to verify that the results
obtained on synthetic data model translate to real cases. Some conclusion and perspectives are presented in
Sec. VI.

II. REMINDER ON INFERENCE AND ALGORITHMS

A. Inverse Potts Problem

The Potts model describes a system of N interacting sites, each assuming one of ¢ possible Potts states
(or colors). The probability distribution of each color on each site is controlled by a set of parameters that
can be divided into local fields h;(a;), depending only on one site ¢ and its color a;, and pairwise couplings
Jij(a;,a;j), depending on the pair of sites ¢, j and the two Potts states a;, a;. An energy value is associated
to each system configuration a = aq,...ay,

N
E(ald) ==Y hi(a;) — > Jijlaiaj) (1)
and, consequently, a probability

Sz .

where Z(J) = )" exp (—F/(alJ)) is the partition function and ensures that all probabilities sum to one. For
simplicity, here we label the set of fields and couplings as J.

Given a sample of configurations, one may be interested in inferring back the model from which these
samples were generated, or at least a model reproducing the statistical properties of such configurations,
first of all the one-site and two-site frequencies f;(a), fi;(a,b). In general the Potts model defined above is
the simplest, or maximum entropy [34], probabilistic model capable of reproducing the observed frequencies.
In the present case we know by construction that the Potts model is not only the simplest model to fit the
data, but also the real model from which the sample was generated. To reproduce the statistics of the data,
the parameters h;(a) and J;;(a,b) must be chosen such that site averages and correlations in the model
match those in the data, i.e.,

Z 0(az,a)P(ay...,an|J) = fi(a),

3
Z 8(ai,a)d(a;,b)Pas .. .,an|J) = fij(a,b), ®

where d(a;,a) is the Kronecker delta function, which is one if the symbol a; at site i is equal to a and zero
otherwise. The problem of finding the parameters h;(a), J;;(a,b) that satisfy Eq. 3 is referred to as the
inverse Potts problem.

B. Cross-entropy and regularization

Formally, the inverse Potts problem is solved by the set of fields and couplings that maximize the average
log-likelihood or, equivalently, those that minimize the cross-entropy between the data and the model. This
cross-entropy can be written as

N-1

N q N g 4
SAE) =log Z(T) =Y Y hila)fi(a) = > D0 DD Jijla,b)f(a,b), (4)

i=1a=1 i=1 j=i+1la=1b=1



where, for simplicity, we indicate the set of single and pairwise frequencies as f and the set of fields and
couplings as J.

To guarantee that the minimization of the cross-entropy is a well defined problem even when starting
with a finite data sample, a regularization term AS is added to the cross-entropy, which, in the Bayesian
formulation, corresponds to a prior knowledge of the parameter distribution. A Gaussian prior distribution
for the parameters, also referred to as Lo-regularization, is a typical choice:

N q N—-1 N q
AS=yn Y > hi@P+7s > > Y Jiylab)* (5)
i=1a=1 i=1 j=i+1la=10b=1

The regularization parameters ; and -, are related to the prior variances of fields (J}QL) and couplings (03)
through ~, = 1/(Bo?), and v; = 1/(Bo?), where B is the number of configurations in the sample. In the
case that the regularization strengths are relatively weak (O(1/B)), this regularization can be thought of as
a weakly informative prior [35] whose main purpose is to prevent pathologies in the inference.

C. Gauge invariance

The N -q frequencies f;(a) and %N(N— 1)¢? correlations fi;(a,b), i < j estimated from the data are related
to each other: the former sum up to 1, while the latter have the frequencies as marginals. Therefore, not all
constraints in Eq. 3 are independent and multiple sets of parameters give the same probability distribution.
In the language of physics this over-parameterization of the model is referred to as gauge invariance and
the choice of one particular parameter set among the equivalent ones as gauge choice. This gauge invariance
reduces the number of free parameters in the Potts model to ¢ — 1 fields for each site and (¢ — 1)? couplings
for each pair of sites.

In particular, we can reparameterize the model without changing the probabilities by an arbitrary trans-
formation of this form:

hi(a) = hi(a) + Hi + »_ Kij(a)
J#i
Jij(a,b) = Jij(a,b) — Kij(a) — Kji(b) + i
for any a, b, K;;(a),1 <4,j < N, H; and k;;. This freedom can be used to define a gauge state c¢; at each
site such that

Jij(a, ;) = Jij(ci,b) = hi(e;) =0, (6)
for all states a,b and sites 7, j. The couplings and fields are transformed as follows:
hi(a) = hi(a) = hi(c:) + Y (Jij(a, ;) = Jij(eire;))
i (7)
Jij ((L, b) — Jij(a, b) — Jij(Ci, b) — Jij (a, Cj) + Jij (Ci, Cj) .
Two common gauge states are the most and the least frequent states of each site, defining respectively
the consensus gauge and the least-frequent gauge. In protein analysis, the gauge state is often fixed to the

amino acid present at site 7 in a reference sequence, called wild-type sequence. An alternative choice is the
so-called zero-sum gauge, in which

Z Jij(a,c) = Zjij(c’ a) = th(c) = O y (8)

for all states a and all variables 7, j. In practice, fields and couplings can be simply put in the zero-sum
gauge through

hi(a) = hi(a) = hi() + > [Jij(a,-) = Jij ()]
J#i 9)
Jij(a,b) = Jij(a,b) — Jij(-,b) = Jij(a, ) + Jii(+ )



where g(-) denotes the uniform average of g(a) over all states a at fixed position.

Note that, while all observables such as the moments of the distribution are invariant with respect to the
gauge choice, the fields and the couplings are not. Arbitrary functions of the couplings and fields, such as
the commonly-used Frobenius norm of the couplings, are also not generally gauge invariant. If not explicitly
stated, the comparisons shown in this paper are performed in the consensus gauge, but the choice of the
gauge for the inference and for the analysis of the inferred network can be different. The gauge chosen during
the inference will be further discussed in section II D with the description of ACE and PLM.

D. Algorithms

The presence of the partition function Z in Eq. 4 precludes direct numerical minimization of the cross-
entropy when the system size is large, since this requires summing over all vazl q; possible configurations
of the system. However many approximate solutions have been proposed to tackle this issue. We briefly
recall two of these methods to respectively approximate the cross-entropy or the log-likelihood: the Adaptive
Cluster Expansion (ACE) and PseudoLikelihood Maximization (PLM).

1. Adaptive cluster expansion (ACE)

The cross-entropy (Eq. 4) can be exactly decomposed as a sum of cross-entropy contributions, calculated
recursively (see Appendix VII A). The adaptive cluster expansion [2, 30, 31] is based on the idea of summing
up cluster contributions based on their importance as quantified by their absolute contribution to the cross
entropy. To this end an inclusion threshold parameter ¢ is introduced and only clusters with cross-entropy
contributions larger than the threshold ¢ are included. The inclusion threshold ¢ is then progressively
decreased to include more and more clusters in the summation. The expansion is usually stopped when the
frequencies and correlations of the inferred model reproduce the empirical ones to within the statistical error
bars due to finite sampling. The inference routine which has been used in this paper is publicly available at
https://github.com/johnbarton/ACE . For an input sample of size B, the regularization parameters are
set to v; = 1/B and =y, = 0.01/B, corresponding to a variance of the prior distribution of couplings of order
1 and a variance of fields of order 100.

2. Pseudo-likelihood mazimization (PLM)

The idea behind Pseudo-Likelihood Maximization is to approximate the full likelihood of the data given
the model (or equivalently the full cross-entropy (Eq. 4) by the site-by-site maximization of the conditional
probability of observing one state at a site, given the observed states on the other sites. This approximation
makes the problem tractable, and it also makes possible to parallelize the computation for the different sites.
Pseudolikelihood is a consistent estimator of the likelihood in the limit of infinite input data. For this study,
a version of the asymmetric pseudolikelihood maximization |9, 28] capable of working with a site-dependent
number of Potts states has been implemented adapting the public code by M. Ekenberg and E. Aurell at
https://github.com/magnusekeberg/plmDCA.

Unlike ACE, the networks inferred by PLM with Lo-regularization are always fully connected. As has been
empirically shown in protein sequence analysis [9, 24, 25] and in theoretical analyses [36], large regularization
is needed in the presence of fully connected networks to avoid overfitting and thus to improve contact and
fitness predictions. We have tested different regularization strengths, see Sec. IV, and fixed v; = 50/B,
~vn, = 0.1/B for input sampling of size B.

With PLM gauge invariance is automatically broken. The inference is performed in the gauge that mini-
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mizes the Lo-regularization:

4
v1 Y Jij(a,b) = uhi(a)
b=1
i
v > Jij(a;b) = ynh;(b)
a=1

As for ACE, the PLM fields and couplings are subsequently transformed to the consensus gauge for compar-
ison.

III. REGULARIZATIONS
A. Removing variable states
1. Color compression

So far we have described (Eq. 4 and 5) how to infer the parameters of a Potts model where the number
of states ¢ is the same at all sites, but it is easy to generalize this procedure to Potts models in which the
number of states depends on the site. This situation naturally arises due to sampling: states with very small
probabilities are rarely observed. For instance, in multiple sequence alignments of real protein families, only
a subset of the full ¢ = 21 possible amino acids are observed for the large majority of sites. It also may
arise as a result of our color compression procedure: for each site i, we model explicitly only the k; states
observed with a frequency f;(a) larger than the cutoff value

fila) > fo, (10)

and we group together the remaining ¢ — k; low frequency states into a single one. The frequency of the
grouped /compressed Potts state a = k; 4+ 1 is then the total frequency of the states that have been grouped
together: fi(k; +1) =3 0_, o, fi(d).

2. Illustration on Erdds-Rényi random graphs
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FIG. 1: ER models. Left and center: Gaussian distributions from which parameters of the ER models are
chosen. For fields pj, = 0 and o7 = 5 (left) while for couplings p; =0 and 0% = 1 (center). Right: one
particular realization of the interaction graph.
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FIG. 2: Relative reduction in the number of parameters to be inferred as a function of the color
compression for different sample sizes B on a single ER realization. fo: no compression, 0 (only unseen
symbols are removed from inference) and 1/B < fo < 0.1. The number of parameters to be inferred
without color compression is N Pjecompressea = 123000.

To illustrate how color compression can reduce the number of variable states, we consider a Potts model
with ¢ = 10 states on an Erd&s-Rényi random graph with NV = 50 sites. Each edge in the network is included
with probability 0.05 with a maximum connectivity equal to 7, and the Potts parameters on interacting
sites are selected from Gaussian distributions of mean y = 0 and standard deviations 0% = 1 and 07 =5
(Fig. 1). Regarding the states, no preferential scheme is imposed, i.e. if ¢ and j interact, then J;; is a 10 x 10
matrix whose elements are chosen independently according to the above distributions, and each element of
the matrix is zero when the sites do not interact.

We generated 10 independent realizations of such ER models (networks of interactions and sets of fields
and couplings). For each realization, B = 5 10%,10%,10*, or 10° configurations are generated by Markov
Chain Monte-Carlo sampling. The number of available data, B x N, can be compared to the number of
parameters to be inferred, ¢V + ¢?N(N — 1)/2 ~ 1.2 10°. We have, for the previously listed values of B,
B x N =2510% 51045 10, or 5 109, the first two being in heavy undersampling conditions, the third in
scarce sampling, and only the last one being relatively well sampled.

Given the huge number of parameters that, a priori, characterizes our problem, an interesting question is
how many of them are really important to fully describe the system, or more precisely, which parameters
are really estimated from data and which are mostly determined by the regularization choice. Fig. 2 shows
how the fraction of parameters effectively employed during the inference process scales when using color
compression. It is evident that, already at small fj, the initial number can be significantly reduced, especially
at low sample size B. We will see in Sec. V that for real proteins, where ¢ = 21 instead of 10, this phenomenon
is even more pronounced.

8. Color decompression

Once the restricted Potts model is inferred, we need to recover the complete model with ¢ states at each
site in order to compare it with the true one. To this aim we associate to the explicitly modeled states the
same fields and couplings as in the reduced model. To determine the parameters for states that were grouped
or to states that were never observed in the sampling, hereafter referred to as unseen states, we use the
following procedure: For each grouped state a’ the fields and the couplings are obtained as

AN fz (a/) )
ha(a) hz<kz+1>+1og(fi(ki+1) 7
Jij(a/,b) = J7(:Z€1+1,b) . (11)



This procedure allows us to correctly recover the frequencies f;(a’) even for the different grouped Potts
states, while a common coupling parameters is assigned for all the grouped states.

Then, one needs to associate fields and couplings to the never observed states, on which no direct informa-
tion is available. A natural extension to the procedure described above for the grouped states is to fix them
in reference to the grouped state by Eq. 11. To this end we assign a pseudocount frequency f” = a/B to
these never observed states (a”). When the grouped state is not present we fix them in reference to the least
probable state (a”’) by using the same Eq. 11 with k; + 1 replaced by a”’. In the results shown here we have
fixed @ = 0.1, in the expected range 0 < a < 1. In appendix VII E we compare the role of the pseudo-count
and the standard Lo regularization by comparing the fields obtained by the procedure described above with
the one obtained by the minimization of the cross entropy with Lo regularization (Egs. 4 and 5) in an inde-
pendent model. The choice of associating the unseen states to the grouped state or the least probable state
is both simple and effective. Indeed, it follows the gauge choice, and yields fields with lower values than for
the observed states.

4. Gauge used in the ACE inference

ACE inference is always done after removal of one Potts state, which defines a gauge for the field and
coupling parameters. The ACE algorithm is also based on an expansion of the partition function around the
Boltzmann weight for the gauge symbol, which is one, to speed up its calculation [31].

The choice of the symbol to remove may have some effect on the performance of the inference procedure
because the regularization term is not gauge invariant. For abundant data or in the limit of large compression,
Potts states are well sampled and the choice of the symbol is largely irrelevant. However, for few data or
in the absence of color compression, or at small compression, the best performance is obtained by gauging
to zero the least-probable Potts state on each site. In this way, all the fields and couplings corresponding
to at least one poorly sampled state are gauged to zero, and have therefore null statistical variances by
construction. Fields and couplings are then put back in the consensus gauge to perform the comparisons
described in the next sections using Eq. 7. The consensus gauge is the best for comparison because the
statistics of the consensus symbol are the easiest ones to measure accurately.

B. Removing interactions

An alternative, complementary regularization scheme consists in reducing the number of interactions to
be inferred from the data. Sparsification of the interaction network is sometimes achieved through L1 regu-
larization of the couplings. Hereafter, we show that the inclusion threshold of the ACE inference procedure
defined in Section ITD 1 plays a similar role, while not affecting the amplitude of non-zero couplings.

1. Role of ACE inclusion threshold: sparse versus dense inferred graphs

Fig. 3 shows the behavior of the ACE algorithm as a function of the inclusion threshold ¢ for one particular
graph, hereafter called ER05, with B = 1000 sampled configurations, analyzed with a color compression of
fo = 0.01. This representative data set will be our reference case. For each threshold ¢ used to select
clusters in the ACE expansion, the model frequencies (6(a;,a)) and (§(a;,a)d(b;,b)) calculated by Monte-
Carlo simulation are compared to the data frequencies f;(a) and f;;(a,b) (see Eq. 3).

As detailed in [2, 31], to monitor the ability of the inferred model’s ability to reproduce the mea-
sured frequencies and correlations while avoiding overfitting, we define a relative error that is the ra-
tio between the deviations of the predicted observables from the data, Af;(a) = (§(a;,a)) — fi(a) and
Afii(a,b) = (0(a;,a)d(b;, b)) — fij(a,b), and the expected statistical fluctuations due to finite sampling,
oi(a) = \/fi(a)(1 = fi(a))/B and 0y;(a,b) = \/fi;(a,b)(1 — fi;(a,b))/B. The relative error on frequencies is




t €maz| Ko | S2 | Se
1 17 | 0 | 56 | 56
9.6 x 1072 4.9 | 29 |51.7|51.2
3.6 x 1072 3.9 | 55 |50.6(49.9
2.2x1072| 34 | 90 |49.7|48.8
34x107%| 1 [1225/42.3| 39

TABLE I: Local minima of the maximal relative error for the reference model: ER05, of Fig. 3 data sample
of B=1000 configurations, and cut frequency fo = 0.01. The Table gives the cluster inclusion threshold ¢,
the number K, of 2-site clusters, the maximal relative error €,,q,, the regularized cross entropy S2 and the
cross entropy S, obtained with the cluster expansion. The entropy of the model having generated the data
is S = 50.3. The optimal threshold determined by the spACE procedure is 3.6 x 1072,

The relative error on connected correlations, ¢;;j(a,b) = (6(a;, a)d(b;, b)) — (6(a;, a))(d(b;, b)), is

2
- 2 Aci,j(a, b)
CT NN -1 2 ( o¢ (a.b) ) ’ (13)

i<j,a,b

where we estimate the standard deviation in the connected correlations as of ;(a,b) = 0i;(a,b) + f;(b)oi(a) +
fi(a)o;(b). Finally, the maximum relative error is

e~ max 1 |Afi(a)] |Af1-j(a,b)>
max{ir,rjl,%,b}w/2log(M)< oi(a) 7 oij(ab) ’ 19

where M = Nq+ (N(N —1)/2)q? is the total number of one- and two-point correlations. As shown in Fig. 3
(top panel) the relative errors defined above have a nonmonotonic behavior as a function of the threshold,
reaching relative minima that successfully reconstruct the data (emax < 5) at multiple values (marked by
asterisks) of the expansion threshold ¢, see Table I. The regularized cross entropy, the total number of clusters
included in the expansion, and their maximal size as a function of the cluster inclusion threshold ¢ are also
shown Fig. 3.

The cluster inclusion threshold acts as an additional regularization. There are 3 plateaus in the regularized
cross entropy as a function of the cluster inclusion threshold ¢ of Fig. 3: the first plateau corresponds to an
independent model, the second one to a sparse interaction network, and the third one to a fully connected
network. The number of edges present in the inferred graph of Fig. 3 is given by the number Ky of 2-site
clusters in the ACE expansion and is shown in Table I for the threshold corresponding to the minimal relative
€ITOTS €pq,- In particular the two relative minima better reproducing the data correspond to 2 different
inferred networks. The minimum with €, = 3.9 is at high threshold (¢ = 0.036) and is characterized by a
numbers of edges Ko = 55 smaller than the total number N (N —1)/2 = 1225 of possible pairs. The inferred
model is therefore a sparse graph, with a number of edges K5 comparable with the number of edges of the
model used to generate the data (Ng = 59 for the model used to generate the data in Fig. 3). The second
relative minimum with enax = 1 is at low threshold ¢ = 6.4 x 10~® where the expansion includes the maximal
number of 2 site clusters Ko = N x (N —1)/2, corresponding to a fully connected graph. As can be guessed
by the difference in the connectivity between the original and inferred model, and as we will better quantify
in Section IV A| the fully connected solution is overfitting the data.

2. spACE, a variant of ACE for sparse interaction networks inference

To force the ACE algorithm towards a sparse solution we introduced a new procedure in the cluster
expansion (available at https://github.com/johnbarton/ACE), which stops the algorithm at a maximal
number K2, of 2-site clusters and records the inferred parameters at the relative minima of the maximal
error. This procedures imposes a prior knowledge on the sparsity of the interaction graph by giving an upper
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FIG. 3: Cluster expansion as function of the cluster inclusion threshold ¢ for one data set, obtained by
sampling one realization of an Erdds-Rényi random graph with B = 1000 configurations and applying ACE
on the color compressed data with fo = 0.01. From top to bottom: %) relative reconstruction errors versus ¢
on frequencies €,, connected correlations e, and maximal relative error e,,. Stars indicate possible solutions
of the inverse models corresponding to €,, ~ 5 ii), Regularized cross entropy versus t, iii) number of total
clusters included in the expansion versus ¢, iv) maximal cluster size versus t.

bound for the number of edges. As an illustration, the Erdés-Rényi random graph models used here to
generate the data have an average connectivity of 2.5 neighbors per site, so we can use this prior knowledge
to fix K2, = N 2.5 = 125. The spACE procedure is robust with respect to the K2,, value used. For the
data and the model of Fig. 3, any value of K2, < N (N — 1)/2 rules out the fully connected minimum and
allows one to select the best sparse model obtained at the threshold ¢ = 0.036 of Table I. In the following
we have therefore stopped the algorithm for K2,, = 100 and K2,, = 200, and we have verified that results
are stable for the two values. his procedure greatly reduces the computational time, which increases linearly
with the number of computed clusters and grows exponentially with their size as ¢/~ (see Sec. IVE and
Appendix VIIB).

In practice, to find the best sparse graph, with a number of edges smaller than the prescribed value
K240, we adopt the following procedure. For each interval in threshold values corresponding to a threshold
decreasing of a factor 7 = 3.4 [37]. The model parameters giving the minimal relative error are recorded,
and the algorithm is stopped when the number of 2-site clusters summed up in the expansion is equal to
K2,,4. - Recording the minima and the number of 2-site clusters K2 the different threshold intervals allows
one to track the sparsity of the inferred graphs better reproduce the data. Among the recorded model the
set of parameters and the inferred graph giving the minimal errors are chosen.

IV. BENCHMARKING ON SYNTHETIC DATA

To carry out an extensive analysis of the effects of the color compression introduced in Section IIT A on
the quality of the inference, we will apply it to artificial data generated by Potts models on Erdés-Rényi
(ER) random graphs. The model and the generation of the data are described in Section IIT A 2.

Once the data are obtained, we apply the compression schemes introduced in Section IIT A with no color
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compression and with frequency cut-off fo = [0,107%,1073,3 - 1073,1072,3 - 1072,107!]. Note that all
frequency thresholds 0 < fy < 1/B give the same color compression, so we infer the model only for the
upper value in this range and thus the number of the tested frequency thresholds depends on B. Moreover,
fo = 0 corresponds to removing from the inference only the unseen states.

Given the 10 realizations of the Erdgs-Rényi model, the 4 sample sizes and the 5 to 8 (depending on the
sampling) values of the frequency threshold define 280 data sets. For each of them, we have inferred the
corresponding Potts parameters, both with the ACE and the PLM algorithms.

A. Probability distributions

6 6 — : : : : :
5 1 5 | F+—_+_+_$+/+
® 4+ 4 o 4
2 e &
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s 3 B o 3°Ff
> >
© ©
€ 2t I
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(a) ACE (b) PLM

FIG. 4: Kullback-Leibler divergence between real and inferred probability distributions averaged over 10
realizations plotted as function of the compression parameter f; for different sample sizes. The left plot is
for ACE, the right plot for PLM. Error bars are standard deviations over the 10 realizations. Black empty
squares correspond to a cutoff frequency fo = 10/B.

The Kullback-Leibler (KL) divergence measures how the inferred probability distribution of the possible
configurations diverges from the empirical one (defined from the data samples), and can be computed as:

Pjrea (a)
D(Pjreat||Pyins) =Y Pyreai(a)log =2
(Pyreat||Pyins) za: great (@) log Pyons(a)
= log(me) —log(Zrear) + <Einf (a) — Ereal(a»am real *
where a = {a1,...ay} is a configuration and (-)a in req; indicates the average over the configurations gen-

erated by Markov Chain Monte Carlo (MCMC) from the real model. The first and the second lines are
identical only when an infinite configuration sample is employed. Here, we estimate the average over Pjrea
using an ensemble of 50,000 MCMC configurations sampled from the model.

As described before, the computation of the partition function Z is far from being trivial, and was done
in two ways. First, we used Annealed Importance Sampling (AIS) [38], starting from the independent-site
model: All initial couplings were set to zero, while initial fields were computed as h?(a) = log(fi(a) + o) —
log( fi(cons;)) where cons; is the most common state at site ¢ and o« = 1/B is the smallest observed frequency
used as regularization. . Then a chain of models with increasing couplings (up to the inferred values) are
thermalized and the ratios of their partition functions may be estimated. Secondly, the Kullback-Leibler
divergence and the logarithm of the partition function can also be directly estimated by the ACE procedure
(Table I), see Appendix VII A. The KL divergences obtained directly from the ACE expansion and the ones
obtained with importance sampling are very similar, as shown in Table II, for the reference case in Fig. 3
at the optimal cluster inclusion threshold corresponding to a sparse inferred network. The values of the
logarithm of the partition function, and of the entropy are also consistent between the two methods. In the
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cluster inclusion threshold t|logZ(AIS)|logZ(ACE) |S(AIS) |S(ACE)|KL(AIS) | KL(ACE)
1 28.9 28.6 56.9 56 6.4 6
9.6 x 1072 32 31.9 52.6 | 51.4 2.2 2.3
3.6 x 1072 32.5 31.8 51.8 | 50.7 1.5 1.5
2.2 %1072 34.2 32.8 52.9 | 50.9 2.5 3
3.4x107° 36 26 57.8 | 49.1 7.4 5

TABLE II: Comparison between importance sampling (AIS) and ACE methods to obtain the logarithm of
the partition function Z, the entropy S, and the Kullback-Leibler divergence (KL), at the different sparsity
threshold ¢ for the reference model, ER05, data sampling: B=1000 and color compression f, = 0.01, the
optimal threshold determined by the spACE procedure is 3.6 x 1072,

following we will use the annealed importance sampling to calculate the KL divergence to compare results
from PLM and ACE.

1. KL Divergence for ACE models at different inclusion thresholds t

Table II displays the KL divergences for the reference data set and different cluster inclusion thresholds
of Fig. 3 and in table I obtained both with importance sampling and the ACE expansion.

The fully connected graph has a larger KL divergence and it is therefore overfitting the data while the
sparse graph better reproduces the original model. All results for the ACE expansion presented in the
following are obtained by the spACE procedure to infer a sparse graph. For the fully connected solution,
due to overfitting, the cross entropy of Table I is not a good approximation to the entropy. Therefore the
estimate of the logarithm of the partition function and of the entropy given in table II are significantly
different from the ones obtained by the AIS method.

2. KL Divergence as a function of the sampling depth B and the color compression threshold fo

Fig. 4 shows the mean over the ten ER realizations of the KL divergence between the real and the inferred
distributions for various sampling depths and compression parameters for both ACE (left) and PLM (right).
As expected, the KL divergence decreases for bigger samples, becoming very close to zero for B = 10°.
The same happens for the standard deviations over the 10 realizations. ACE gives smaller KL divergences
with respect to PLM, showing that the sparsity imposed in the spACE procedure gives a model reproducing
better the original ER models, which are indeed sparse by construction. It is worth noticing that the KL
divergence for the fully connected model inferred by PLM for the reference case (B = 1000, fo = 0.01) is
larger than the one obtained for the sparse ACE model, but smaller than the one for the fully connected
ACE graph of Table II: PLM inference with large regularization gives better model reconstruction than with
small regularization, see Table IV in Appendix VIID. The KL divergence is very stable for low frequency
thresholds, starting to grow only at frequency thresholds fy ~ 0.01. This increase is of course much more
significant at high B; indeed, reducing the number of explicitly modeled Potts states results in a loss of
information affecting the quality of the inference, when the sampling is good. The black empty squares
correspond to cut frequencies fo = 10/B, or equivalently grouping symbols observed less than 10 times.
This seems to be the frequency cutoff above which the performance of the inferred model is poor.

The results shown above for PLM were found using strong regularization (vy; ~ N/B); Results for low
regularization can be found in Appendix VIID.

B. Low-order Statistics

In this Section we discuss the generative properties of the inferred models, in particular its ability to re-
produce the low order statistics of the original model : the site frequencies fi(a) = >_ ., crated a 9(is @)/ Bgen
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FIG. 5: Reconstruction of average frequencies and covariances. Comparison between generated data and
test set for no color compression (top) and fo = —0.01 for ACE. The Pearson correlation coefficient (R)

and the absolute error (A, Eq. 16) are marked on top of the plots both for the full model and the for the
reduced one (only explicitly modeled states).

and covariances cov;;(a,b) =)

generated a

[0(ai,a)0(aj,b)/Bgen] — fi(a)f;(b). To benchmark the generative

power of the inferred model as a function of the color compression two sets of 20000 configurations are
generated by Markov Chain Monte Carlo, respectively with the real and with the inferred model for each B,
fo, and graph realization, and their low order statistics are compared.

Figures 5 and 6 show, for the models inferred from the reference data set, the comparison of the frequencies
and covariances computed from the configurations generated by the real model (test sequences) and by the
models inferred with ACE and PLM, without color compression (top panels) and with fy = 0.01 (bottom
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FIG. 6: Reconstruction of average frequencies and covariances. Comparison between generated data and
test set for no color compression (top) and fo = —0.01 for PLM. The Pearson correlation coefficient (R)

and the absolute error (A, Eq. 16) are marked on top of the plots both for the full model and the for the
reduced one (only explicitly modeled states).

panels). As is shown in the figures the PLM covariances are dowscaled due to the strong regularization,
as happens for the couplings (Section IV D). Moreover PLM assign smaller frequencies to the unseen Potts
states (left panels of Fig. 6 in log-log scale) this is probably due to the fact that the pseudocount used
during decompression seems to be well fixed for the Bayesian regularization used in ACE but not for the
large regularization used in PLM. The inset in Fig 6 shows that, contrary to spACE (inset of Fig. 5), zero
covariances are set to non-zero values with PLM because of overfitting.

To have a more systematic comparison, we analyzed the Pearson correlation coefficient R of frequencies
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and covariances, as well as their absolute error defined as:

§ Za (7 (@)=t (@)
Af \/zz( s (15)
Acov = \/ >, z<z J;r;,iélzcovfj?"'(a,b))z ‘ 16)

These quantities are then computed for different B and fy and averaged over 10 graph realizations. The
results are shown in Figs. 7 and 8.

Performance seems again stable at low f; before progressively degrading at large fy even if large sample
to sample fluctuations are present for smallest sampling depths. spACE outperforms PLM for covariance
reconstruction, especially at small sample depth.

PLM
1 1
0.999 0.999 |
0.998 0.998 |
_ 0997 0.997 |
o
0.996 0.996 |
0.995 0.995 |
0.994 0.994 |
0.993 0.993
1 1
0.95 | - 1 095}
09 f ¢ 1 09} 1
5 085 1 085} il 1
o

0.8 r 1 08 r . | ! 1

0.75 t 1 075 ¢ l l l

065 L~ : : : 0.65 : : : :
no 0 10* 10° 10% 107 no 0 10* 10° 10 107
fo fo
B=5-1o§ —— B=1og — B=5-1o§ —— B=10‘5‘ —
B=10 B=10° —*— B=10 B=10° —%—

FIG. 7: Pearson correlation between test and generated frequencies (Ry, top panels) and covariances,
(Reov, bottom panels) averaged over 10 ER realizations as a function of the color compression for several
sample sizes. Dashed lines: Pearson correlations restricted to the explicitly modeled Potts states. Full
lines: Pearson correlations on all states. Error-bars are standard deviations computed over the 10
realizations. Inference is performed respectively by ACE (left) and PLM (right).

C. Interaction networks

In this section we focus on the reconstruction of the interaction network and the prediction of pairs of
sites that are interacting, or “in contact”, in the interaction network. The original ER graph is sparse, with
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averaged over 10 ER realizations, as a function of the color compression for several sample sizes. Dashed
lines: error on explicitly modeled Potts states only. Full lines: error on all parameters. Error-bars are
standard deviations computed over the 10 realizations. Inference is performed respectively by ACE (left)
and PLM (right).

an average connectivity of about 2.5 (see Fig. 1). We can predict contacting sites as those site pairs with
large couplings, as traditionally done for protein structures [15—17]. To this end, we compute the Frobenius
norm of the (10x10) inferred and decompressed coupling matrix between each pair of sites 4, j,

Fij = le: Jij (a, b)2 . (17)

We first show the results with ACE and PLM for the reference model, ER05 with configuration sampling
B = 1000 and compare a single frequency cut fo = 0.01 = 10/B to the decompressed case. In the second
part of the section we compare the results for several sample sizes and frequency thresholds by averaging
over multiple graph realizations.

In Figs. 9 and 10 (top panels) we compare the real network with the Frobenius norms of the couplings
inferred by ACE and PLM with no color compression (left) and fo = 0.01 (right). With ACE, inferred with
the spACE procedure, the inferred network is sparse with only a limited number of sites being adjacent. In
the example of Fig. 9, without color compression (top left panel), Ny .q = 49 sites have a nonzero Frobenius
norm over No=59 sites linked by edges in the original graph (see Fig. 1). 16 edges are missed, while 6 site
pairs are falsely predicted to be in interaction. Instead, for fo = 0.01 = 10/B (top right panel of Fig. 9) only
14 adges are missed but 10 site pairs are wrongly predicted to be in interaction, implying a slight degradation
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FIG. 9: ACE contact map reconstruction and PPV curve for one realization of ER graph. Left: no color

compression. Right: fy = 0.01.

Top: contact maps. Upper triangular: contact map with real contacts (black empty squares), inferred true
positive (full circles in empty squares), inferred false positive (full circles) in consensus gauge without
Average Product Correction (APC). Lower triangular: Frobenius norm of the inferred parameters in
consensus gauge with color-scale on the right.

Bottom: Positive Predicted Value (PPV) curve in consensus and zero-sum gauge with and without APC.

of the precision but an improvement of the recall.

Contrary to ACE, PLM with the Lo norm regularization described in Eq. 5 infers a fully connected
interaction graph: all the N(N — 1)/2 Frobenius norms are different from zero as shown in Fig.10 (bottom
panel). There is therefore no straightforward separation between pairs of sites predicted to be in interaction
or not. In the top panels of Fig. 10 we put a dot for predicted interactions, hereafter referred to as contacts,
only for the Ny site pairs with highest Frobenius norm, where Ny is the true number of edges. In the example
shown in the figure, there are 42 true positive, 17 false positive, and 17 missed edges both without color
compression and with fy = 0.01. These results are comparable to the ones obtained by ACE in Fig.9.

To gain more insight into these predictions, as done for protein structure [25, 28, 39], we can sort site pairs
by decreasing Frobenius norm and follow the precision obtained progressively including the corresponding



PLM, B=1000

18

no compression f0=0.01
50 g ® o® 7 2 50 H ® o® 2
‘o . ® o = o . O © o ]
0 0 0 0 0 al
@ ] @ e o o @ .
¢ 55 s S. o 10 *h ooy Se o 10
40 g ® ® o & 40 & ® o |
. .
al al s @ al al s @
Y g u oot 8 e g /" o mt 8
® ® b = @ b o
30 “ o  ma B - 30 “ Y ma M =1
& U 0 o
2 oo " : - e 2 s o " H - ri16
7 o 5]
] a] ® ]
20 E] @ Y = it m] g 0 20 ﬁj Y = el o g O
] F- 4 . L} Fq 4
] m ™ 0 al m
® @ o o H m DD ® @ o o D) m DD
10l s O o m al 0] s O al al al
g 08 m rq2 BY ymf m ri2
= o al o
) =N
oo al oo al
m g
0 . . . . i 0 . . . . dLd g
10 20 30 40 50 10 20 30 40 50
site
true contacts O inferred contacts . true contacts O inferred contacts .
1 1
0.95 - 0.95 |- ]
09 | 09 b |
> >
o 085 o 085 ¢} E
o o
0.8 0.8 |
075 |  Zero-sum, no APC —e— i 075 |  Zero-sum, no APC —e— )
: zero-sum, APC - : zero-sum, APC
cons, no APC —eo— cons, no APC —e—
cons, APC cons, APC -
0.7 Il Il Il Il Il 0.7 Il Il Il Il Il
0 10 20 30 40 50 60 0 10 20 30 40 50 60

nb contacts

nb contacts

FIG. 10: PLM network reconstruction and PPV curve for one realization of ER graph. The site pairs with
highest Frobenius norm up to the number of real edges in the graph/Ny are considered predicted contacts.
Left: no color compression. Right: fo = 0.01.

Top: contact maps. Upper triangular: contact map with real contacts (black empty squares), inferred true
positive (full circles in empty squares), inferred false positive (full circles) in consensus gauge without
Average Product Correction (APC). Lower triangular: Frobenius norm of the inferred parameters in
consensus gauge with color-scale on the right.

Bottom: Positive Predicted Value (PPV) curve in consensus and zero-sum gauge with and without APC.

site pairs in the so called Positive Predicted Value (PPV) curve:

__ TP(n)

PPV (n) (18)

n
Where T'P(n) is the number of true predicted edges in the top n pairs. This is shown in the bottom panels
of Figs. 9 and 10 for site pairs up to the last with non-zero norm (for ACE) or to Ny (for PLM).

In the top panels the Frobenius norm is computed in the consensus gauge, i.e. gauging to zero the most
frequent state on each site in the considered configuration sample, because this is the gauge in which we will
then compare couplings and fields in the next section. However, it has been empirically shown on protein
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FIG. 11: Fscore and PPV (n = min{Ny, Npreq}) for ACE and PLM inference. Points and error bars are
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PPV (Ny) with PLM either in the consensus gauge without APC (full line), or in the zero-sum gauge with
APC (dotted line).

structure prediction that inferred edges are more precise in the zero sum gauge and that the performance
can be further improved with the Average Product Correction (APC) [20, 25, 41],

Fi F;

APC _
By =R g

(19)

Here the dot indicates the average over the corresponding variables, e.g. F;  is the average of Fj; over the
second index j. The APC decreases the norm of those pairs where at least one site has large norms with
many others, this being possibly due to undersampling. The comparison of the PPV in Figs. 9 and 10 is
then done in both gauges, with and without the APC. Note that, with ACE, APC only corrects the ranking
of the predictions in the PPV curve, but it does not change the overall number of site pairs predicted to be
in interaction, nor the global precision.

We must average over different realizations in order to have a more significant comparison and to distinguish
statistical fluctuations from systematic worsening of the performance. For PLM, due to the lack of an explicit
separation in the Frobenius norms, we adopt the positive predicted value (PPV) at the number of real contacts
PPV (n = Np) as the quality measure. For ACE, where a clear separation between predicted contacts and
predicted non-contacts is possible, we use two quality measures:

e To encompass both the precision and the recall in a single measure we use the Fscore, which is the
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harmonic mean between the two and gives

TP(Nprea)

Fscore =2———=
Npred + NO

(20)

where T'P is the number of true predicted contacts, Npyeq is the number of predicted contacts and N
is the number real contacts;

e We also compute PPV at the lesser of the number of predictions N,,.q or real edges No.

The quantities above are shown in Figs. 11a, 11b and 11c respectively for ACE and PLM as a function
of the color compression. As expected, the plots show that the contact prediction improves with sampling,
and that the APC significantly improves the results for PLM in zero sum gauge. PLM generally gives
higher PPV, especially at high sampling depth B = 10* and B = 10° where the reconstruction error are
due to the sparsity threshold. We have verified that, at such sampling for fully connected network, ACE
has the same PPV as PLM: for the reference graph sampled with B = 10* and py = 0.01, we obtain
PPV (Ng) = 0.93, and, using APC correction, PPV4pc(Ng) = 0.95 at low threshold and PPV (Ng) = 0.87
(PPVypc(Ng) = 0.88) at sparse threshold. We see that, for both algorithms, the performance is usually
stable against the introduction of color compression.

D. Couplings and Fields

In Figs. 12 and 13 we compare the fields and the couplings of the real model (x-axis) and the inferred
Potts model (y-axis) obtained for the reference data of the graph ER05 sampled at B = 1000 without color
compression (top panels) and with fo = 0.01 = 10/B (bottom panels), respectively, with ACE (Fig. 12) and
PLM (Fig. 13). Different colors in Fig. (Fig. 12) and (Fig. 13) show Potts states (or Potts states pairs)
occurring at different frequencies and therefore treated in the color compression procedure as explicitly
modeled, grouped, or unseen in the configuration sample. For couplings, if at least one of the two Potts
state is unseen, the pair is considered as unseen; if at least one site is grouped, the pair is considered as
grouped; if both sites are explicitly modeled, the pair is considered as explicitly modeled. The comparison
is performed in the consensus gauge.

Fig. 12 shows that, as observed in Section IV C the sparse procedure, spACE, misses some edges and the
corresponding couplings are fixed to zero. As shown in Fig. 13, PLM couplings are systematically smaller
in amplitude than real ones, ending up in a tilted entry-by-entry comparison. This is due to the large
regularization introduced to avoid overfitting.

To analyze the results in a more quantitative way, we compute the Pearson correlation coefficient R
cov(real xinferred ) g o — p J) and the couplings and

Oreal + ' Tinferred *

between the real and the inferred parameters (R, =
field absolute errors, defined as:

Ah _ \/Ez Za(h:n;:(a)fh;e“l(a))z ’
i qi

Sy S T ab) = I (a,h))?
AJ = \/ oo , (21)

which measures the average distances from the diagonal of the points in the scatter plots of Fig. 12 and
Fig. 13. Figs. 14 and 15 show the Pearson correlation coefficients and the absolute errors for various B
and as a function of fjy, averaged over 10 ER realizations. Here, the full line indicates the behavior for
the full decompressed model, while the dotted line indicates performances only for states explicitly modeled
during inference. From both figures it is evident that ACE gives better results than PLM for parameter
reconstruction, especially on couplings. This is due to the fact that spACE avoid overfitting of data and
setting many non-zero couplings for non interacting sites in the real interaction graph.

Fig. 14 and 15 show that the performances are stable as a function of the color compression up to a value
of fo, where performances drop because the compression become too strong.

The dashed lines in Figs. 14 and 15 show that by restricting the coupling comparison to better and
better sampled states, at large fj, the reconstruction indicators are better and better. On the contrary for
the reconstruction of fields performances are better when comparing all the Potts states, because correctly
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(b) ACE: o = 0.01 = 10/B

FIG. 12: Comparison of inferred and real fields and couplings with ACE for one realization of ER graph
with no color compression (top) and fo = 0.01 (bottom), for B=1000 sampled configurations. Parameters
on explicitly modeled (kept), grouped, and unseen Potts states are colored differently. Left: field
comparison. Right: coupling comparison. On top of each plot, the Pearson correlation coefficient (R) and
the absolute error (A, as in Eq. 21) are indicated.

reconstruct, through the decompression procedure of Sec.IIT A the large and negative fields for the grouped
and unseen Potts symbols. The overall reconstruction of couplings and fields is both for PLM and ACE
stable below cutoff frequencies %

E. Gain in computational time

Figure 16 shows how the computational time scales with the sample size (top) and the color compression
frequency threshold (bottom) for ACE (left panels) and PLM (right panels). These times have been obtained
on a processor Intel® Xeon(R) CPU E5-2690 v4 @ 2.60GHz x 56 and are shown for for a single ER graph
realization. The computational time for standard ACE depends on three factors: ¢® where K is the cluster
size and ¢ the number of Potts states, the overall number of clusters in the construction rule, and the number
of Monte-Carlo steps to calculate the relative errors in the reconstruction of the first and second moment of
the data distribution.

The effect of compression on the runtime therefore depends on the choice of stopping conditions and Monte-
Carlo steps when running the algorithm. At small cluster sizes, Monte-Carlo sampling is the dominant
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(b) PLM: fo = 0.01 = 10/B

FIG. 13: Comparison of inferred and real fields and couplings with PLM for one realization of ER graph
with no color compression (top) and fo = 0.01 (bottom) for B=1000 sampled configurations. Parameters
on explicitly modeled (kept), grouped and unseen Potts states are colored differently. Left: field
comparison. Right: coupling comparison. On top of each plot, the Pearson correlation coefficient (R) and
the absolute error (A, as in Eq. 21) are indicated.

contribution to the runtime, which does not depend strongly on the number of colors. At large cluster
sizes, computing the partition function and numerically maximizing the likelihood become the dominant
contributions to the runtime, in which case color compression can provide substantial benefits. For example,
inference of models for many HIV proteins [12—-15] would take prohibitively long times without significant
compression. In the spACE implementation used for this paper the limiting step is the large number of
Monte Carlo steps (500000) used to calculate the relative errors with high precision , which does not depend
on the number of parameters, thus diminishing any time reduction with color compression. Having a large
number of MC steps is in important to correctly estimate the relative errors at very large sample size, given
the small value of the sampling variances.

For PLM (right panel of Fig. 16), time increases linearly with the number of parameters to infer and
almost linear in the sample size B. Time can then be reduced thanks to color compression. So, while spACE
is optimal for large sample sizes, PLM is faster for small B, especially when color compression is used.
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FIG. 14: Pearson correlation between real and inferred fields, (Ry,, top panels) and real and inferred
couplings, (R;, bottom panels) averaged over 10 ER realizations as a function of the color compression for
several sample sizes. Dashed lines: correlations between inferred and real parameters restricted to the
explicitly modeled Potts states. Full lines: correlations on all parameters, after decompression of unseen
and grouped Potts states (see Sec. III A). Error-bars are standard deviations computed over the 10
realizations. Inference is performed respectively by ACE (left) and PLM (right).

V. COLOR COMPRESSION APPLIED TO SEQUENCE ALIGNMENTS OF PROTEIN
FAMILIES

We now apply our inference approach to protein sequence data. Input samples are multiple sequence
alignments of protein families, the nodes of the graph are the protein sites, and states are the 20 amino
acids plus the insertion-deletion symbol (¢ = 21). In this context, we aim at reconstructing the contact
map [16, 39] or the fitness landscape [21-24]. In particular, we would like to compare the change sof energy
corresponding to single point mutations with respect to a wild-type protein sequence to the experimentally
measured changes of fitness of the protein.

We here consider three protein families whose fitness has been systematically assessed against single-point
mutations:

e WW is a protein domain that mediates specific interactions with protein ligands. Here fitness has been
measured in terms of the capability to bind a certain ligand [40];

e PDZ is a protein domain present in signaling proteins. Here fitness has been measured in terms of
binding affinity [47];
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FIG. 15: Absolute errors (Eq. 21) on fields (Ay, top panels) and couplings (A, bottom panels) averaged
over 10 ER realizations, as a function of the color compression for several sample sizes. Dashed lines: error
on parameters related to explicitly modeled Potts states. Full lines: error on all parameters, after
decompression of unseen and grouped Potts states (see Sec. IIT A). Error-bars are standard deviations
computed over the 10 realizations. Inference is performed respectively by ACE (left) and PLM (right).

e RRM is an RNA recognition motif; fitness was estimated through growth rate measurements in [48].

Alignments and experimental fitness measures used in this section have been retrieved from a recent paper
[24].

Figure 17 summarizes the impact of color compression on inference for these three cases. Contrary to
what happens for synthetic data, where the true model is known, the relationship between inferred energies
and experimental fitness values may be nonlinear, so we use as a quality measure of the inference the
Spearman correlation coefficient between them rather than the Pearson. The top right corner of fig. 17 shows
the variation of the Spearman correlation coefficient as a function of the color compression. The SpACE
procedure was here applied with K, = 2N; however the relative error €,,,, (Eq.14) was generally too large
even at its local minima, indicating that the procedure has not converged. As shown in [31] a Boltzmann
Machine Learning (BML) procedure was further used, starting from the spACE inferred parameters as initial
guess, to better reproduce the low order statistics of the data and therefore the quality of the inferred model.
ACE + BML performances are overall compatible with PLM results, and are better for well sampled case
such as RRM, and slightly worse in the PDZ case. A certain level of color compression does not globally
harm the performances, neither for PLM nor for ACE.

The top left panel in Fig. 17 shows the reduction in number of parameters due to color compression and
the bottom panels show the reduction in computational time for ACE and PLM respectively. We observe
that this reduction is much stronger than for the ER case analyzed above, mainly due to the much larger
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FIG. 16: Computational times for ACE and PLM for different B and color compression. Top:

computational time, in seconds, using only 1 CPU, for ACE (left) and PLM (right) as a function of the
sample sizes B; a power law and a linear fits are added respectively to ACE and PLM (dashed line).
Bottom: computational time ratio between the compressed and decompressed inference for ACE (1 CPU;

25

left panel) and PLM (25 parallel CPU; right panel) as a function of fraction of parameters to infer; on top

of it the diagonal is drawn in dotted line and, for PLM, the linear fit (full line) is also added.

number of possible states (¢ = 21) of proteins. We even observed that ACE does not always converge for
real proteins without color compression, because the algorithm gets stuck in trying to recover the statistics
on the rarest states, while this almost never happens when the rarer states are grouped. The significance of
this reduction is even clearer when looking at absolute running times in Table III.
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FIG. 17: Color compression on real proteins with ACE and PLM. The top panels show respectively the
fraction of explicitly modeled parameters as a function of fy (top left) and the Spearman correlation
coeflicient between the fitness predictions and the experimental measures found in literature, as a function
of the color compression (top right). The bottom panels show the time gain due to color compression in
these same runs respectively for ACE (bottom left) and PLM (bottom right). The protein families used
here are: WW (PF00397, in orange), PDZ (PF00595, in green) and RRM1 (PF00076 in light blue).

protein| fO |tace|tPLm protein| fO |tack |tpLam protein| fO |tack |tpLm
WW | no | 1668 | 220 PDZ | no [38303| 649 RRM1 | no 2927
WW | 0 | 997 | 206 PDZ | 0 |29076| 592 RRM1| 0 3020
WW [0.01| 375 | 85 PDZ [0.01| 5009 | 340 RRM1{0.01|64938 | 1429
WW | 0.1 253 | 17 PDZ | 0.1 | 1324 | 87 RRM1| 0.1 | 1350 | 341

TABLE III: Example of running times for ACE and PLM (in minutes on a Desktop computer) for the
three studied protein families for different color compression thresholds fj.

VI. CONCLUSION

We have benchmarked the inference of color-compressed Potts models from data generated by Potts
models on Erdés-Rényi random graphs. In such compressed inference, the poorly sampled colors are lumped
together in a unique and effective Potts state and therefore the number of Potts states explicitly modeled
depends on the site. Knowing the the ground-truth model that generated the data, we can assess the
inference performance at different compression strengths, by (1) computing the Kullback-Leibler divergence
between the real and inferred models; (2) checking the reconstruction of low-order statistics; (3) testing the
reconstruction of the structure of the interaction network, and of the couplings and field parameters. We
have focused on the undersampling regime, where the number of the parameters (~ 10°) is larger than or
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equal to the number of data.

After the inference of the compressed model we have introduced a procedure to recover a posteriori a full
Potts model. During the decompression procedure, the couplings of grouped or unobserved Potts variables
are fixed to a reference value, while the values of the fields are adjusted according to the individual frequencies
of the grouped symbols, or to a small pseudo-count for never observed Potts symbols. Such decompression has
to to be carefully carried to stick to the chosen gauge as explained in Sec. IIT A. It is essential to ensure that
the frequencies of non-observed Potts states are correctly reproduced and lower than the ones of observed
states. Decompression is useful to compare the inferred model to the ground truth (when available), to
assess the performance of the inference for different color compression strengths, and more generally when
the model is used to predict the behavior of poorly sampled variables on the original data set.

Color compression does not affect the accuracy of the inferred model below a value f of the compression
frequency cut-off, while largely reducing the number of variables to be inferred. At frequencies above f§ the
inferred model is degraded with respect to the full model because well sampled variables are grouped and
their individual correlations are lost. The cutoff value f§ is not very sharp: as a rule of thumb, it ranges
between fi = 1/B, where is the number of sampled configurations, and fj = 10/B meaning that symbols
observed less than 1 to 10 times can be “safely” grouped in the compressed model. It depends slightly on
the inference and decompression procedure, on the quantity we are looking at and on the sampling size, the
smaller cutoff being better for bad sampled data (B =5 x 102 — 103).

When the regularization is properly chosen to avoid overfitting, color compression does not improve the
inference performance but simply acts as a further regularization. As shown in Section IV A 2 and Appendix
IVthis is not the case for PLM with small regularization for which the model reconstruction shows an optimal
value of the compression. For well regularized inference procedures, the parameters of well sampled states
are accurately inferred, independently of the presence of the grouped states, while those of poorly sampled
states are essentially fixed by the regularization imposed either during the inference or during the color
decompression. In other words, even in the largely undersampled regime, parameters for well sampled colors
are correctly inferred and are not affected by the poorly sampled states, as clearly shown by the performance
restricted to the explicitly modeled symbols alone of Figs. 12 and 13. This underlines the difference between
sites and states in a Potts model. In the standard renormalization procedure [19] when the number of sites
are reduced in an effective “renormalized” Potts model the parameter values of the retained sites change.
In contrast, in the space of Potts states, grouping some of them, and keeping the probabilities conserved,
does not affect the others. Such robustness holds for the two algorithms studied here, the Adaptive Cluster
Expansion (ACE) and Pseudo-Likelihood Maximization (PLM), but may be not true for algorithms based
e.g. on the inversion of the correlation matrix for which the number of zero modes of the correlation matrix
can have drastic consequences on the accuracy of the inversion. The ACE variant introduced here, called
spACE, selects a sparse solution to the inverse problem by imposing a maximal cutoff for the number of
2-site clusters included, through an appropriate choice of the cluster inclusion threshold ¢. For the PLM
algorithm, we have adapted the routine of the group of Aurell and collaborators |9, 28] by adding color
compression as described in this paper.

We plan to improve the spACE expansions in several directions. One possibility is to change the value
of K2,,4, imposed in the analysis depending on the sampling conditions, in such a way to better adapt the
number of inferred parameters to the sampling. The procedure can be also improved, especially in view of
the applications to real proteins, by lowering the threshold ¢ at fixed number of 2-site clusters, i.e. to take
into account the largest-size cluster on the same 2 site support clusters. Finally introducing a way to stop
the cluster expansion without using direct Monte-Carlo sampling but on other reconstruction and sparsity
criteria [50] would avoid Monte Carlo sampling and consistently speed up the computational time. When
doing inference on the ER graphs considered here, ACE is not appreciably faster with color compression
because of the sparsity and small size of the considered graph. However, for denser or larger networks,
e.g. in application to real proteins, the computational time is dominated by the computation of the cross-
entropy contributions of large clusters. In those cases color compression considerably speeds up the inference
process, often becoming essential for solving the inverse problem in reasonable times [31]. With PLM, on the
other hand, a reduction in the number of parameters always implies smaller computational times. It would
be interesting in a forthcoming work, to compare on a similar data set ACE and a PLM inference with,
instead of Lo-regularization, the L norm regularization that imposes a sparse network. Yet, PLM with
Lq-regularization differs from spACE; spACE, as described here, imposes sparsity on the interaction graph,
but enforces a Lo-norm on the parameters for the selected clusters, and in particular for sites predicted to be
in contact. An L? norm as the one introduced in [51] could provide a combination of sparsity and Le-norm
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that characterizes the ACE algorithm and may be optimal for inferences on sparse networks as in the present
case. Inferring a sparse network is not only worthwhile for sparse original models but it improves model
reconstruction in the large undersampling regime as shown in Fig. 4 [40, 50]. Moreover the reduction of
computational time obtained thanks to color compression and sparsity is necessary when dealing with larger
number of sites, e.g. whole genome inference [27, 52].

Last of all, let us emphasize that the color compression/decompression procedure introduced here is not
restricted to pairwise graphical models. It could be used in other machine learning approaches, such as
restricted Botzmann machines, recently shown to be powerful to identify constitutive amino-acid motifs in
protein sequences [51].

Acknowledgements. We thank Lorenzo Posani for useful discussions.

VII. APPENDIX
A. Reminder about Adaptive Cluster Expansion and the inclusion threshold

In the ACE inference procedure the cross entropy is expanded as the sum of cluster contributions. Defining
a cluster as a sub-set of variables: T' = {iy,...,ix}, &k < N, we can formally write the cross-entropy as the
sum of cluster contributions:

S(I|f) =D ASp, (22)

where the sum is over all nonempty clusters of the NV variables. The cluster cross-entropy contributions ASp
are recursively defined through

ASp=Sp— Y ASp. (23)

I’cr

Here St denotes the minimum of the cross entropy (4) restricted only to the variables in I'. Thus, St depends
only on the frequencies p;(a), pi;j(a,b) with ¢,j € I'. Provided that the number of variables in T is small
(typically < 10 for ¢ = 10 Potts state as in the present work) numerical maximization of the likelihood
restricted to I is tractable. The definition of ASp ensures that the sum over all clusters I in (22) yields the
cross entropy for the entire system of IV variables. As detailed in [2, 31], a recursive construction rule is used
to avoid, before selection, the computation of all cluster entropies. Such rule consists in building up clusters
of size k by combining selected clusters selected of size k — 1. The ACE expansion consists in truncating
the expansion in Eq. (22) by fixing a cluster inclusion threshold ¢ and summing up in Eq.(23) only cluster
contribution with |[ASp| > t.

B. Cluster expansion and computational time as a function of the color compression f, for fully
connected graphs.

Fig. 18 shows that the behavior of the maximal relative reconstruction error €,,,, as a function of the
cluster inclusion threshold ¢ when changing the color compression threshold fy. The presence of two relative
minima corresponding to a sparse and a fully connected models fitting the data is observed for all the values
of fo, see the two stars in Fig. 18. Moreover the threshold ¢ corresponding to the sparse inferred graph is
largely independent of the level of color compression.

Fig. 16 shows a mild computational gain as a function of the color compression when inferring a sparse
interaction network (large-threshold minima). Such gain is generally huge when the expansion converges
only at low threshold values and sums up clusters of larger and larger sizes K. The numerical computation
of the cross entropy requires indeed the sums over a number of g% configurations for K Potts variables with
q states each. To illustrate this effect in Fig. 19 we show the reduction in computational time when the
cluster expansion is stopped at the small threshold value corresponding to a fully connected inferred graph.
One can reach a 1000-fold computational time reduction with large color compressions. As shown in Fig. 19
the expansion was stopped to maximal relative error of order 10 at small threshold ¢ after 11 days while it
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FIG. 18: Maximum relative error as a function of the expansion threshold for a particular graph realization

(same used in Fig 5: ER05, sampled with B=1000),for different color compression fj .
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FIG. 19: Reduction in computational time due to the color compression for fully connected inferred models
on 2 data sets obtained by sampling B=1000 configurations from two Erdés-Rényi random graph models.
Left: Computational time at the low-threshold minimum as a function of the color compression threshold
fo- Right: Computational time relative to the one with no color compression as a function of the number

of parameters.

took 50 minutes to infer a good quality, fully connected model for the maximal color compression fy = 0.1.
Note that the computational time to reach the sparse good model shown in Fig. 16 is smaller due to the
reduced number of clusters. For the sparse graph, inference takes of the order of 16 minutes (on the same

computer) independently of the color compression threshold, as shown in Fig. 16. For large interconnected

models color compression can therefore be useful to reach convergence in a reasonable amount of time and
infer a model that reproduces the statistics of the data.
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C. Kullback-Leibler Divergence from the ACE expansion

The computation is done in the Ising case for the 51mplicity of the notations, the generalization to the
Potts case being straightforward. We denote JZ = ={JE i hZ} the inferred parameters at sample size B, and

Jirue — {ijr ue piruel the true underlying model parameters. The inferred cross-entropy at sampling B
writes

ZPJB )log Pys (o) , (24)

where the sum is over all possible configurations o = {01, ...,0nx}.
The inferred probability distribution at finite sampling B is

exp (Zf;l h?o’i + Zi\;l J,ﬁakal)
Pys(o) = Z : (25)

The Kullback-Leibler (KL) divergence between the true and the inferred distributions writes

P true | O
D(Pyirue||Pyz) = Pyerue (o) log Pyerac(o)

Pyz(o)
= —Sirue — ZPJﬁrue {Z hBoZ + Z Jklakal log ZB}
o k<l
—*StmeJFlogZB*ZPJ”W {ZhBOT+ZJklUkUZ} .
o k<l

However, Egs. (24) & (25) give

log 2% = Sp+ Y _Pys(0) {th’m ZJlikal}.

k<l

The KL divergence between the true and the inferred distributions then writes

D(Pjirue||Pys) =(SB — Strue) — Z Prirue (o {Z hPoi+) Jklakal}
k<l
+ZPJB {ZhBUz-FZJMUkOl} .
o k<l

Moreover, a reasonable approximation is

Strue = ZPJW )log Pyerue (o)
(26)
~ SB*}OO = _ZPJBHOO lOgPJBAoo(O') 5

because the true underlying parameters are recovered by the inference method in the perfect sampling case:
Pjysoc(0) = Pytruc(0). Therefore,

D(PJtrue”PJB) SB — +ZhB UZ - 7,>oo)

+ZJM O'kO'l —<0’k0'l> ),
k<l
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PLM PLM ACE
B (=37 =2)(w=%m=%)00w=357m=2)
10? 17.53 8.14 9.81
10° 12.97 3.80 1.35
10* 2.85 1.28 0.37
10° 2.10 0.30 0.18

TABLE IV: KL divergences between inferred and empirical distributions for various regularization choices
in ACE and PLM in the reference ER realization. No color compression applied.

where ()7 = Yoo Pys(o), and () =3 Prooo(o) = > -Pytruc (o).

It naturally generalizes to the g-states Potts case:

N q
D(Pyiruc||Py5) =(Sp — Sso) + Z > hP(a)(0ia) " = (03a)™)

N g (28)
+ 37 3 Jhe.d)(oreora)” — (oreo1a)™) -
k,l=1c,d=1
k<l

The artificial data are in a compressed representation (c¢f. Section IIT A). The complete inferred parameters
are recovered as explained in Eq. (11).

D. KL divergence for PLM at low regularization and color compression

In this section we want to study what happens when using PLM at lower regularization, such as the
~vs = 1/B used for ACE, as a function of the color compression. Without color compression, the performance
obtained at v; = 1/B becomes significantly worse, see Table IV. The main reason for this finding is that,
at small regularization, one can obtain very large amplitude couplings between pairs of sites that are not
actually interacting (true J;; = 0 for all color pairs) due to low two-point frequencies f;;(a,b). These
frequencies are affected by large statistical errors. If strong regularization can deal with them, we may hope
that a similar improvement may be recovered at low regularization thanks to color compression. Indeed, by
grouping together states that are not well sampled, the statistical errors on the two-point frequencies are
reduced and this should lead to an improvement. At the same time we know that strong color compression
lead to information loss on other well sampled two-point frequencies, compromising the performances. A
more extensive discussion of the choice of the regularization related to protein sequence analysis will be
carried on on a forthcoming paper [53].

Figure 20 shows the average KL divergence between the true model and the inferred one for several color
compression frequencies at low regularization (y; = 1/B). The dashed line is the KL divergence obtained
with large regularization and without color compression for the same sample size. It is evident that in all
cases the large regularization inference gives the best model. However, for all the sample size there is an
optimal value of fj, and especially at small sampling depth B < 1000 a large color compression leads to a
very significant decreases of the KL divergence. For such cases the best color compression is around fy = 0.5,
which reduces the model to a two-state model: the most common state and the grouped state, which gathers
all the others. In the physics language such color compression reduces the Potts model to an Ising model.
For large sample sizes (B ~ 10% 10%), the best fo are around 0.01,0.03, while for stronger compressions
the model loses its predictive power. However, in spite of the improvement due to color compression, the
KL divergences do not reach the minimal values obtained at strong regularization (dashed lines in Fig. 20),
showing that a good choice of the regularization is always essential.
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FIG. 20: KL divergence between the true model and the one inferred with v; = 1/B averaged over 10
realizations for several sample sizes B at different color compression thresholds fy (full line). Error bars are
standard deviations over the 10 realizations. Horizontal dashed lines are there for comparison and
correspond to the KL values obtained with v; = 50/B without color compression.

E. Assignment of fields to zero-frequency states after inference

In section III A we have discussed the decompression method used in the paper. In particular, we have seen
that a pseudo-count is associated to the unseen states to assign them a field with respect to the reference
of the grouped/compressed state or the least probable state and, in principle, this is different to what
implicitly done when the model is inferred without color compression. To better understand the difference
between the two approaches let us consider a simplified example of an independent-site model. Without
color compression, the fields are obtained as the minimum of:

q

q q
Sina =log Y " =N "h;(a) pi(a) + - Y _ hi(a)” (29)
a=1 a=1

a=1
which, for the unseen colors in the gauge of Z = >"7_, ehi(@) =1, gives:

1

Al = —Lw(=—
2

u ) (30)
where Lw(y) is the Lambert function, solution of ze® = y. On the other hand, the field which we assign to
these symbols during color decompression is, in the same gauge,
o
= log(%) (31)
where we set, as in the rest of the paper, a = 0.1. In this independent-site approximation there is then
a shift between the two procedures given by Ah = h;(a)' — h;(a)?, that depends from the pseudocount a
and from the value of the regularization ~y,. In table V we give these shifts for the two values of ~; used
respectively by ACE (y, = 0.01/B) and PLM (v, = 0.1/B).

If, in the approximation of independent-sites, the difference Ah is the same in all gauges, the specific values
of h;(a)'" and h;(a)P of table V are specific of the Z = 1 gauge. To have a comparison in the consensus gauge
as done in the rest of the paper one has to subtract h;(a)l' and h;(a)P the field of the most common color
¢; on the considered site. In the independent-site approximation this is just h;(c;) = log(p;(c;)), and makes
that unseen colors of different sites are found to have different fields. In Figure 21 we plot the fields for the
unseen symbols with a color compression fy = 0.01 (green diamonds) and fo = 0 (blue squares) versus the
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FIG. 21: Fields for the unseen Potts symbols for ER05 and B = 1000 in the non compressed model and the
model with fo = 0.01 of Fig 12. Dotted line x=y Red Line: the shift given in the independent model for
v = 1/10B as the one used with PLM.

B |nLACE| pp AR, B |[RLFPEM pe | AR,
10%| -6.6 |-6.9]0.3 10%| -4.7 |-6.9| 1.5
10| -86 [-9.2]|05 10| -6.6 |-9.21]25
10*| -10.7 |-11.5] 0.8 10| -8.7 |-11.5] 2.8
10°| -12.9 |-13.8] 0.9 10°| -10.7 |-13.8] 3.1

TABLE V: Difference between the fields fixed by regularization and the one computed with the
pseudo-count for the unseen Potts variables in the approximation of independent sites respectively for the
fields regularization 45, = 0.01/B used in ACE and v, = 0.1/B used in PLM

one for no color-compression for PLM and ACE (same fields of Fig. 12 and 13 of the main paper), in the
consensus gauge. We can see a systematic shift towards lower values (at least for PLM, to be checked for
ACE). We can compare this shift with the theoretical shift obtained with the independent model as described
above. Even if we neglect the terms due to the couplings we can well reproduce such shift as the difference
between the field obtained with the pseudo-count with respect to the one obtained with the regularization,
there is a good agreement between what observed and the theoretical shift for independent variables. In
particular the shift is smaller for the regularization chosen by the ACE procedure.
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