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NONPARAMETRIC ESTIMATION OF THE TREND IN
REFLECTED FRACTIONAL SDE

NICOLAS MARIE*

ABsTrRACT. This paper deals with the consistency, a rate of convergence and
the asymptotic distribution of a nonparametric estimator of the trend in the
Skorokhod reflection problem defined by a fractional SDE and a Moreau sweep-
ing process.
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1. INTRODUCTION

Consider T' > 0 and the Skorokhod reflection problem
t
X.(t) = / b(X.(s))ds + eB(t) + Ya(t)

. 0

=Y.(t) € Neow)(Xc(t)) |DYc|-a.e. with YZ(0) =z

where b : R — R is a Lipschitz continuous function, € > 0, B is a fractional Brow-

nian motion of Hurst index H €]1/2,1[, Y. is the Radon-Nikodym derivative of

the differential measure DY, of Y. with respect to its variation measure |DY.|, the

multifunction C' : [0,7] = R is Lipschitz continuous for the Hausdorff distance and
o € C(O)

(1) ;te[0,T],

Roughly speaking, if Problem (1) has a solution, it coincides with the solution
to dX (t) = b(Xc(t))dt + edB(t), except when X, hits the frontier of C. Each time
this situation occurs, X, is pushed inside of C' with a minimal force by Y.. The
differential inclusion defining the process Y in Problem (1) is a (Moreau) sweep-
ing process. Several authors studied Problem (1) when H = 1/2. For instance, the
reader can refer to Bernicot and Venel [2], Slominski and Wojciechowski [21] or Cas-
taing et al. [3]. When H # 1/2, the reader can refer to Falkowski and Slominski [8]
or Castaing et al. [4]. In this last paper, the authors proved the existence, unique-
ness and the convergence of an approximation scheme of the solution to Problem
(1) under a nonempty interior condition on C' (see Assumption 2.2). In fact, in all
these papers, the authors studied the Skorokhod reflection problem defined by a
SDE and a sweeping process for a multiplicative and/or multidimensional noise.

Key words and phrases. Nonparametric estimation ; Trend estimation ; Skorokhod reflection
problem ; Sweeping process ; Fractional Brownian motion ; Stochastic differential equations.
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Let K : R — Ry be a kernel. The paper deals with the consistency, a rate of
convergence and the asymptotic distribution of the nonparametric estimator

() = hls/Ot/OTK(S};“> dX.(s)du : t € [0,T]

T = / b(x(u))du +y — xo
0

of the trend

of Problem (1), where
) z(t) = /0 b(z(s))ds + y(t)
—j(t) € New(a(t) [Dyl-ae. with y(0) = zo

and he > 0 goes to zero when € — 0.

Along the last two decades, many authors studied statistical inference in stochastic
differential equations driven by the fractional Brownian motion. Most references
on the estimation of the trend component in fractional SDE deals with parametric
estimators (see Kleptsyna and Le Breton [9], Tudor and Viens [22], Hu and Nu-
alart [11], Chronopoulou and Tindel [7], Neuenkirch and Tindel [19], Mishura and
Ralchenko [17], Hu et al. [12], etc.). On the nonparametric estimation of the trend
component in fractional SDE, there are only few references. Saussereau [20] and
Comte and Marie [6] study the consistency of some Nadaraya-Watson’s-type esti-
mators of the drift function in a fractional SDE. In [16], Mishra and Prakasa Rao
established the consistency and a rate of convergence of a nonparametric estimator
of the whole trend of the solution to a fractional SDE. Our paper generalizes their
results to the Skorokhod reflection Problem (1). On the nonparametric estimation
in Itd’s calculus framework, the reader can refer to Kutoyants [13] and [14]. Up to
our knowledge, there is no reference on the nonparametric estimation of the trend
in reflected fractional SDE.

Section 2 deals with some preliminaries on the Skorokhod reflection problem defined
by a fractional SDE and a sweeping process. Section 3 deals with the consistency,
a rate of convergence and the asymptotic distribution of the estimator 7. (t)

Notations and basic properties:
(1) For every h > 0, Kp, := 1/hK(-/h).
(2) For every closed convex subset K of R and every z € R, Nx(x) is the
normal cone of K at x:

Ni(z)={yeR:Vze K, y(z —z) <0}.
(3) For every t €]0,T], A := {(u,v) € [0,t]? : u < v}.
(4) For every function f from [0, 7] into R and (s,t) € Arp, f(s,t) := f(t)—f(s).
(5) Consider (s,t) € Ap. The vector space of continuous functions from s, ¢]

into R is denoted by C°([s,t],R) and equipped with the uniform norm
H-”oo,s,t defined by

”fHoo,s,t = sup [f(u)];Vfe€ OO([S’t]’R)v

uE[s,t]

or the semi-norm ||.||p,s,; defined by

1fllo,s,t == sup ]If(v) — f(uw)]; Vf € C%([s. 1], R).

u,WE[s,t

Moreover, ||-[lco,7 := |[-lloc,0,7 and |[.[lo,7 := [[-[lo.0,7-
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(6) Consider (s,t) € Ar. The set of all dissections of [s, ] is denoted by Dy, 4.
(7) Consider (s,t) € Ap. A function f : [s,t] — R is of finite 1-variation if and
only if|

n—1
”le—vaLs,t ‘= sup {Z |f(tk:7tk+1)| in e N* and (tk)ke[[l,nﬂ € D[s,t]} < o0.
k=1

Consider the vector space
CH ([s,1),R) := {f € C°([s, 1], R) : || fll1-var,s,0 < 00}

The map ||.||1-var,s ¢ i a semi-norm on C¥?*([s, t], R). Moreover, ||.||1-var,7 :=
||-||1—var,0,T~

(8) The vector space of Lipschitz continuous functions from a closed interval
I C R into R is denoted by Lip(I) and equipped with the Lipschitz semi-
norm ||.||Lip,s defined by

t _
| fllLip, 1 := sup {W ;s,t €l and s # t}
—s
for every f € Lip(I). Moreover, ||-|[ip := [|-lip,g and ||-[Lip,7 := ||-[ip.fo,7)-

(9) For every L > 0,
Oo(L) :={f € Lip(R) : [f(0)[ + || fllLip < L}.
2. PRELIMINARIES

This section deals with some preliminaries on the Skorokhod reflection problem
defined by a fractional SDE and a sweeping process.

First, the following theorem states a sufficient condition of existence and uniqueness
of the solution to the unperturbed sweeping process defined by

(3) { _;Jg((ég i -Z:\gc(t)(y(t)) |Dy|‘a-e- te [O,T],
where yo € C(0).

Theorem 2.1. Assume that for every t € [0,T], C(t) is a compact interval of R.
Moreover, assume that there exist ¥ > 0 and a € R such that

[a—r,a+7] Cint(C(t)) ; Vt € [0,T].

Then, Problem (3) has a unique continuous solution of finite 1-variationy : [0,T] —
R such that

”y”l-var,T < III&X{O7 ||y0 — a” _ T}.

See Monteiro Marques [18] for a proof.

In the sequel, the multifunction C fulfills the following assumption.

Assumption 2.2. For everyt € [0,T], C(t) is a compact interval of R. Moreover,
there exist 1 > 0 and a continuous selection 7 : [0,T] — R such that

[v(@) —r, () + 7] Cint(C(t)) ; Vt € [0,T].

Let ¢ : [0,7] — R be a continuous function such that ¢(0) = 0 and consider the
(generic) Skorokhod reflection problem

Vp(t) = @(t) + wy(t)
@ {_ww(t) € Ne, ) (wy(t)) [Dwyl-a.e. with w,(0) =z
where
Cy(t) :={v—(t) ;v e C(t)} ; vt € [0,T],
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ve 1 [0, 7] — R is a continuous function and w,, : [0, 7] — R is a continuous function
of finite 1-variation. Under Assumption 2.2, by Theorem 2.1 together with Castaing
et al. [5], Lemma 2.2, Problem (4) has a unique solution. Moreover, the following

proposition provides a suitable control of w, — wy for any continuous functions
©,1 : [0,T] — R such that ¢(0) = ¥(0) = 0.

Proposition 2.3. Under Assumption 2.2, for every continuous functions ¢, :
[0,T] — R such that ¢(0) = 1 (0) =0,

lwe = wy oo, < [l = Plloo,7-

See Slominski and Wojciechowski [21], Proposition 2.3 for a proof.

Under Assumption 2.2, note that there exist R > 0, N € N* and (tg,...,tn) €
Do) such that

[v(te) — R, v(tk) + R] C C(t)
for every k € [0, N — 1] and ¢ € [tg, tg+1]-

Proposition 2.4. Consider (s,t) € Ar and p €]0, R/2]. Under Assumption 2.2,
’Lf HSOHO,s,t < P, then
[well1var,sg SN sup  sup |w—wvl.
w€[0,T] v,weC(u)
The proof of Proposition 2.4 is the same that the proof of Castaing et al. [4], Propo-
sition 2.5 but with the upper bound for the 1-variation norm of the 1-dimensional
unperturbed sweeping process provided in Theorem 2.1 instead of the corresponding

upper bound in the multidimensional case provided in Castaing et al. [4], Proposi-
tion 2.1.

Since Problem (4) is equivalent to
{ Up(t) = (1) + we(t)
—1,(t) € New)(ve(t)) [Dwyl-ae. with w,(0) =z

one can use the previous results of this section in order to establish the existence
and uniqueness of the solution to Problems (1) and (2).

Theorem 2.5. Under Assumption 2.2,
(1) Problem (1) has a unique solution (X.,Y:). Moreover, its paths belong to

CPvar([0,T],R) x CY**([0, T], R)

for everyp > 1/H.
(2) Problem (2) has a unique solution (x,y). Moreover, it is a Lipschitz con-
tinuous map from [0,T)] into R? such that

IyllLip.r < IbllLip + [[CllLip, T

and
2]|Lip,7 < 2|bl|Lip + |C]|Lip,7-

The proof of the existence of solutions to Problem (1) in Theorem 2.5 is the same
that the proof of Castaing et al. [4], Theorem 3.1 but with the upper bound for the
1-variation norm of w, in Problem (4) provided in Proposition 2.4 instead of the
corresponding upper bound in the multidimensional case provided in Castaing et
al. [4], Proposition 2.5. Castaing et al. [4], Proposition 4.1 gives the uniqueness of
the solution to Problem (1). Castaing et al. [5], Theorem 4.2 gives the existence,
uniqueness and the regularity of the solution to Problem (2).
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3. CONVERGENCE OF THE TREND ESTIMATOR

This section deals with the consistency, a rate of convergence and the asymp-
totic distribution of the estimator 7.(t). First, the following lemma deals with the
convergence of X, and Y. when ¢ — 0.

Lemma 3.1. Under Assumption 2.2, if b € ©g(L) with L > 0, then there exists a
deterministic constant cg 1.7 > 0, depending only on T and L, such that

E(|Xe - 2)%7) + E(IY: = yllZ 1) < emrre®.
Proof. Consider H, := X.—Y. and h := x—y. By Proposition 2.3, for any ¢ € [0, T],
[Xe(t) — ()] < 2[[He = hlloct

t
< 2L/ 1X.(s) — 2(s)|ds + 2€]| B|oo.s.
0

By Gronwall’s lemma,
| Xe(t) = 2(t)] < 2€]| Blloo,re® T

Moreover,
[Yz(t) —y(®)] < [He(t) = h(8)] + [Xc(t) — x(t)]
< (TL+ D)Xz = 2lloo,r + €l|Blloo,r
< €| Blloor (2e*XT(TL + 1) 4 1).
This concludes the proof because IE(HBH%OT) < 00. O

In the sequel, the bandwidth h. and the kernel K fulfill the following assumptions.
Assumption 3.2. The bandwidth h. satisfies €2 = o(hl=H).
Assumption 3.3. The kernel K is bounded and K—1({0})¢ =] A, B[ with A < B.

Let us now establish the consistency and a rate of convergence for the estimator 7.
of the trend 7 of Problem (1).

Theorem 3.4. Under Assumptions 2.2, 3.2 and 3.3, if b € O¢(L) with L > 0, then
there exists a deterministic constant cc.p i, 7 > 0, depending only on C, H, K,
L and T, such that

sup E(|7(t) — 7()*) < comx.pr(e? + b2 +e2h2H72),
t€[0,T]

Proof. First of all, for any ¢ € [0, T,

T(t)—7(t) = /0 /o Kp (s —uw)dX.(s)du — /0 b(z(u))du — y(t) + xo
e (t) + Be(t) + 7= (t) + () + ne(t),

where

t T
ae(t) == / Kp_(s —u)(b(X:(s)) — b(x(s)))dsdu,

0

a0 = | t / " Ko (s — )b (s))dsu — / b)),

e/ot /OT K. (s — u)dB(s)du,

C(t) = /0 /0 K, (s —uw)d(Y: — y)(s)du and

Ye(t) :

t T
Ne(t) := /0 /0 Kp_ (s — u)dy(s)du — y(t) + zo.
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Let us find suitable controls of the supremum on [0, 7] of the second order moment
of all these components.

e Note that

(T— u)/h
/ [ ) B(X. (hos + 1)) — b(a(hes + u)))dsdu

u/he

lae(t)| =

< ||b||Llp/ sup | Xc(hes +u) — x(hes + u)|du < LT|| Xe — |oo,1-
0 0<hes+u<T

Then, by Lemma 3.1,

sup E(ag(t)Q) < L2T2cH7L,T52.
te[0,7)

e Since C is a Lipschitz continuous and compact-valued multifunction, x is
bounded by a deterministic constant M > 0 depending only on C' (not on
b). Then,

.0l = | [ " ba(s) //)/ K(wyduds — | b(e(u))du
_ / K (u / b (5)) Lt wnoar (5 )dsdu—/b ))ds
_ /A K(u) < /0 j;ih:m b(z(s))ds — /0 t b(x(s))ds) du

B
oh. sup  [b(2)| / K (u)|uldu.
2€[—M,M] A

N

Moreover, since [b(0)| + [|b]|Lip < L
6= ()] < 2(]A] V| B]) Lhe.

e By Memin et al. [15], Theorem 1.1, there exists a deterministic constant
c1 > 0, only depending on H, such that

E(v.(1)?) < &%t /tE
0

- e2r (T
P
<,

Co = T?

/0 K (s —w)dB(s)| | du

T B v |2H
/ K<s “) ds
0 he

5 2H
/ K(s)YHds
A

e Since the paths of Y. — y are continuous and of finite 1-variation,

C(t) = / / K (s — u)dud(Y: — y)(s)

// K0 )5

- / K (u) / Ve (8)A(Ye — ) (8)du

27 2H -2
du < cpe”h; ,

where

/ K(u)(Y — )0V (how), T A (how + 1)) du.
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Then, by Lemma 3.1,

sup E(C(1)?) < E(||Y: —yl% 1) < cmpre’.
t€[0,T]

e Since y is a Lipschitz continuous function (see Theorem 2.5.(2)),
T ft
@ = | [ [ Eals — widudy(s) ~ y(0) + w0
o Jo

B
< /A K(w)y(0V (hew), T A (heu+ 1)) — y(0,8)|du < 2(|A| V [B)||yl|Lip, 0l

Moreover, since ||y||Lip,r < L + ||C||Lip,7,
ne ()] < 2| Al V IB)(L + [|ClLip,7)he-
O

Theorem 3.4 says that the quadratic risk of the estimator 7.(¢) involves a squared
bias of order €2 + h2 and a variance term of order e2h27=2. The best possible rate
£2/(2=H) is reached for a bandwidth choice of order e'/(2=H),

Corollary 3.5. Under Assumptions 2.2 and 3.3, if he = /@~ then

lim =% @1 sup E(|7.(t) — 7(¢)]*) =0 ; Va > 0.
=0 te[0,7T]

Corollary 3.5 is a straightforward consequence of Theorem 3.4 with v, = ¢*~2/(2=H)
and a > 0.

Finally, the following proposition provides the asymptotic distribution of the es-
timator 7. (t).

Proposition 3.6. Under Assumptions 2.2 and 3.8, if A > 0, t < T and h, =
e/C=H) then

2

eV (7 () = 7(t) — (1)) — p(t)

=0
and
e AL (1) == N(0,0% 1),
where
B
pu(t) := (b(z(t)) — b(x(0)) +5(t) — 1)(0))/14 K (u)udu
and

B B
otk = H(2H — 1)/A /A lu — o> 72K (u) K (v)dudv.

Proof. Since

sup E(as(t)Q) + sup E(Cs(t)Q) = 0(52)
te[0,T] te[0,T]

as established in the proof of Theorem 3.4,

VD (a (1) + (1) £ 0.

e—0

Let us study the behaviour of e =%/ =H)(B_(¢) + 1.(t)) when & — 0.
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e Since A > 0 and h.B+t < T for € large enough,
B heu+t heu
Bu(t) = / K (u) / b(a(s))ds — / b (s))ds | du
A t 0
B 1 1
= hs/ K(u)u (/ b(x(sheu +t))ds —/ b(x(shsu))ds> du.
A 0 0
Therefore, by Lebesgue’s theorem,
B
lim e~V C=H) g (1) = (b(x(t)) — b(x(0))) / K (u)udu.
e—0 A
e Since y is a Lipschitz continuous function, it is absolutely continuous. In
other words, for every (u,v) € Ar,
v
o) = (w = [ its)as
u
Then,
B
n) = [ K@t b+ 0) - y(0,he))du
A
B 1 1
= ha/ K(u)u </ y(sheu + t)ds —/ y(shau)ds> du.
A 0 0
Therefore, by Lebesgue’s theorem,
B
ti =/ (6) = (5(0) ~ §(0)) [~ K (u)udu
e—0 A
Finally,
T
: 2
e (t) = 5/ Kp (s —t)dB(s) ~ N(0,0.(t)%)
0
where
T T
o.(t)? .= H(2H — 1)52/ / |s — |22 72K, (r — t) Ky (s — t)drds
0 0
= 0H7K€2h§H72.
Therefore,
—1/(2—H) A 2
e~V ETH (t) = N(0, 0% k)-
e—0 ?
(]
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