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ON MULTIDIMENSIONAL STABLE-DRIVEN STOCHASTIC DIFFERENTIAL

EQUATIONS WITH BESOV DRIFT

PAUL-ÉRIC CHAUDRU DE RAYNAL AND STÉPHANE MENOZZI

Abstract. We establish well-posedness results for multidimensional non degenerate α-stable driven
SDEs with time inhomogeneous singular drifts in Lr

− B
−1+γ

p,q with γ < 1 and α in (1, 2], where Lr and
B

−1+γ

p,q stand for Lebesgue and Besov spaces respectively. Precisely, we first prove the well-posedness
of the corresponding martingale problem and then give a precise meaning to the dynamics of the SDE.
Our results rely on the smoothing properties of the underlying PDE, which is investigated by combining
a perturbative approach with duality results between Besov spaces.

1. Introduction.

1.1. Statement of the problem. We are here interested in providing a well-posedness theory for the
following formal d-dimensional stable driven SDE. For a fixed T > 0, t ∈ [0, T ]:

Xt = x+

∫ t

0
F (s,Xs)ds+ Wt, (1)

where in the above equation (Ws)s≥0 is a d-dimensional symmetric α-stable process, for some α in (1, 2].

The main point here comes from the fact that the drift F is only supposed to belong to the space
Lr([0, T ],B−1+γ

p,q (Rd,Rd)), where B−1+γ
p,q (Rd,Rd) denotes a Besov space (see Section 2.6.4 of [Tri83] and

Section 3.1 below). The parameters (p, q, γ, r) s.t. 1/2 < γ < 1, p, q, r ≥ 1 will have to satisfy some con-
straints to be specified later on in order to give a meaning to (1). Importantly, assuming the parameter
γ to be strictly less than 1 implies that F can even not be a function, but just a distribution, so that
it is not clear that the integral part in (1) has any meaning, at least as this. This is the reason why, at
this stage, we talk about “formal d-dimensional stable SDE”. There are many approaches to tackle such
a problem which mainly depend on the choice of the parameters p, q, γ, r, α and the dimension d. Let us
now try to review some of them.

The Brownian setting: α = 2. There already exists a rather large literature about singular/distributional
SDEs of type (1). Let us first mention the work by Bass and Chen [BC01] who derived in the Brownian
scalar case the strong well-posedness of (1) when the drift writes (still formally) as F (t, x) = F (x) =
aa′(x), for a spatial function a being β-Hölder continuous with β > 1/2 and for a multiplicative noise

associated with a2, i.e. the additive noise Wt in (1) must be replaced by
∫ t

0 a(Xs)dWs. The key point

in this setting is that the underlying generator associated with the SDE writes as L = (1/2)∂x

(

a2∂x

)

.
From this specific divergence form structure, the authors manage to use the theory of Dirichlet forms
of Fukushima et al. (see [FOT10]) to give a proper meaning to (1). Importantly, the formal integral
corresponding to the drift has to be understood as a Dirichlet process. Also, in the particular case where
the distributional derivative of a is a signed Radon measure, the authors give an explicit expression of the
drift of the SDE in terms of the local time (see Theorem 3.6 therein). In the multi-dimensional Brownian
case, Bass and Chen have also established weak well-posedness of SDE of type (1) when the homogeneous
drift belongs to the Kato class, see [BC03].

Many authors have also recently investigated SDEs of type (1) in both the scalar and multidimensional
Brownian setting for time inhomogeneous drifts in connection with some physical applications. From
these works, it clearly appears that handling time inhomogeneous distributional drift can be a more
challenging question. Indeed, in the time homogeneous case, denoting by F an antiderivative of F , one
can observe that the generator of (1) can be written in the form (1/2) exp(−2F(x))∂x

(

exp(2F(x))∂x

)

and
the dynamics can again be investigated within the framework of Dirichlet forms (see e.g. the works by
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Flandoli, Russo and Wolf, [FRW03], [FRW04]). The crucial point is that in the time inhomogeneous case
such connection breaks down. In this framework, we can mention the work by Flandoli, Issoglio and Russo
[FIR17] for drifts in fractional Sobolev spaces. The authors establish therein the existence and uniqueness
of what they call virtual solutions to (1): such solutions are defined through the diffeomorphism induced
by the Zvonkin transform in [Zvo74] which is precisely designed to get rid of the bad drift through Itô’s
formula. Namely, after having established appropriate smoothness properties of the underlying PDE:

{

∂tu+ F ·Du+ 1
2 ∆u− (λ+ 1)u = −F,

u(T ) = 0,
(2)

introducing Φ(t, x) = x + u(t, x) (Zvonkin transform), it is indeed seen from Itô’s formula that, at a
formal level, Yt = Φ(t,Xt) satisfies:

Yt = Φ(0, x) +

∫ t

0
(λ+ 1)(s,Φ−1(s, Ys))ds+

∫ t

0
DΦ(s,Φ−1(s, Ys))dWs, (3)

which itself has a unique weak solution from the smoothness of u solving (2). Since Φ can be shown to
be a C1-diffeomorphism for λ large enough, a virtual solution to (1) is then rigorously defined setting
Xt = Φ−1(t, Yt).

We can also refer to the work of Zhang and Zhao [ZZ17], who derived in the time homogeneous case the
well-posedness of the martingale problem for the generator associated with (1), which also contain non
trivial smooth enough diffusion coefficients (see also Remaks 7 and 14 below). Therein, they obtained as
well as some Krylov type density estimates in Bessel potential spaces for the solution. Also, they manage
to obtain more precise description of the limit drift in the dynamics in (1), which is interpreted as a

suitable limit of a sequence of mollified drifts, i.e. limn

∫ t

0 Fn(s,Xs)ds for a sequence of smooth functions
(Fn)n≥1 converging to F .

The key point in these works, who heavily rely on PDE arguments, is to establish that the product F ·Du
in (2) is in some sense meaningful, which is a real issue since F is meant to be a distribution. This in
particular implies to derive some sufficient smoothness properties for the gradient Du. Such estimates are
usually obtained, and this will also be the case in the current work, through a Duhamel type perturbative
argument (or mild representation of the solution) that leads to some natural constraints on the parameter
of the space in which the drift is assumed to belong. To make things simple, if F is the derivative in
space of a Hölder function F with Hölder exponent γ, it follows from the usual parabolic bootstrap that
the gradient of the solution u to (2) can only be expected to live in a Hölder space of regularity index
−1 + γ + α− 1, α = 2. Thus, in order to give a meaning to the product F ·Du as a distribution (more
specifically as an element of a suitable Besov-Hölder space) in (2), one has to assume that γ is such
that −1 + γ + α − 1 + γ > 1 ⇔ γ > 1/2, recalling that α = 2. This is indeed the threshold appearing
in [FIR17] and [ZZ17] as well as the one previously obtained in [BC01]. Note that in such a case, the
product also makes sense as a Young integral, i.e.

∫

Rd Du(s, y) · F (s, y)dy =
∫

Rd Du(s, y)dF(s, y), which
is again coherent with the thresholds.

To bypass such a limit, one therefore has to use a suitable theory in order to give a meaning to the
product F · Du. This is, for instance, precisely the aim of either rough paths, regularity structures
or paracontrolled calculus. However, as a price to pay to enter this framework, one has to add some
structure to the drift assuming that this latter can be enhanced into a rough path structure. In the
scalar Brownian setting, and in connection with the KPZ equation, Delarue and Diel [DD16] used such
specific structure to extend the previous results for an inhomogeneous drift which can be viewed as the
generalized derivative of F with Hölder regularity index greater than 1/3 (i.e. assuming that F belongs

to L∞([0, T ],B
(−2/3)+

∞,∞ (R,R)). Importantly, in [DD16] the authors derived a very precise description of
the meaning of the formal dynamics (1): they show that the drift of the solution may be understood
as stochastic-Young integral against a mollification of the distribution by the transition density of the
underlying noise. As far as we know, it appears to us that such a description is the most accurate that
can be found in the literature on stochastic processes (see [CG16] for a pathwise version and Remark 18
in [DD16] for some comparisons between the two approaches). With regard to the martingale problem,
the result of [DD16] has then been extended to the multidimensional setting by Cannizzaro and Choukh
[CC18], but nothing is said therein about the dynamics.
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The pure jump case: α < 2. In the pure jump case, there are a few works concerning the well-posedness
(1) in the singular/distributional case. Even for drifts that are functions, strong uniqueness was shown
rather recently. Let us distinguish two cases: the sub-critical case α ≥ 1, in this case the noise dominates
the drift (in term of self-similarity index α) and the super-critical case α < 1 where the noise does
not dominate. In the first case, we can refer for bounded Hölder drifts to Priola [Pri12] who proved
that strong uniqueness holds (for time homogeneous) functions F in (1) which are β Hölder continuous
provided β > 1 −α/2. In the second case, the strong well-posedness has been established under the same
previous condition by Chen et al. [CZZ17]. Those results are multi-dimensional.

In the current distributional framework, and in the scalar case, the martingale problem associated with
the formal generator of (1) has been recently investigated by Athreya, Butkovski and Mytnik [ABM20]
for α > 1 and a time homogeneous F ∈ B−1+γ

∞,∞ (R,R) under the condition: −1 + γ > (1 − α)/2. After
specifying how the associated dynamics can be understood, viewing namely the drift as a Dirichlet process
(similarly to what was already done in the Brownian case in [BC01]), they eventually manage to derive
strong uniqueness under the previous condition. Note that results in that direction have also been derived
by Bogachev and Pilipenko in [BP15] for drift belonging to a certain Kato class in the multidimensional
setting.

Again, the result obtained by Athreya, Butkovski and Mytnik relies on the Zvonkin transform and
hence requires to have a suitable theory for the associated PDE. In our pure-jump time inhomogeneous
framework, it writes

{

∂tu+ F ·Du+ Lαu− (λ+ 1)u = −F,
u(T ) = 0,

(4)

where Lα is the generator of a non-degenerate α-stable process. Reproducing the previous reasoning
concerning the expected parabolic bootstrap properties induced by the stable process, we can now expect
that, when F (t, ·) is the generalized derivative of a Hölder function F with regularity index γ (or putting
in the Besov space terminology F ∈ L∞([0, T ],B−1+γ

∞,∞ (Rd,Rd))), the gradient of the solution of the above
PDE has Hölder regularity index −1 + γ + α− 1: we gain the stability index as regularity order. Again,
in order to give a meaning to the product F · Du as a distribution (more specifically as an element of a
suitable Besov-Hölder space) in (4), one has to assume that γ is such that −1 + γ + α − 1 + γ > 1 ⇔
γ > (3 − α)/2. This is precisely the threshold that will guarantee weak well-posedness holds for a drift
F ∈ L∞([0, T ],B−1+γ

∞,∞ (Rd,Rd)).

1.2. Aim of the paper. In the current work, we aim at investigating a rather large framework by con-
sidering the d-dimensional case d ≥ 1, with a distributional, potentially singular in time, inhomogeneous
drift (in Lr([0, T ],B−1+γ

p,q (Rd,Rd))) when the noise driving the SDE is symmetric α-stable process, α in
(1, 2]. This setting thus includes both the Brownian and pure-jump case. In the latter case, we will also
be able to consider driving noises with singular spectral measures. As previously done for the aforemen-
tioned results, our strategy relies on the idea by Zvonkin. The core of the analysis therefore consists in
obtaining suitable a priori estimates on an associated underlying PDE of type (2) or (4). Namely, we
will provide a Schauder type theory for the mild solution of such PDE for a large class of data. This
result is also part of the novelty of our approach since these estimates are obtained thanks to a rather
robust methodology based on heat-kernel estimates on the transition density of the driving noise together
with duality results between Besov spaces viewed through their thermic characterization (see Section 3.1
below and Triebel [Tri83] for additional properties on Besov spaces and their characterizations). This
approach does not distinguish the pure-jump and Brownian setting provided the heat-kernel estimates
hold. It has for instance also been successfully applied in various frameworks, to derive Schauder esti-
mates and strong uniqueness for a degenerate Brownian chain of SDEs (see [CdRHM18a], [CdRHM18b])
or Schauder estimates for super-critical fractional operators [CdRMP20].

Our first main result consists in deriving the well-posedness of the martingale problem introduced in
Definition 2 under suitable conditions on the parameters p, q, r and γ, see Theorem 1. As a by-product of
our proof, we also manage to obtain through Krylov type estimates that the canonical process associated
with the solution of the martingale problem also possesses a density belonging to an appropriate Lebesgue-
Besov space (see Corollary 2).
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Then, under slightly reinforced conditions on p, q, r and γ, we are able to reconstruct the dynamics for the
canonical process associated with the solution of the martingale problem, see Theorem 3, specifying how
the Dirichlet process associated with the drift writes. In the spirit of [DD16], we in particular exhibit a
main contribution in this drift that could be useful to investigate the numerical approximations of those
singular SDEs (see equations (13) and (14)) and the recent work by De Angelis et al. [DGI19].

Let us conclude by mentioning that, while finishing the preparation of the present manuscript, we dis-
covered a brand new preprint of Ling and Zhao [LZ19] which somehow presents some overlaps with our
results. Therein, the Authors investigate a priori estimates for the elliptic version of the PDE of type
(2) or (4) with (homogeneous) drift belonging to Hölder-Besov spaces with negative regularity index (i.e.
in B−1+γ

∞,∞ (Rd,Rd)) and including a non-trivial diffusion coefficient provided the spectral measure of the
driving noise is absolutely continuous. As an application, they derive the well-posedness of the associated
martingale problem and prove that the drift can be understood as a Dirichlet process. They also obtained
quite sharp regularity estimates on the density of the solution and succeeded in including the limit case
α = 1.

In comparison with their results, we here manage to handle the case of an inhomogeneous and singular
in time drift which can also have additional space singularities, since the integrability indexes of the
parameter p, q for the Besov space are not supposed to be p = q = ∞ (recall that we assume F ∈
Lr([0, T ],B−1+γ

p,q (Rd,Rd))). Although we did not include it, we could also handle in our framework an
additional non-trivial diffusion coefficient under their standing assumptions, we refer to Remarks 7 and
14 below concerning this point. It also turns out that we obtain more accurate version of the dynamics
of the solution which is here, as mentioned above, tractable enough for practical purposes. We eventually
mention that, as a main difference with our approach, the controls in [LZ19] are mainly obtained through
Littlewood-Paley decompositions whereas we rather exploit the thermic characterization and the parabolic
framework for the PDE. In this regard, we truly think that the methodology to derive the a priori estimates
in both works can be seen as complementary.
Eventually, we mention that we also manage to derive pathwise uniqueness in the scalar case.

The paper is organized as follows. We introduce our main assumptions and state our results in the next
paragraph. Section 2 is dedicated to the proof of the main results concerning the SDE: we state in Sub-
section 2.1 the key a priori controls for the underlying PDE (with both the mollified and initial rough
coefficients) and then describe in Subsection 2.2 how to pass from the PDE results to the SDE itself,
following somehow the procedure considered by Delarue and Diel [DD16]. In Section 3, we prove the a
priori control for the PDE introducing to this end the auxiliary mathematical tools needed (heat kernel
estimates, thermic characterization of Besov spaces). Section 4 is then devoted to the reconstruction of
the dynamics from the solution to the martingale problem and Section 5 to the pathwise uniqueness in
dimension one. Eventually, we postpone to Appendix A the proof of some technical results.

In the following, we sometimes shorten L
r([0, T ],B−1+γ

p,q (RN ,RM )), for N,M in N, with the notation

Lr([0, T ],B−1+γ
p,q ) or Lr(B−1+γ

p,q ) when there are no ambiguities.

1.3. Assumptions and main results. We will denote by Lα the generator associated with the driving

stable process (Ws)s≥0. When α = 2, L2 = (1/2)∆ where ∆ stands for the usual Laplace operator on
Rd. In the pure-jump stable case α ∈ (1, 2), for all ϕ ∈ C∞

0 (Rd,R):

Lαϕ(x) = p.v.

∫

Rd

[

ϕ(x+ z) − ϕ(x)
]

ν(dz), (5)

where, writing in polar coordinates z = ρξ, ρ ∈ R+×Sd−1, the Lévy measure decomposes as ν(dz) = µ(dξ)
ρ1+α

with µ a symmetric non degenerate measure on the sphere Sd−1. Precisely, we assume:

(UE) There exists κ ≥ 1 s.t. for all λ ∈ Rd:

κ−1|λ|α ≤

∫

Sd−1

|λ · ξ|αµ(dξ) ≤ κ|λ|α. (6)

Observe in particular that a rather large class of spherical measures µ satisfy (6). From the Lebesgue mea-
sure, which actually leads, up to a normalizing constant, to Lα = −(−∆)α/2 (usual fractional Laplacian
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of order α corresponding to the generator of the isotropic stable process), to sums of Dirac masses in each

direction, i.e. µCyl =
∑d

j=1 cj(δej + δ−ej ), with (ej)j∈[[1,d]] standing for the canonical basis vectors, which

for cj = 1/2 then yields Lα = −
∑d

j=1(−∂2
xj

)α/2 corresponding to the cylindrical fractional Laplacian of
order α associated with the sum of scalar symmetric α-stable processes in each direction. In particular, it
is clear that under (UE), the process W admits a smooth density in positive time (see e.g. [Kol00]). Cor-
respondingly, Lα generates a semi-group that will be denoted from now on by Pα

t = exp(tLα). Precisely,
for all ϕ ∈ Bb(R

d,R) (space of bounded Borel functions), and all t > 0:

Pα
t [ϕ](x) :=

∫

Rd

dypα(t, y − x)ϕ(y), (7)

where pα(t, ·) stands for the density of Wt. Further properties associated with the density pα, in partic-
ular concerning the integrability properties of its derivatives, are stated in Section 3.1.

As already mentioned, the SDE (1) is stated at a formal level. Indeed, as the drift F belongs to B−1+γ
p,q it

could be only a distribution, so that the dynamics (1) cannot have a clear meaning as this stage. Our first
main result concerns the weak well-posedness for (1) in terms of the Stroock and Varadhan formulation
of martingale problem (see [SV79]). This allows to avoid, in a first step, to give a proper meaning to the
dynamics in (1). This martingale formulation is related with the well posedness of the formal Cauchy
problem associated with (5):

∂tu(t, x) + Lαu(t, x) + F (t, x) ·Du(t, x) = −f(t, x), on [0, T ) × R
d,

u(T, x) = g(x), on R
d, (8)

with source term f : R+ × Rd → R and terminal condition g : Rd → R. This leads us to the following
definition and result.

Definition 1. Let α ∈ (1, 2], f : R+ × Rd → R and g : Rd → R. For any given fixed T > 0, we say that
u : [0, T ]×Rd → R is a mild solution of the formal Cauchy problem (8) if it belongs to C0,1([0, T ]×Rd,R)
and satisfies

u(t, x) = Pα
T −[g](x) +

∫ T

t

dsPα
s−t[{f + F ·Du}](s, x),

with Pα the semi-group generated by Lα.

We can now state a slight modification of the definition of the martingale problem formulation associated
with (1).

Definition 2. Let α ∈ (1, 2]. For any given fixed T>0, we say that the martingale problem with data
(

Lα, F, x
)

, x ∈ Rd is well posed if there exists a unique probability measure Pα on C([0, T ],Rd) if α = 2

and on the Skorokhod space D([0, T ],Rd) of Rd-valued càdlàg functions if α ∈ (1, 2), s.t. the canonical
process (Xt)0≤t≤T satisfies the following conditions:

(i) Pα(X0 = x) = 1
(ii) For any f ∈ C([0, T ],L∞(Rd)), the process

(

u(t,Xt)+

∫ t

0
f(s,Xs)ds− u(0, x0)

)

0≤t≤T
(9)

is a Pα-martingale where u is the solution of the formal Cauchy with source term f and terminal
condition g ≡ 0 in the sense of Definition (1).

Having such a definition at hand, we may state our first existence and uniqueness result related to (1).

Theorem 1. Let p, q, r ≥ 1, α ∈
(

1+[d/p]
1−[1/r] , 2

]

. Then, for all γ ∈
(

3−α+[d/p]+[α/r]
2 , 1

)

, for all x ∈ Rd the

martingale problem with data
(

Lα, F, x
)

is well posed in the sense of Definition 2.

Remark 1 (On space-time integrability.). Observe that the constraint α ∈
(

(1 + [d/p])/(1 − [1/r]), 2
]

imposes that (1 + [d/p])/(1 − [1/r]) < 2 ⇐⇒ d/p + 2/r < 1, which is precisely as well the constraint
appearing for the relation between time and space integrability in the work by Krylov and Röckner [KR05]
which addresses strong uniqueness in the Brownian case for drifts locally in Lr(R+,L

p) = Lr(R+,B
0
p,p).

As a consequence of the proof of Theorem 1 we also derive the following corollary.
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Corollary 2 (Krylov type estimates and associated density bounds for the canonical process). Under the
previous assumptions, the following Krylov type estimate holds for the canonical process (Xt)t≥0. Define:

θ = γ − 1 + α−
d

p
−
α

r
. (10)

For all f ∈ C∞,

|EP
α

[

∫ T

0
f(s,Xs)ds]| ≤ C‖f‖

Lr([0,T ],Bθ−α
p,q ). (11)

with r > α/(θ − d/p) > 1 and T > 0. This in particular implies that Xt admits for almost all t > 0 a

density pα(·, x, ·) : (t, y) 7→ pα(t, x, y) in Lr′

([0, T ],B−θ+α
p′,q′ ) with 1/m+ 1/m′ = 1, m ∈ {p, q, r}.

Remark 2. Note that there is no constraint on the parameter q. This comes from the fact that such a
parameter does not play any role in the estimate. The density pα thus belongs to Lr′

([0, T ],B−θ+α
p′,∞ ).

We emphasize that this estimate seems to be not optimal for us. Roughly speaking, the expected regularity
should be the one needed to define pointwise the gradient of the solution of the associated PDE (8). As
suggested by the analysis done in point (i) of Section 3.3, one may be able to prove that the density

belongs to Lr′

([0, T ],B
α+γ−2−α/r−d/p
p′,∞ ). Note that when p = r = ∞, this threshold is, at least formally, the

one that could be obtained through the result of Debussche and Fournier [DF13] where density estimates
for (time homogeneous) stable driven SDEs with Hölder diffusion coefficients and bounded measurable
drifts are obtained. We refrain to go further in that direction as such estimate is not the main concern
of our work.

The following theorem connects the solution of the martingale problem with the dynamics of the formal
SDE (1). Namely, it specifies, in our current singular framework, how the dynamics of (1) has to be
understood. We decompose it into two terms: the first one is the driving α-stable process and the other
one is a drift obtained as the stochastic-Young limit of a regularized version of the initial drift by the
density of the driving process.

Theorem 3. If we now reinforce the assumptions of Theorem 1, assuming

γ ∈

(

3 − α+ [2d/p] + [2α/r]

2
, 1

)

, (12)

it then holds that:

Xt = x+

∫ t

0
F (s,Xs, ds) + Wt, (13)

where for any 0 ≤ v ≤ s ≤ T , x ∈ Rd,

F (v, x, s − v) =

∫ s

v

dr

∫

Rd

dyF (r, y)pα(r − v, y − x), (14)

with pα the (smooth) density of W and where the integral in (13) is understood as a Lℓ limit of the
associated Riemann sum (called L

ℓ stochatic-Young integral), 1 ≤ ℓ < α.

Corollary 4 (Associated Lℓ stochastic-Young integral, 1 ≤ ℓ < α ). Under the above assumptions, for
any 1 ≤ ℓ < α one can define a stochastic-Young integral w.r.t. the quantities in (13). Namely, for any
1 ≤ ℓ < α, there exist 1 ≤ q < ℓ and q′ ≥ 1 satisfying 1/q′ + 1/q = 1/ℓ such that for any predictable

process (ψs)s∈[0,t], (1 − 1/α− ε2)-Hölder continuous in Lq′

with 0 < ε2 < (θ − 1)/α, one has

∫ t

0
ψsdXs =

∫ t

0
ψsF (s,Xs, ds) +

∫ t

0
ψsdWs. (15)

Eventually, in the particular case d = 1, we are able to derive pathwise uniqueness for the solution of (1)
under suitable conditions. We hence recover and generalize part of the previous existing results of Bass
and Chen [BC01] and Athreya et al. [ABM20].

Theorem 5. Under the assumption of Theorem 3, when d = 1, pathwise uniqueness holds for the formal
equation (1), i.e. two weak solutions (X,W) and (X ′,W) satisfying (13) are a.s. equal.
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Remark 3. Pay attention that, in the above result, we do not claim that strong uniqueness holds. This
mainly comes from a measurability argument. In [ABM20], the Authors built the drift as a Dirichlet
process and then recover the noise part of the dynamics as the difference between the solution and the
drift allowing them in turn to work under a more standard framework (in term of measurability), and thus
to use the Yamada-Watanabe Theorem. Here, we mainly recover the noise in a canonical way, through
the martingale problem, and then build the drift as the difference between the solution and the noise.
Such a construction allows us to give a precise meaning to the drift and the loss of measurability can be
seen as the price to pay for it. Nevertheless, at this stage, one may restart with the approach of Athreya
et al. [ABM20] to define an ad hoc noise as the difference between the process and the drift (which reads
as a Dirichlet process), identify the objects obtained with the two approaches and then obtain suitable
measurability conditions to apply the Yamada-Watanabe Theorem.

Notations. Throughout the document, we denote by c, c′... some positive constants depending on the
non-degeneracy constant κ in (UE) and on the set of parameters {α, p, q, r, γ}. The notation C,C′... is
used when the constants also depend in a non-decreasing way on time T . Other possible dependencies
are also explicitly indicated.

2. Proof of the main results.

2.1. The underlying PDE. As underlined by Definitions 1 and 2, it turns out that the well-posedness
of the martingale problem associated with (1) heavily relies on the construction of a suitable theory for
the Cauchy problem (8). Obviously, as is, it is not clear that the scalar product F (t, x) ·Du(t, x) therein
makes sense, and this is why the above PDE is, for the time being, only stated formally. Here, the data
f and g are functions belonging to some spaces to be specified later on.

The aim of this section is to provide a “(p, q, r, γ) − well posedness theory” for the PDE (8) which will
in turn allow us to establish our main results for the formal SDE (1). As a key intermediate tool we
need to introduce what we will later on call the mollified PDE associated with (8). Namely, denoting
by (Fm)m∈N as sequence of smooth functions such that ‖F − Fm‖

Lr([0,T ],B−1+γ
p,q ) → 0 when m → ∞, we

introduce the mollified PDE:

∂tum(t, x) + Lαum(t, x) + Fm(t, x) ·Dum(t, x) = −f(t, x), on [0, T ] × R
d,

um(T, x) = g(x), on R
d, (16)

for which we are able to obtain the following controls.

Proposition 6. Let f, g be smooth functions where g has as well at most linear growth. Let (um)m≥0

denote the sequence of classical solutions of the mollified PDE (16). It satisfies that

∀ p, q, r ≥ 1, ∀α ∈

(

1 + d
p

1 − 1
r

, 2

]

, ∀γ ∈

(

3 − α+ d
p + α

r

2
, 1

)

, (17)

recalling from (10) that θ − 1 := γ − 2 + α − d/p − α/r > 0, there exist positive constants C :=
C(‖F‖

Lr(B−1+γ
p,q )), CT := C(T, ‖F‖

Lr(B−1+γ
p,q )), ε > 0 depending on the known parameters γ, p, q, r and

κ in (UE), s.t. for all m ≥ 0

|um(t, x)| ≤ C(1 + |x|),

‖Dum‖
L∞(Bθ−1−ε

∞,∞ ) ≤ CT (‖Dg‖
B

θ−1
∞,∞

+ ‖f‖
L∞(Bθ−α

∞,∞)), (18)

∀0 ≤ t ≤ s ≤ T, x ∈ R
d, |um(t, x) − um(s, x)| ≤ C|t− s|

θ
α ,

|Dum(t, x) −Dum(s, x)| ≤ C|t− s|
θ−1

α ,

where ε << 1 can be chosen as small as desired and T 7→ CT is a non-decreasing function.

Remark 4 (About the Schauder type estimates). Let us first mention that, when the terminal condition
g is bounded, then the solution um is itself bounded, i.e. |um(t, x)| ≤ C. Note as well that, w.r.t. to the
expected parabolic bootstrap, for s ∈ [0, T ), to give some sense to the product

∫

Rd [Dum ·Fm](s, y)dy (as
a spatial Young integral) uniformly in m, we must have −1 + γ + (−1 + γ + α) > 1 ⇐⇒ γ > (3 − α)/2.
The additional constraint γ > (3 − α)/2 + (d/p + α/r)/2 stands, in some sense, as a compensation for
the lack of boundedness in time and space of the drift and disappears when p = q = r = ∞.
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Corollary 7 (Zvonkin type theory for the mollified PDE). Let k in {1, . . . , d} and consider the mollified
PDE (16) with terminal condition g ≡ 0 and source f = −F k

m (the kth component of Fm). Under the
above assumptions, there exists a positive constant CT := C(T, ‖F‖

Lr(B−1+γ
p,q )) s.t. for each k and all

m ≥ 0, the sequence of classical solutions (uk
m)m≥0 of the mollified PDE (16) satisfies:

‖uk
m‖L∞(L∞) + ‖Duk

m‖
L∞(Bθ−1−ε

∞,∞ ) ≤ CT ,

where CT ↓ 0 when T ↓ 0. Moreover, there exists C := C(T, ‖F‖
Lr(B−1+γ)

p,q )) > 0 such that (18) holds.

Remark 5 (On the spatial smoothness of the mollified PDE). From the conditions on γ, α and the
definition of θ in (10), we carefully point out that:

θ = γ − 1 + α−
d

p
−
α

r
> 1.

This reflects the spatial smoothness of the underlying PDE. In particular, the condition θ > 1 provides
a pointwise gradient estimate for the solution of the mollified PDE. This key condition rewrites: θ >
1 ⇐⇒ γ − 2 + α− [d/p] − [α/r] > 0. It will be implied assuming that γ > [3 − α+ d/p+ α/r]/2, since
in this case [3 − α+ d/p+ α/r]/2 − 2 + α− [d/p] − [α/r] > 0 ⇐⇒ α > [1 + d/p]/[1 − 1/r].

Remark 6. Of course, to derive strong well-posedness in the multidimensional setting some controls of
the second order derivatives are needed. This is what Krylov and Röckner do in [KR05] in the Sobolev
setting. Let us also specify that, in connection with Theorem 5 and Remark 3, in the scalar setting weak
and strong uniqueness are somehow closer since, from the PDE viewpoint, they do not require to go up to
second order derivatives. Indeed, the strategy is then to develop for two weak solutions X1X2 of (1.15),
a regularized version of |X1

t − X2
t |, which somehow makes appear a kind of “local-time" term which is

handled through the Hölder controls on the gradients (see the proof of Theorem 5 and e.g. Proposition
2.9 in [ABP18]), whereas in the multidimensional setting, for strong uniqueness, the second derivatives
get in.

This, in turn, allows us to derive a well-posedness theory, in the mild sense, for the formal PDE (8)
summarized in the following theorem.

Theorem 8 (Mild theory for the associated PDE and Schauder type regularization result). Let the
assumptions of Theorem 1 hold. For θ defined in (10), so that in particular θ − 1 > 0, we assume that
g has linear growth and Dg ∈ Bθ−1

∞,∞ and f ∈ L∞([0, T ],Bθ−α
∞,∞). Then, the formal Cauchy problem (8)

admits a solution in the sense of Definition 1. Moreover, this solution is unique among all the solutions
satisfying the bounds (18) of Proposition 6 (replacing um by u).

Remark 7 (On the corresponding parabolic bootstrap). Observe that, when p = r = +∞, we almost have
a Schauder type result, namely θ = γ − 1 + α in (18) and we end up with the corresponding parabolic
bootstrap effect for both the solution of the mollified PDE (16) and the mild solution of (8), up to the
small exponent ε which can be chosen arbitrarily small.

Remark 8 (About additional diffusion coefficients). It should be noted at this point that we are confident
about the extension of the results to differential operator Lα involving non-trivial diffusion coefficient,
provided this last is Hölder-continuous in space. Sketches of proofs in this direction are given in the
Remark 14 following the proof of Proposition 6, Theorem 8 and Corollary 7. However, we avoid investing
this direction for sake of clarity and in order to focus on the more (unusual) drift component.

We conclude this part with the following analogue of Corollary 7.

Corollary 9 (Zvonkin type theory for the PDE). Let k ∈ {1, . . . , d}. The formal Cauchy problem (8) with
source term f ≡ −F k and terminal condition g = 0 (where F k stands for the kth component of F ) admits
a solution in the sense of Definition 1. Moreover, this solution is unique in the space C

(

[0, T ],Bθ−ε
∞,∞

)

.

More precisely, there exists a positive constant CT := C(T, ‖F‖
Lr(B−1+γ

p,q )) s.t. for each k this solution uk

satisfies:

‖uk‖L∞(L∞) + ‖Duk‖
L∞(Bθ−1−ε

∞,∞ ) ≤ CT ,

where CT ↓ 0 when T ↓ 0. Moreover, there exists C := C(T, ‖F‖
Lr(B−1+γ)

p,q )) > 0 such that (18) holds.
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2.2. From PDE to SDE results. We here describe the procedure to go from the “(p, q, r, γ) −
well posedness theory” for the PDE (16) deriving from Proposition 6, Corollary 7 and Theorem 8 to
the corresponding one for the SDE.

It is quite standard to derive well-posedness results for a probabilistic problem through PDE estimates.
When the drift is a function, such a strategy goes back to e.g. Zvonkin [Zvo74] or Stroock and Varadhan
[SV79]. Such strategy has been made quite systematic in the distributional setting by Delarue and Diel
in [DD16] who provide a very robust framework. To investigate the meaning and well-posedness of (1),
we adapt their procedure to the current setting.

Points (i) to (iii) allow to derive the rigorous proof of Theorem 1 provided Proposition 6, Corollary 7 and
Theorem 8 hold. Point (iv) concerns the meaning of the formal dynamics (1) and gives some highlights
to the (more involved) proof of Theorem 3. Eventually, we explain in point (v) how the PDE results
obtained in Proposition 6, Corollary 7 and Theorem 8 can be used to derive the pathwise uniqueness for
the formal SDE (1) (or more precisely for the stochastic dynamical system obtained in point (iv)). This
gives a flavor of the proof of Theorem 5.

(i) Tightness of the sequence of probability measure induced by the solution of the mollified SDE (1).
Here, we consider the regular framework induced by the mollified PDE (16). Note that in this regularized
framework, for any m, the martingale problem associated with Lα

m is well posed. We denote by Pα
m the

associated solution. Let us generically denote by (Xm
t )t≥0 the associated canonical process. Note that

the underlying space where such a process is defined differs according to the values of α: when α = 2 the
underlying space is C([0, T ],Rd) while it is D([0, T ],Rd) when α < 2.

Assume w.l.o.g. s > v, let um = (u1
m, . . . , u

d
m) where each ui

m is the solution of (16) with terminal
condition g ≡ 0 and source term f = −F k

m (i.e. the kth component of Fm). Let us define for any s ≥ v
in [0, T ]2 and for any α ∈ (1, 2] the process

Mv,s(α, um, X
m) =







































∫ s

v

Dum(r,Xm
r ) · dWr,

where W is a Brownian motion, if α = 2;
∫ s

v

∫

Rd\{0}

{um(r,Xm
r− + x) − um(r,Xm

r−)}Ñ(dr, dx),

where Ñ is the compensated Poisson measure,
if α < 2.

(19)

Note that this process makes sense since the solution um of the mollified PDE (16) is bounded. Next,
applying Itô’s formula we obtain

Xm
s −Xm

v = Mv,s(α, um, X
m) + Ws − Wv − [um(v,Xm

v ) − um(s,Xm
s )]. (20)

In order to prove that (Pα
m)m∈N actually forms a tight sequence of probability measures on C([0, T ],Rd)

(resp. on D([0, T ],Rd)), it is sufficient to prove that there exists c, p̃ and η > 0 such that EP
α
m [|Xm

s −
Xm

v |p̃] ≤ c|v− s|1+η (resp. EP
α
m [|Xm

s −Xm
0 |p̃] ≤ csη) thanks to the Kolmogorov (resp. Aldous) Criterion.

We refer e.g. for the latter to Proposition 34.9 in Bass [Bas11]. Writing

[um(v,Xm
v ) − um(s,Xm

s )]

= um(v,Xm
v ) − um(v,Xm

s ) + um(v,Xm
s ) − um(s,Xm

s ),

the result follows in small time thanks to Corollary 7 (choosing 1 < p̃ < α in the pure jump setting) and
(18) for the regularity in time.

(ii) Identification of the limit probability measure. Let us now prove that the limit is indeed a solution
of the martingale problem associated with Lα. Let f : [0, T ] ×Rd → Rd be some measurable, continuous
in time and bounded in space function, let um be the classical solution of the mollified PDE (16) with
source term f and terminal condition g ≡ 0. Applying Itô’s Formula for each um(t,Xm

t ) we obtain that

um(t,Xm
t ) − um(0, x0) −

∫ t

0
f(s,Xm

s )ds = M0,t(α, um, X
m),
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where M(α, um, X
m) is defined by (19). From this definition, if we are able to control uniformly in m

the modulus of continuity of um and of Dum, then from Arzelà -Ascoli Theorem, we know that we can
extract a subsequence (mk)k≥0 s.t. (umk

)k≥0 and (Dumk
)mk≥0 converge uniformly on compact subsets

of [0, T ] × R
d to functions u and Du respectively.

In particular, equation (48) holds for the limit functions u, Du. Hence, this implies that u is the unique
mild solution of PDE (8). Thus, together with a uniform control of the moment of Xm (which also follows
from (20) and above conditions on um), we deduce that

(

u(t,Xt)+

∫ t

0
f(s,Xs)ds− u(0, x0)

)

0≤t≤T

, (21)

is a Pα-martingale (square integrable when α = 2) by letting the regularization procedure tend to infinity.

(iii) Uniqueness of the limit probability measure. We now come back to the canonical space (which
again depends on the current value of α), and let Pα and P̃α be two solutions of the martingale problem
associated with data (Lα, F , x0), x0 in R

d. Thus, for all continuous in time and measurable and bounded
in space functions f : [0, T ] × Rd → R we have, setting again g ≡ 0, from Theorem 8

u(0, x0) = E
P

α

[

∫ T

0
f(s,Xs)ds

]

= E
P̃

α

[

∫ T

0
f(s,Xs)ds

]

,

so that the marginal laws of the canonical process are the same under Pα and P̃α. We extend the result
on R+ thanks to regular conditional probabilities, see Chapter 6.2 in [SV79] . Uniqueness then follows
from Corollary 6.2.4 of [SV79].

(iv) Reconstructing the dynamics associated with the formal SDE (1). This part requires to introduce an
enhanced martingale problem (considering (X,W) as canonical process). Working within this enlarged
setting allows to recover the drift part of the dynamics by studying the difference between the increment
of the process and the associated stable noise on small time intervals which are further meant to be
infinitesimal. It turns out that, for any time interval [v, s] considering f(v,Xv, s − v) := us(v,Xv) − Xv

(where we denote by us the solution of (8) on the time-interval [0, s], with terminal condition us(s, x) = x
and f = 0), which can be expanded as in (14), we establish sufficient quantitive controls to be able to

give a meaning through stochastic-Young type integration to
∫ t

0 f(v,Xv, dv) which in turns is the limit
drift of the dynamics. Observe as well from (14) that, on a small time interval, the Euler approximation
of the drift writes as F (v,Xv, s − v) =

∫ s

v
dr
∫

Rd dyF (r, y)pα(r − v, y −Xv) which is nothing but the
convolution of the initial distributional drift with the density of the driving noise. Importantly, this limit
drift is also a Dirichlet process. We eventually mention that, the previous explicit representation of the
drift could also be useful in order to derive numerical approximations for the SDE (13). We can to this
end mention the recent work by De Angelis et al. [DGI19] who considered in the Brownian scalar case
some related issues.

(v) About the strong well-posedness for (13). Having at hand a representation for the dynamics, it is
tempting to wonder if pathwise uniqueness holds for the SDE (13) or even if it admits a strong solution.
As mentioned in the previous point, we know in particular that the drift part in (13) reads as a Dirichlet
process. The point is then to apply the Itô formula for Dirichlet processes to expand any weak solution of
(13) along the solution of the mollified PDE (16) with source term −Fm and terminal condition 0 (then
allowing us to obtain a Zvonkin representation of the weak solution, see Section 5). This yields to

XZ,m
t := Xt − um(t,Xt)

= x− um(0, x) + Wt −M0,t(α, um, X) +R0,t(α, Fm,F , X). (22)

whereM0,t(α, um, X) is as in (19) withX instead ofXm therein andR0,t(α, Fm,F , X) :=
∫ t

0 F (s,Xs, ds)−
Fm(s,Xs)ds. This strategy is slightly different from the one implemented in [ABM20], where the authors
consider the limit PDE itself getting rid of the remainder term R0,t(α, Fm,F , X). We feel our approach is
more adapted with the way we reconstruct the dynamics of the drift. The remainder will indeed be han-
dled through some a priori controls for the drift leading to pathwise uniqueness. Again, the by-product
is that we are faced with some measurability issues (see also Remark 3). We think that reproducing the
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strategy of [ABM20] would lead to strong well-posedness as soon as the parameters satisfy the previous
condition (12) in Theorem 3.

3. PDE analysis.

This part is dedicated to the proofs of Proposition 6, Corollary 7 and Theorem 8. It is thus the core of
this paper as these results allow to recover, specify and extend, most of the previous results on SDEs
with distributional drifts discussed in the introduction. Especially, as they are handled, the proofs are
essentially the same in the diffusive (α = 2) and pure jump (α < 2) setting as they only require heat
kernel type estimates on the density of the associated underlying noise. We first start by introducing
the mathematical tools in Section 3.1. Then, we provide a primer on the PDE (8) by investigating the
smoothing properties of the Green kernel associated with the stable noise in Section 3.2. Eventually, we
derive in Section 3.3 the proofs of Proposition 6, Corollary 7 and Theorem 8. We importantly point out
that, from now on and in all the current section, we assume without loss of generality that T ≤ 1.

3.1. Mathematical tools. In this part, we give the main mathematical tools needed to prove Propo-
sition 6 and Theorem 8.

Heat kernel estimates for the density of the driving process. Under (UE), it is rather well known
that the following properties hold for the density pα of W . For the sake of completeness we provide a
complete proof.

Lemma 10 (Bounds and Sensitivities for the stable density). There exists C := C((UE)) s.t. for all
ℓ ∈ {1, 2}, t > 0, and y ∈ Rd:

|Dℓ
ypα(t, y)| ≤

C

tℓ/α
qα(t, y), |∂ℓ

tpα(t, y)| ≤
C

tℓ
qα(t, y), (23)

where
(

qα(t, ·)
)

t>0 is a family of probability densities on Rd such that qα(t, y) = t−d/α qα(1, t−1/αy),

t > 0, ∈ R
d and for all γ ∈ [0, α), there exists a constant c := c(α, η, γ) s.t.

∫

RN

qα(t, y)|y|γdy ≤ Cγt
γ
α , t > 0. (24)

Remark 9. From now on, for the family of stable densities
(

q(t, ·)
)

t>0, we also use the notation q(·) :=

q(1, ·), i.e. without any specified argument q(·) stands for the density q(t, ·) at time t = 1.

Proof. We focus here on the pure jump case α ∈ (1, 2). Indeed, for α = 2 the density of the driving
Brownian motion readily satisfies the controls of (23) with qα replaced by a suitable Gaussian density.

Let us recall that, for a given fixed t > 0, we can use an Itô-Lévy decomposition at the associated
characteristic stable time scale for W (i.e. the truncation is performed at the threshold t

1
α ) to write

Wt := Mt +Nt where Mt and Nt are independent random variables. More precisely,

Ns =

∫ s

0

∫

|x|>t
1
α

xN(du, dx), Ms = Ws −Ns, s ≥ 0, (25)

where N is the Poisson random measure associated with the process W ; for the considered fixed t > 0, Mt

and Nt correspond to the small jumps part and large jumps part respectively. A similar decomposition
has been already used in [Wat07], [Szt10] and [HM16], [HMP19] (see in particular Lemma 4.3 therein).
It is useful to note that the cutting threshold in (25) precisely yields for the considered t > 0 that:

Nt
(law)
= t

1
αN1 and Mt

(law)
= t

1
αM1. (26)

To check the assertion about N we start with

E[ei(λ·Nt)] = exp
(

t

∫

Sd−1

∫ ∞

t
1
α

(

cos(λ · (rξ)) − 1
) dr

r1+α
µS(dξ)

)

, λ ∈ R
d

(see [Sat99]). Changing variable r/t1/α = s we get that E[ei〈λ,Nt〉] = E[ei〈λ,t1/αN1〉] for any λ ∈ Rd and
this shows the assertion (similarly we get the statement for M). The density of Wt then writes

pα(t, x) =

∫

Rd

pM (t, x− ξ)PNt(dξ), (27)
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where pM (t, ·) corresponds to the density of Mt and PNt stands for the law of Nt. From Lemma A.2 in
[HMP19] (see as well Lemma B.1 in [HM16]), pM (t, ·) belongs to the Schwartz class S (RN ) and satisfies
that for all m ≥ 1 and all ℓ ∈ {0, 1, 2}, there exist constants C̄m, Cm s.t. for all t > 0, x ∈ Rd:

|Dℓ
xpM (t, x)| ≤

C̄m

t
ℓ
α

pM̄ (t, x), where pM̄ (t, x) :=
Cm

t
d
α

(

1 +
|x|

t
1
α

)−m

(28)

where Cm is chosen in order that pM̄ (t, ·) be a probability density.

We carefully point out that, to establish the indicated results, since we are led to consider potentially
singular spherical measures, we only focus on integrability properties similarly to [HMP19] and not on
pointwise density estimates as for instance in [HM16]. The main idea thus consists in exploiting (25),
(27) and (28). The derivatives on which we want to obtain quantitative bounds will be expressed through
derivatives of pM (t, ·), which also give the corresponding time singularities. However, as for general
stable processes, the integrability restrictions come from the large jumps (here Nt) and only depend
on its index α. A crucial point then consists in observing that the convolution

∫

Rd pM̄ (t, x − ξ)PNt(dξ)
actually corresponds to the density of the random variable

W̄t := M̄t +Nt, t > 0 (29)

(where M̄t has density pM̄ (t, .) and is independent of Nt; to have such decomposition one can define each
W̄t on a product probability space). Then, the integrability properties of M̄t + Nt, and more generally
of all random variables appearing below, come from those of M̄t and Nt.

One can easily check that pM̄ (t, x) = t−
d
α pM̄ (1, t−

1
αx), t > 0, x ∈ Rd. Hence

M̄t
(law)
= t

1
α M̄1, Nt

(law)
= t

1
αN1.

By independence of M̄t and Nt, using the Fourier transform, one can easily prove that

W̄t
(law)
= t

1
α W̄1. (30)

Moreover, E[|W̄t|
γ ] = E[|M̄t + Nt|

γ ] ≤ Cγt
γ
α (E[|M̄1|γ ] + E[|N1|γ ]) ≤ Cγt

γ
α , γ ∈ (0, α). This shows that

the density of W̄t verifies (24). The controls on the spatial derivatives are derived similarly using (28)
for ℓ ∈ {1, 2} and the same previous argument. The bound for the time derivatives follow from the
Kolmogorov equation ∂tpα(t, z) = Lαpα(t, z) and (27) using the fact that for all x ∈ Rd, |LαpM (t, x)| ≤
Cmt

−1p̄M (t, x) (see again Lemma 4.3 in [HMP19] for details). �

Thermic characterization of Besov norm. In the sequel, we will intensively use the thermic charac-
terisation of Besov spaces, see e.g. Section 2.6.4 of Triebel [Tri83]. Precisely, for ϑ ∈ R,m ∈ (0,+∞], l ∈
(0,∞], Bϑ

l,m(Rd) := {f ∈ S′(Rd) : ‖f‖Hϑ
l,m

,α < +∞} where S(Rd) stands for the Schwartz class and

‖f‖Hϑ
l,m

,α := ‖ϕ(D)f‖Ll(Rd) +
(

∫ 1

0

dv

v
v(n− ϑ

α )m‖∂n
v p̃α(v, ·) ⋆ f‖m

Ll(Rd)

)
1

m

, (31)

with ϕ ∈ C∞
0 (Rd) (smooth function with compact support) s.t. ϕ(0) 6= 0, ϕ(D)f := (ϕf̂)∨ where f̂

and (ϕf̂)∨ respectively denote the Fourier transform of f and the inverse Fourier transform of ϕf̂ . The
parameter n is an integer s.t. n > ϑ/α and for v > 0, z ∈ Rd, p̃α(v, ·) denotes the density of the
d-dimensional isotropic stable process at time v. In particular p̃α satisfies the bounds of Lemma 10
and in that case the upper-bounding density can be specified. Namely, in that case (23) holds with
qα(t, x) = Cαt

−d/α(1 + |x|/t1/α)−(d+α).

Importantly, it is well known that Bϑ
l,m(Rd,R) and B

−ϑ
l′,m′(Rd,R) where l′,m′ are the conjugates of l,m

respectively are in duality. Namely, for (l,m) ∈ [1,∞]2, Bϑ
l,m = (B−ϑ

l′,m′)∗, see e.g. Theorem 4.1.3 in

[AH96] or Proposition 3.6 in [LR02]. In particular, for all (f, g) ∈ B
ϑ
l,m(Rd,R) × B

−ϑ
l′,m′(Rd,R) which are

also functions:

|

∫

Rd

f(y)g(y)dy| ≤ ‖f‖Bϑ
l,m

‖g‖
B

−ϑ

l′,m′
. (32)

In the following we call thermic part the second term in the right hand side of (31). This contribution
will be denoted by T ϑ

l,m[f ].
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Remark 10. As it will be clear in the following, the first part of the r.h.s. in (31) will be the easiest part
to handle (in our case) and will give negligible contributions. For that reason, we will only focus on the
estimation of the thermic part of the Besov norm below. See Remark 15 in the proof of Lemma 11 in
Appendix A for details.

Auxiliary estimates. We here provide some useful estimates whose proofs are postponed to Appendix
A. We refer to the next Section 3.2 for a flavor of those proofs as well as for applications of such results.

Lemma 11. Let Ψ : [0, T ] × Rd → Rd. Assume that for all s in [0, T ] the map y 7→ Ψ(s, y) is in
Bβ

∞,∞(Rd) for some β ∈ (0, 1]. Define for any α in (1, 2], for all η ∈ {0, 1, α}, the differential operator
Dη by

D̂
η :=







Id if η = 0,
−iξ if η = 1,
|ξ|α if η = α,

(33)

and let pα(t, ·) be the density of Wt defined in (27). Then, there exists a constant C := C((UE), T ) > 0
such that for any γ in (1 − β, 1), any p′, q′ ≥ 1, all t < s in [0, T ]2, for all x in Rd

‖Ψ(s, ·)Dηpα(s− t, · − x)‖
B

1−γ

p′,q′
≤ ‖Ψ(s, ·)‖

B
β
∞,∞

C

(s− t)[
1−γ

α + d
pα + η

α ]
, (34)

where p is the conjugate of p′. Also, for any γ in (1 − β, 1] all t < s in [0, T ]2, for all x, x′ in Rd it holds
that for all β′ ∈ (0, 1),

‖Ψ(s, ·)
(

D
ηpα(s− t, · − x) − D

ηpα(s− t, · − x′)
)

‖
B

1−γ

p′,q′

≤ ‖Ψ(s, ·)‖
B

β
∞,∞

C

(s− t)

[

1−γ
α + d

pα + η+β′

α

] |x− x′|β
′

, (35)

up to a modification of C:= C((UE), T, β′).

3.2. A primer on PDE (8): reading almost optimal regularity through Green kernel esti-
mates. Equation (8) can be rewritten as

∂tu(t, x) + Lαu(t, x) = f(t, x) − F (t, x) ·Du(t, x), on [0, T ] × R
d,

u(T, x) = g(x), on R
d, (36)

viewing the first order term as a source (depending here on the solution itself). In order to understand
what type of smoothing effects can be expected for rough source we first begin by investigating the
smoothness of the following equation:

∂tw(t, x) + Lαw(t, x) = Φ(t, x), on [0, T ] × R
d,

w(T, x) = 0, on R
d, (37)

The parallel with the initial problem (8), rewritten in (36), is rather clear. We will aim at applying the
results obtained below for the solution of (37) to Φ = −f −F ·Du (where the roughest part of the source
will obviously be F ·Du).

Given a map Φ in Lr(B−1+γ
p,q ) we now specifically concentrate on the gain of regularity which can be

obtained through the fractional operator Lα for the solution w of (37) w.r.t. the data Φ. Having a lot of
parameters at hand, this will provide a primer to understand what could be, at best, attainable for the
target PDE (36)-(8).

The solution of (37) corresponds to the Green kernel associated with Φ defined as:

GαΦ(t, x) =

∫ T

t

ds

∫

Rd

dyΦ(s, y)pα(s− t, y − x). (38)

Since to address the well-posedness of the martingale problem we are led to contol, in some sense,
gradients, we will here try to do so for the Green kernel introduced in (38) solving the linear problem

(37) with rough source. Namely for a multi-index η ∈ N
d, |η| :=

∑d
i=1 ηi ≤ 1, we want to control

Dη
xG

αΦ(t, x)

Avoiding harmonic analysis techniques, which could in some sense allow to average non-integrable singu-
larities, our approach allows to obtain almost optimal regularity thresholds that could be attainable on u.
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Thanks to the Hölder inequality (in time) and the duality on Besov spaces (see equation (32)) we have
that:

|Dη
xG

αΦ(t, x)| =

∣

∣

∣

∣

∣

∫ T

t

ds

∫

Rd

dyΦ(s, y)Dη
xp(s− t, y − x)

∣

∣

∣

∣

∣

≤ ‖Φ‖
Lr((t,T ],B−1+γ

p,q )‖D
η
xpα(· − t, · − x)‖

Lr′ ((t,T ],B1−γ

p′,q′ ),

where p′, q′ and r′ are the conjugate exponents of p, q and r. Let us first focus, for s ∈ (t, T ] on the
thermic part of ‖Dη

xpα(s− t, · − x)‖
B

1−γ

p′,q′
. We have with the notations of Section 3.1:

(

T 1−γ
p′,q′ [Dη

xpα(s− t, · − x)]
)q′

=

∫ 1

0

dv

v
v(1− 1−γ

α )q′

‖∂vp̃α(v, ·) ⋆ Dη
xpα(s− t, · − x)‖q′

Lp′

=

∫ (s−t)

0

dv

v
v(1− 1−γ

α )q′

‖∂vp̃α(v, ·) ⋆ Dη
xpα(s− t, · − x)‖q′

Lp′

+

∫ 1

(s−t)

dv

v
v(1− 1−γ

α )q′

‖∂vp̃α(v, ·) ⋆ Dη
xpα(s− t, · − x)‖q′

Lp′

=:
(

T 1−γ
p′,q′ [Dη

xpα(s− t, · − x)]|[0,(s−t)]

)q′

(39)

+
(

T 1−γ
p′,q′ [Dη

xpα(s− t, · − x)]|[(s−t),1]

)q′

.

In the above equation, we split the time interval into two parts. On the upper interval, for which there are
no time singularities, we use directly convolution inequalities and the available controls for the derivatives
of the heat kernel (see Lemma 10). On the lower interval we have to equilibrate the singularities in v and
use cancellation techniques involving the sensitivities of Dη

xpα (which again follow from Lemma 10).

Let us begin with the upper part (i.e. the second term in (39)). Using the L1 −Lp′

convolution inequality,
we have from Lemma 10:

(

T 1−γ
p′,q′ [Dη

xpα(s− t, · − x)]|[(s−t),1]

)q′

≤

∫ 1

(s−t)

dv

v
v(1− 1−γ

α )q′

‖∂vp̃α(v, ·)‖q′

L1‖Dη
xpα(s− t, · − x)‖q′

Lp′

≤
C

(s− t)( d
pα + |η|

α )q′

∫ 1

(s−t)

dv

v

1

v
1−γ

α q′
≤

C

(s− t)

[

1−γ
α + d

pα + |η|
α

]

q′
. (40)

Indeed, we used for the second inequality that equation (23) and the self similarity of qα give:

‖Dη
xpα(s− t, · − x)‖

Lp′ =
(

∫

Rd

(

Dη
xpα(s− t, x)

)p′

dx
)1/p′

≤
Cp′

(s− t)
|η|
α

(

(s− t)− d
α (p′−1)

∫

Rd

dx

(s− t)
d
α

(

qα(1,
x

(s− t)
1
α

)
)p′)1/p′

≤ Cp′(s− t)−[ d
αp + |η|

α ]
(

∫

Rd

dx̃
(

q(1, x̃)
)p′)1/p′

≤ C̄p′ (s− t)−[ d
αp + |η|

α ],

(41)

recalling that p−1 + (p′)−1 = 1 and p ∈ (1,+∞], p′ ∈ [1,+∞) for the last inequality.

Hence, the map s 7→ T 1−γ
p′,q′ [Dη

xpα(s− t, · − x)]|[(s−t),1] belongs to Lr′

((t, T ],R+) as soon as

−r′

[

1 − γ

α
+

d

pα
+

|η|

α

]

> −1 ⇐⇒ |η| < α(1 −
1

r
) + γ − 1 −

d

p
. (42)
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We now focus on the lower part (i.e. the first term in (39)). Still from (23) (see again the proof of Lemma
4.3 in [HMP19] for details), one derives that there exists C s.t. for all β ∈ (0, 1] and all (x, y, z) ∈ (Rd)2,

|Dη
xpα(s− t, z − x) −Dη

xpα(s− t, y − x)|

≤
C

(s− t)
β+|η|

α

|z − y|β
(

qα(s− t, z − x) + qα(s− t, y − x)
)

. (43)

Indeed, (43) is direct if |z − y| ≥ (1/2)(s − t)1/α (off-diagonal regime). It suffices to exploit the bound

(23) for Dη
xpα(s− t, y − x) and Dη

xpα(s− t, z − x) and to observe that
(

|z − y|/(s− t)1/α
)β

≥ 1. If now

|z− y| ≤ (1/2)(s− t)1/α (diagonal regime), it suffices to observe from (28) that, with the notations of the
proof of Lemma 10 (see in particular (27)), for all λ ∈ [0, 1]:

|Dη
xDpM (s− t, y − x+ λ(y − z))|

≤
Cm

(s− t)
|η|+1

α

pM̄ (s− t, y − x− λ(y − z))

≤
Cm

(s− t)
|η|+1+d

α

1
(

1 + |y−x−λ(z−y)|

(s−t)
1
α

)m

≤
Cm

(s− t)
|η|+1+d

α

1
(

1
2 + |y−x|

(s−t)
1
α

)m ≤ 2
Cm

(s− t)
|η|+1

α

pM̄ (s− t, y − x).

(44)

Therefore, in the diagonal case (43) follows from (44) and (27) writing |Dη
xpα(s − t, z − x) − Dη

xpα(s −

t, y− x)| ≤
∫ 1

0 dλ|Dη
xDpα(s− t, y− x+ λ(y− z)) · (y− z)| ≤ 2Cm(s− t)−(|η|+1)/αqα(s− t, y− x)|z − y| ≤

C̃m(s− t)−(|η|+β)/αqα(s− t, y− x)|z− y|β for all β ∈ [0, 1] (exploiting again that |z− y| ≤ (1/2)(s− t)1/α

for the last inequality). From (43) we now derive:

‖∂v p̃α(v, ·) ⋆ Dη
xpα(s− t, · − x)‖Lp′

=
(

∫

Rd

dz|

∫

Rd

dy∂v p̃α(v, z − y)Dη
xpα(s− t, y − x)|p

′
)1/p′

=
(

∫

Rd

dz
∣

∣

∣

∫

Rd

dy∂vp̃α(v, z − y)

×
[

Dη
xpα(s− t, y − x) −Dη

xpα(s− t, z − x)
]∣

∣

∣

p′
)1/p′

≤
1

(s− t)
|η|+β

α

(

∫

Rd

dz
∣

∣

∣

∫

Rd

dy|∂vp̃α(v, z − y)| |z − y|β

×
[

qα(s− t, y − x) + qα(s− t, z − x)
]

∣

∣

∣

p′
)1/p′

≤
Cp′

(s− t)
|η|+β

α

[

(

∫

Rd

dz
∣

∣

∣

∫

Rd

dy|∂v p̃α(v, z − y)| |z − y|βqα(s− t, y − x)
∣

∣

∣

p′
)1/p′

+
(

∫

Rd

dz
(

qα(s− t, z − x)
)p′(

∫

Rd

dy|∂vp̃α(v, y − z)| |y − z|β
)p′
)1/p′

]

.

(45)

From the L1 − Lp′

convolution inequality and Lemma 10 (see also (41)) we thus obtain:

‖∂vp̃α(v, ·) ⋆ Dη
xpα(s− t, · − x)‖

Lp′ ≤
Cp′

(s− t)
|η|+β+ d

p
α

v−1+ β
α .
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Hence,
(

T 1−γ
p′,q′ [Dη

xpα(s− t, · − x)]|[0,(s−t)]

)q′

≤
C

(s− t)

[

d
pα + |η|

α + β
α

]

q′

∫ (s−t)

0

dv

v
v(1− 1−γ

α −1+ β
α )q′

≤
C

(s− t)

[

d
pα + |η|

α + β
α + 1−γ−β

α

]

q′
=

C

(s− t)

[

d
pα + |η|

α + 1−γ
α

]

q′
, (46)

provided β + γ > 1 for the second inequality (which can be assumed since we can choose β arbitrarily in

(0, 1)). The map s 7→ T 1−γ
p′,q′ [Dη

xpα(s − t, · − x)]|[0,(s−t)] hence belongs to L
r′

((t, T ],R+) under the same

previous condition on η than in (42). Let us eventually mention that the above arguments somehow
provide the lines of the proof of Lemma 11 for Ψ = 1. The proof in its whole generality is provided in
Appendix A.

Remark 11 (Pointwise gradient estimate on Gα). The condition in (42) then precisely gives that the
gradient of the Green kernel will exist pointwise (with uniform bound depending on the Besov norm of
Φ) as soon as:

1 < α(1 −
1

r
) + γ − 1 −

d

p
⇐⇒ γ > 2 − α(1 −

1

r
) +

d

p
. (47)

In particular, provided (47) holds, the same type of arguments would also lead to a Hölder control of the
gradient in space of index ζ < α(1 − 1/r) + γ − 1 − d/p− 1. This The previous computations somehow
provide the almost optimal regularity that could be attainable for u (through what can be derived from
w solving (37)). The purpose of the next section will precisely be to prove that these arguments can be
adapted to that framework. The price to pay will be some additional constraint on the γ because we will
precisely have to handle the product F ·Du.

Remark 12 (On the second integrability parameter “q” in the Besov norm). Eventually, we emphasize
that the parameter q does not play a key role in the previous analysis. Indeed, none of the thresholds
appearing depend on this parameter. Since for all γ, p we have that for all q < q′ that Bγ

p,q ⊂ Bγ
p,q′ the

above analysis suggests that it could be enough to consider the case q = ∞. Nevertheless, as it does not
provide any additional difficulties, we let the parameter q vary in the following.

3.3. Uniform estimates of the solution of the mollified version of PDE (8) and associated
(uniform) Hölder controls. This part is dedicated to the proof of Proposition 6 and Corollary 7. It
is known that, under (UE) and for ϑ > α, if g ∈ B

ϑ
∞,∞(Rd,R) is also bounded and f ∈ B

ϑ−α
∞,∞(Rd,R),

there exists a unique classical solution u := um ∈ L∞([0, T ],Bϑ
∞,∞(Rd,R)) to the mollified PDE (16).

This is indeed the usual Schauder estimates for sub-critical stable operators (see e.g. Priola [Pri12] or
Mikulevicius and Pragarauskas who also address the case of a multiplicative noise [MP14]). It is clear
that the following Duhamel representation formula holds for um. With the notations of (7):

um(t, x) = Pα
T −t[g](x) +Gαf(t, x) + rm(t, x), (48)

where the Green kernel Gα is defined by (38) and where the remainder term rm is defined as follows:

rm(t, x) :=

∫ T

t

dsPα
T −s[Fm(s, ·) ·Dum(s, ·)](x). (49)

It is plain to check that, if we now relax the boundedness assumption on g, supposing it can have linear
growth, there exists C := C(d) > 0 such that

∥

∥DPα
T −t[g]

∥

∥

L∞([0,T ],Bϑ−1
∞,∞) + ‖Gαf‖

L∞([0,T ],Bϑ
∞,∞)

≤ C
(

‖f‖
L∞([0,T ],Bϑ−α

∞,∞) + ‖Dg‖
B

ϑ−1
∞,∞

)

.

We also refer to the section concerning the smoothness in time below for specific arguments related to a
terminal condition with linear growth.

In the following, we will extend the previous bounds in order to consider singular sources as well. In
order to keep the notations as clear as possible, we drop the superscript m associated with the mollifying



STABLE SDES WITH BESOV DRIFT 17

procedure for the rest of the section. Note also that the following analysis will allow us to drop the above
condition ϑ > α, i.e. the above Duhamel representation holds in our setting with ϑ = θ.

(i) Gradient bound. Let us first control the terminal condition. We have, integrating by parts and using
usual cancelation arguments,

|DPα
T −t[g](x)| ≤

d
∑

j=1

|∂xjP
α
T −t[g](x)| ≤

d
∑

j=1

∣

∣

∣

∣

∫

Rd

dy∂jg(y)pα(T − t, y − x)

∣

∣

∣

∣

≤
d
∑

j=1

C‖Dg‖
B

θ−1
∞,∞

. (50)

We now turn to control the Green kernel part. Write

|DGαf(t, x)| ≤

d
∑

j=1

|∂xjG
αf(t, x)|

=

d
∑

j=1

∣

∣

∣

∣

∣

∫ T

t

ds

∫

Rd

dyf(s, y)∂xjpα(s− t, y − x)

∣

∣

∣

∣

∣

≤

d
∑

j=1

‖f‖
L∞(Bθ−α

∞,∞)‖∂xjpα(· − t, · − x)‖
L1(Bα−θ

1,1 ).

From the very definition (10) of θ we have θ − α + 1 < 1 and (θ − α + 1) + 1 > 1. We can thus apply
Lemma 11 (see eq. (34) with γ = θ − α+ 1, β = 1, η = 1 and Ψ = 1 therein) to obtain

‖∂xjpα(s− t, · − x)‖
B

α−θ
1,1

(

Rd
) ≤

C

(s− t)[
α−θ

α + 1
α ]
.

Recalling θ > 1, we thus obtain

‖DGαf‖
L∞ ≤ C(T − t)

θ−1
α ‖f‖

L∞([0,T ],Bθ−α
∞,∞). (51)

Let us now focus on first gradient estimate of r. Using the Hölder inequality and then Besov duality we
have,

|Dr(t, x)| ≤

d
∑

j=1

|∂xj r(t, x)|

≤

d
∑

j=1

d
∑

k=1

∣

∣

∣

∣

∣

∫ T

t

ds

∫

Rd

dyFk(s, y)∂yk
u(s, y)∂xjpα(s− t, y − x)

∣

∣

∣

∣

∣

≤
d
∑

j=1

d
∑

k=1

‖Fk‖
Lr(B−1+γ

p,q )‖∂ku∂xjpα(· − t, · − x)‖
Lr′ (B1−γ

p′,q′ ), (52)

so that the main issue consists in establishing the required control on the map (t, T ] ∋ s 7→ ‖∂ku(s, ·)∂xjpα(·−

t, · − x)‖
B

1−γ

p′,q′
for any j, k in [[1, d]]. Note that since for all s in [0, T ] the map y 7→ u(s, y) is in Bϑ

∞,∞ for

any ϑ ∈ (α, α + 1], we have in particular from the very definition of θ (see eq. (10)) and assumptions
on γ that there exists ε > 0 such that θ − 1 − ε > 0, θ − 1 − ε + γ > 1 and for all s in [0, T ] the map
y 7→ ∂ku(s, y) is in B

θ−1−ε
∞,∞ . One can hence apply Lemma 11 so that (see eq. (34) with β = θ − 1 − ε,

η = 1 and Ψ(s, ·) = ∂ku(s, ·) therein)

‖∂ku(s, ·)∂xjpα(s− t, · − x)‖
B

1−γ

p′,q′
≤ ‖∂ku(s, ·)‖

B
θ−1−ε
∞,∞

C

(s− t)[
1−γ

α + d
pα + 1

α ]
.

This map hence belongs to L
r′

((t, T ],R+) as soon as

−r′

[

d

pα
+

1

α
+

1 − γ

α

]

> −1 ⇔ γ > 2 − α+
α

r
+
d

p
, (53)
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which follows from the assumptions on γ. We then obtain, after taking the Lr′

((t, T ],R+) norm of the
above estimate, that

|Dr(t, x)| ≤ CT
θ−1

α ‖Du‖
L∞(Bθ−1−ε

∞,∞ ), (54)

recalling from (10) that θ = γ − 1 + α− d/p− α/r.

(ii) Hölder norm of the gradient. As in the above proof we obtain gradient bounds depending on the
spatial Hölder norm of Du, we now have to precisely estimate this quantity. The main difficulty is induced
by the remainder term:

|Dr(t, x) −Dr(t, x′)|

≤

d
∑

j=1

|∂jr(t, x) − ∂jr(t, x
′)|

≤

d
∑

j=1

d
∑

k=1

∣

∣

∣

∫ T

t

ds

∫

Rd

dyFk(s, y) (∂yk
u(s, y)

×
(

∂xjpα(s− t, y − x) − ∂xjpα(s− t, y − x′)
))

∣

∣

∣

≤

d
∑

j,k=1

‖Fk‖
Lr(B−1+γ

p,q )‖∂ku
(

∂xjpα(·− t, ·− x) − ∂xjpα(·− t, ·− x′)
)

‖
Lr′ (B1−γ

p′,q′ ),

using again the Hölder inequality and duality between the considered Besov spaces (see Section 3.1).
Hence, the main issue consists in establishing the required control on the map

(t, T ] ∋ s 7→ ‖∂ku(s, ·)
(

∂xjpα(s− t, · − x) − ∂xjpα(s− t, · − x′)
)

‖
Lr′ (B1−γ

p′,q′ ),

for any j, k in [[1, d]]. Since θ − 1 − ε < 1, one can again apply Lemma 11 so that (see eq. (35) with
β = θ − 1 − ε, β′ = θ − 1 − ε, η = 1 and Ψ(s, ·) = ∂ku(s, ·) therein):

‖∂ku(s, ·)
(

∂xjpα(s− t, · − x) − ∂xjpα(s− t, · − x′)
)

‖
B

1−γ

p′,q′

≤ ‖∂ku(s, ·)‖
B

θ−1−ε
∞,∞

C

(s− t)

[

1−γ
α + d

pα + 1+(θ−1−ε)
α

] |x− x′|θ−1−ε

≤
C‖∂ku‖

L∞(Bθ−1−ε
∞,∞ )

(s− t)

[

1−γ
α + d

pα + 1+(θ−1−ε)
α

] |x− x′|θ−1−ε.

The above map hence belongs to Lr′

((t, T ],R+) as soon as

−r′

[

d

pα
+

1 + (θ − 1 − ε)

α
+

1 − γ

α

]

> −1 ⇔ θ − 1 − ε < γ −

(

2 − α+
α

r
+
d

p

)

, (55)

which readily follows from the very definition of θ (see eq. (10)) and the fact that ε > 0. We then obtain

|Dr(t, x) −Dr(t, x′)| ≤ CT
ε
α ‖Du‖

L∞(Bθ−1−ε
∞,∞ )|x− x′|θ−1−ε. (56)

Remark 13. Note that assuming that θ is fixed, we readily obtain from (55) together with the constraint
θ − 1 − ε+ γ > 1 the initial constraint

γ >
3 − α+ d

p + α
r

2
. (57)

In comparison with the threshold obtained when investigating the smoothing effect of the Green kernel
(see eq. (47) and the related discussion) this additional regularity allows to define the product F · Du.
Indeed, if one wants to define it e.g. as a Young integral, one has to require the sum of the local regularity
indexes of the two maps to be greater than one: θ − 1 − ε + γ > 1. Extensions are possible and there
already exist robust theories to bypass such a constraint (rough path in dimension 1, paracontrolled
distribution or regularity structures) but, to the best of our knowledges, it requires the map F to be
enhanced to a rough distribution F̃ , which significantly restraints the possible choices of the drift.
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Let us eventually estimate the Hölder moduli of the gradients of the first and second terms in the Duhamel
representation (48). We first note that, for the Green kernel, the proof follows from the above lines. When
doing so, we obtain that

|DGαf(t, x) −DGαf(t, x′)| ≤ CT
ε
α ‖f‖

B
θ−α
∞,∞

|x− x′|θ−1−ε. (58)

Concerning the terminal condition, we have on the one hand, when (T − t)
1
α ≤ |x − x′| (off-diagonal

regime), that:

|DPα
T −t[g](x) −DPα

T −t[g](x′)|

=

∣

∣

∣

∣

∫

Rd

dyDg(y)
(

pα(T − t, y − x) − pα(T − t, y − x′)
)

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∫

Rd

dy
(

Dg(y) −Dg(x)
)

pα(T − t, y − x) +Dg(x) −Dg(x′)

−

∫

Rd

dy
(

Dg(y) −Dg(x′)
)

pα(T − t, y − x′)

∣

∣

∣

∣

∣

≤ C‖Dg‖
B

θ−1
∞,∞

|x− x′|θ−1−ε,

recalling that pα is a density for the first inequality. On the other hand, when (T−t)
1
α > |x−x′| (diagonal

regime), we have using cancellations arguments

|DPα
T −t[g](x) −DPα

T −t[g](x′)|

≤
∣

∣

∫

Rd

[pα(T − t, y − x) − pα(T − t, y − x′)]Dg(y)dy
∣

∣

≤
∣

∣

∫ 1

0
dλ

∫

Rd

[Dxpα

(

T − t, y − (x′ + µ(x− x′))
)

· (x− x′)]

×[Dg(y)−Dg(x′ + µ(x − x′))]dy
∣

∣

≤ ‖Dg‖
B

θ−1
∞,∞

(T − t)− 1
α + θ−1

α |x− x′| ≤ C(T − t)
ε
α ‖Dg‖

B
θ−1
∞,∞

|x− x′|θ−1−ε.

Hence

|DPα
T −t[g](x) −DPα

T −t[g](x′)| ≤ C(T
ε
α + 1)‖Dg‖

B
θ−1
∞,∞

|x− x′|θ−1−ε. (59)

Putting together estimates (50), (51), (54), (56), (58) and (59) we deduce that

∀α ∈

(

1 + d
p

1 − 1
r

, 2

]

, ∀γ ∈

(

3 − α+ d
p + α

r

2
, 1

]

, ∃C(T ) > 0 s.t.

‖Du‖
L∞

(

B
γ−2+α− d

p
− α

r
−ε

∞,∞

) < CT . (60)

In particular, when g = 0, limCT = 0 when T tends to 0.

(iii) Smoothness in time for u and Du. We restart here from the Duhamel representation (48). Namely,

u(t, x) = Pα
T −t[g](x) +Gα[f ](t, x) + r(t, x),

where from (49), the remainder term writes:

r(t, x) =

∫ T

t

ds

∫

Rd

dy[F (s, y) ·Du(s, y)]pα(s− t, y − x).

We now want to control for a fixed x ∈ Rd and 0 ≤ t < t′ ≤ T the difference:

u(t′, x) − u(t, x) =
(

Pα
T −t′ − Pα

T −t

)

[g](x) +
(

Gαf(t′, x) −Gαf(t, x)
)

+
(

r(t′, x) − r(t, x)
)

. (61)
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For the first term in the r.h.s. of (61) we write:

(

Pα
T −t′ − Pα

T −t

)

[g](x) =

∫

Rd

[

pα(T − t′, y − x) − pα(T − t, y − x)
]

g(y)dy

= −

∫

Rd

∫ 1

0
dλ
[

∂spα(s, y − x)
]

∣

∣

∣

s=T −t−λ(t′−t)
g(y)dy(t′ − t).

From the Fubini’s theorem and usual cancellation arguments we get:

(

Pα
T −t′ − Pα

T −t

)

[g](x) = −(t′ − t)

∫ 1

0
dλ
[

∫

Rd

∂sp(s, y − x)

×
(

g(y) − g(x) −Dg(x) · (y − x)
)

dy
]∣

∣

∣

s=T −t−λ(t′−t)
.

We indeed recall that, because of the symmetry of the driving process W , and since α > 1, one has for all
s > 0,

∫

Rd p(s, y − x)(y − x)dy = 0. Recalling as well that we assumed Dg ∈ Bθ−1
∞,∞, we therefore derive

from Lemma 10:

|
(

Pα
T −t′ − Pα

T −t

)

[g](x)|

≤ (t′ − t)

∫ 1

0
dλ
[C‖Dg‖

B
θ−1
∞,∞

s

∫

Rd

qα(s, y − x)|y − x|θdy
]∣

∣

∣

s=T −t−λ(t′−t)

≤ C(t′ − t)‖Dg‖
B

θ−1
∞,∞

∫ 1

0
dλs−1+ θ

α

∣

∣

s=T −t−λ(t′−t),

recalling from (10) that θ < α for the last inequality. Observe now that since 0 ≤ t < t′ ≤ T , one has
s = T − t− λ(t′ − t) ≥ (1 − λ)(t′ − t) for all λ ∈ [0, 1]. Hence,

|
(

Pα
T −t′ − Pα

T −t

)

[g](x)| ≤ C(t′ − t)‖Dg‖
B

θ−1
∞,∞

∫ 1

0

dλ

(1 − λ)1− θ
α

(t′ − t)−1+ θ
α

≤ C(t′ − t)
θ
α ‖Dg‖

B
θ−1
∞,∞

, (62)

which is the expected control. We now focus on the remainder term r since the control of the Green
kernel is easier and can be derived following the same lines of reasoning. Write

r(t′, x) − r(t, x) =

∫ T

t′

ds
(

Pα
s−t′ − Pα

s−t

)

[F (s, ·) ·Du(s, ·)](x)

+

∫ t′

t

dsPα
s−t[F (s, ·) ·Du(s, ·)](x). (63)

From Lemma 11 (see eq. (34) with β = θ − 1 − ε and η = 0) it can be deduced (see computations in
point (i) of the current section) that

|

∫ t′

t

dsPα
s−t[F (s, ·) ·Du(s, ·)](x)| ≤ C|t− t′|

θ
α . (64)

Let us now focus on

∫ T

t′

ds
(

Pα
s−t′ − Pα

s−t

)

[F (s, ·) ·Du(s, ·)](x)

=

∫ T

t′

ds

∫ 1

0
dλ
{

∂wP
α
s−w[F (s, ·) ·Du(s, ·)](x)

}∣

∣

∣

w=t+λ(t′−t)
(t′ − t)

=

∫ 1

0
dλ

∫ T

t′

ds
{

LαPα
s−w[F (s, ·) ·Du(s, ·)](x)

}∣

∣

∣

w=t+λ(t′−t)
(t′ − t).

(65)
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We have
∫ T

t′

ds|LαPα
s−w[F (s, ·) ·Du(s, ·)](x)|

≤

d
∑

k=1

∫ T

t′

ds
∣

∣

∣

∫

Rd

dyFk(s, y)∂yk
u(s, y)Lαpα(s− w, y − x)

∣

∣

∣

≤

d
∑

k=1

‖Fk‖
Lr([t′,T ],B−1+γ

p,q )‖∂kuL
αpα(· − w, · − x)‖

Lr′ ([t′,T ],B1−γ

p′,q′ ). (66)

Applying Lemma 11 (see eq. (34) with β = θ − 1 − ε and η = α therein), we get:

‖∂ku(s, ·)Lαpα(s− w, · − x)‖
B

1−γ

p′,q′
≤ ‖∂ku(s, ·)‖

B
θ−1−ε
∞,∞

C

(s− w)[
1−γ

α + d
pα +1]

.

Thus, from (60) (recall from (10) that γ − 2 + α− d
p − α

r − ε = θ − 1 − ε):

‖∂kuL
αpα(· − w, · − x)‖

Lr′ ([t′,T ],B1−γ

p′,q′ ) ≤ C(t′ − w)
1

r′ −
(

1−γ
α + d

pα +1
)

= C(t′ − w)
θ
α −1. (67)

Therefore, from (67) and (66), we derive:

∫ T

t′

ds|LαPα
s−w[F (s, ·) ·Du(s, ·)](x)| ≤ C

d
∑

k=1

‖Fk‖
Lr(B−1+γ

p,q )(t
′ − w)

θ
α −1,

which in turn, plugged into (65), gives:

|

∫ T

t′

ds
(

Pα
s−t′ − Pα

s−t

)

[F (s, ·) ·Du(s, ·)](x)|

≤

∫ 1

0
dλ

∫ T

t′

ds
∣

∣

∣
LαPα

s−w[F (s, ·) ·Du(s, ·)](x)
∣

∣

∣

∣

∣

∣

∣

∣

w=t+λ(t′−t)

(t′ − t)

≤ C

d
∑

k=1

‖Fk‖
Lr(B−1+γ

p,q )

∫ 1

0
dλ(t′ − (t+ λ(t′ − t)))

θ
α −1(t′ − t)

≤ C
d
∑

k=1

‖Fk‖
Lr(B−1+γ

p,q )(t
′ − t)

θ
α . (68)

From (68), (64) and (63) we thus obtain:
∣

∣r(t′, x) − r(t, x)
∣

∣ ≤ C‖F‖
Lr(B−1+γ

p,q )(t
′ − t)

θ
α . (69)

The Hölder control of the Green kernel Gαf follows from similar arguments. Indeed, repeating the above
proof it is plain to check that there exists C ≥ 1 s.t. for all 0 ≤ t < t′ ≤ T , x ∈ Rd:

∣

∣

∣

(

Gαf(t′, x) −Gαf(t, x)
)

∣

∣

∣ ≤ C‖f‖
L∞(Bθ−α

∞,∞)(t
′ − t)

θ
α . (70)

The final control of (18) concerning the smoothness in time then follows plugging (62), (69) and (70) into
(61). The control concerning the time sensitivity of the spatial gradient would be obtained following the
same lines.

(iv) Conclusion: proof of Proposition 6, Corollary 7, Theorem 8 and Corollary 9. Points (i) to (iii)
conclude the proof of Proposition 6. Let us eventually notice that Corollary 7 is a direct consequence of
the above computations. Indeed, replacing the source term f by the kth coordinate of −F in the Green
kernel, the proof follows from the control obtained for the remainder term in the Duhamel representation
(48). Eventually, the proofs of Theorem 8 and Corollary 7 follow from compactness arguments together
with the Schauder like control of Proposition 6.
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Remark 14 (About additional diffusion coefficients). Let us first explain how, in the diffusive setting,
α = 2 the diffusion coefficient can be handled. Namely, this would lead to consider for the PDE with
mollified coefficients an additional term in the Duhamel formulation that would write:

um(t, x) = Pα,ξ,m
s−t [g](x) +

∫ T

t

dsPα,ξ,m
s−t [

{

f(s, ·) + Fm ·Dum(s, ·)

+
1

2
Tr
(

(am(s, ·) − am(s, ξ))D2um(s, ·)
)

}

](x), (71)

for an auxiliary parameter ξ which will be taken equal to x after potential differentiations in (71).

Here, Pα,ξ,m
s−t denotes the two-parameter semi-group associated with

(

1
2 Tr
(

am(v, ξ)D2
))

v∈[s,t] (mollified

diffusion coefficient frozen at point ξ). Let us focus on the second order term. Recall from the above
proof of Proposition 6 that we aim at estimating the gradient pointwise, deriving as well some Hölder
continuity for it. Hence, focusing on the additional term, we write for the gradient part:

Dx

∫ T

t

dsPα,ξ,m
s−t [

1

2
Tr
(

(am(s, ·) − am(s, ξ))D2um(s, ·)
)

](x)

=

∫ T

t

ds

∫

Rd

Dxp
ξ,m
α (t, s, x, y)

1

2
Tr
(

(am(s, y) − am(s, ξ))D2um(s, y)
)

dy

=
1

2

d
∑

i,j=1

∫ T

t

ds

∫

Rd

(

Dxp
ξ,m
α (t, s, x, y)

(

(am,i,j(s, y) − am,i,j(s, ξ))
)

×Dyiyjum(s, y)dy.

From the previous Proposition 6, we aim at establishing that Dum has Hölder index θ− 1 − ε = γ − 2 +
α − d/p − α/r − ε and therefore Dyiyjum ∈ Bθ−2−ε

∞,∞ . Assume for a while that p = q = r = +∞. The
goal is now to bound the above term through Besov duality. Namely, taking ξ = x after having taken
the gradient w.r.t. x for the heat kernel, we get:

|Dx

∫ T

t

dsPα,ξ,m
s−t [

1

2
Tr
(

(am(s, ·) − am(s, ξ))D2um(s, ·)
)

](x)|
∣

∣

∣

ξ=x

≤

d
∑

i,j=1

∫ T

t

ds‖
(

Dxp
ξ,m
α (t, s, x, ·)

(

(am,i,j(s, ·) − am,i,j(s, ξ))
)

‖
B

2+ε−θ
1,1

∣

∣

∣

ξ=x

×‖∂2
i,jum(s, ·)‖

B
θ−2−ε
∞,∞

.

Now, in the considered case θ− 2 − ε = γ − 1 − ε. Recalling that Dxp
ξ,m
α (t, s, x, ·) ∈ B

1/2−ε̃
1,1 for any ε̃ > 0

for γ > 1/2 = (3 − α)/2 and ε small enough, we will indeed have that Dxp
ξ,m
α (t, s, x, ·)

(

(am,i,j(s, ·) −

am,i,j(s, ξ)) ∈ B
2+ε−θ
1,1 provided the bounded function a itself has the same regularity, i.e. 2 + ε − θ,

the integrability of the product deriving from the one of the heat kernel. Since ‖∂2
i,jum(s, ·)‖

B
θ−2−ε
∞,∞

≤

C‖Dum(s, ·)‖
B

θ−1−ε
∞,∞

, see e.g. Triebel [Tri83], this roughly means that, the same Schauder estimate should

hold with a diffusion coefficient a ∈ L∞([0, T ],B2+ε−θ
∞,∞ ). Similar thresholds also appear more generally

in [ZZ17]. The general diffusive case for p, q, r ≥ 1 and γ satisfying the conditions of Theorem 1 can be
handled similarly through duality arguments.

For the pure jump case, we illustrate for simplicity what happens if the diffusion coefficient is scalar.
Namely, when Lα,σϕ(x) = p.v.

∫

Rd

(

ϕ(x + σ(x)z) − ϕ(x)
)

ν(dz) = −σα(x)(−∆)α/2ϕ(x), where σ is a

non-degenerate diffusion coefficient. Introducing Lα,σ,ξϕ(x) = p.v.
∫

Rd

(

ϕ(x + σ(ξ)z) − ϕ(x)
)

ν(dz) =

−σα(ξ)(−∆)α/2ϕ(x), we rewrite for the Duhamel formula, similarly to (71):

um(t, x) = Pα,ξ,m
s−t [g](x) +

∫ T

t

dsPα,ξ,m
s−t [

{

f(s, ·) + Fm ·Dum(s, ·)

+(Lα,σm − Lα,σm,ξ)um(s, ·)
)

}

](x). (72)
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Focusing again on the non-local term, we write for the gradient part:

Dx

∫ T

t

dsPα,ξ,m
s−t [

(

σα
m(s, ·) − σα

m(s, ξ))∆
α
2 um(s, ·)

)

](x)

= −

∫ T

t

ds

∫

Rd

Dxp
ξ,m
α (t, s, x, y)

(

σα
m(s, y) − σα

m(s, ξ)
)

(−∆)
α
2 um(s, y)dy.

Consider again the case p = q = r = ∞. Since Dum ∈ L∞([0, T ],Bθ−1−ε
∞,∞ ), we thus have that

−(−∆)α/2um ∈ L∞([0, T ],Bθ−α−ε
∞,∞ ), where θ−α− ε = −1 + γ− ε. Still by duality one has to control the

norm of the term Dxp
ξ,m
α (t, s, x, y)

(

σα
m(s, y) −σα

m(s, ξ)
)

in the Besov space B
1−γ+ε
1,1 . Since γ > (3 −α)/2

and Dxp
ξ,m
α (t, s, x, y) ∈ B

1−1/α
1,1 , this will be the case provided the coefficient σ ∈ L∞([0, T ],B1−γ+ε

∞,∞ ) for ε

small enough observing that 1 − γ + ε<(α− 1)/2.

Note that, in comparison with the result obtained in [LZ19], the above threshold is precisely the one
appearing in [LZ19] in this specific case. The general matrix case for σ is more involved. It requires
in [LZ19] the Bony decomposition. We believe it could also be treated through the duality approach
considered here but postpone this discussion to further research. In the scalar case, the analysis for
general p, q, r, γ as in Theorem 1 could be performed similarly.

4. Building the dynamics.

In this part, we aim at proving Theorem 3 and Corollary 4. We restrict here to the pure jump case
α ∈ (1, 2), since the diffusive one was already considered in [DD16]. We adapt here their procedure to the
current framework: we first recover the noise through the martingale problem (point (i) of Proposition
12 below), then recover a drift as the difference between the weak solution and the noise obtained before
and estimate its contribution (point (ii) of Proposition 12 below). With this contribution at hand, we
show that the drift decomposes as a principal part plus a remainder which has a negligible contribution
(point (iii) of Proposition 12 below). Eventually, Lemma 14 shows that when the drift is smooth, this
principal part indeed coincides with the drift.

Having such tools at hand, we recover the dynamics of the weak solution of the formal SDE (1) by
giving a meaning of each of the above quantities as Lℓ stochastic-Young integrals (for ℓ < α). More
precisely, the Lℓ stochastic-Young integral are defined for a suitable class of integrand consisting in the
predictable processes (ψs)0≤s≤T defined in Corollary 4, leading e.g. to the application of Itô’s formula
for the dynamics (13).

Proposition 12. Let α ∈ (1, 2). For any initial point x ∈ Rd, one can find a probability measure
on D([0, T ],R2d) (still denoted by Pα) s.t. the canonical process (Xt,Wt)t∈[0,T ] satisfies the following
properties:

(i) Under Pα, the law of (Xt)t≥0 is a solution of the martingale problem associated with data (Lα, F, x),
x ∈ Rd and the law of (Wt)t≥0 corresponds to the one of a d-dimensional stable process with generator
Lα.

(ii) For any 1 ≤ q < α, there exists a constant C := C(α, p, q, r, γ) s.t. for any 0 ≤ v < s ≤ T :

E
P

α

[|Xs −Xv − (Ws − Wv)|q]
1
q ≤ C(s− v)

1
α + θ−1

α , (73)

(iii) Let (Fv)v≥0 :=
(

σ((Xw ,Ww)0≤w≤v)
)

v≥0
denote the filtration generated by the couple (X,W). For

any 0 ≤ v < s ≤ T , it holds that:

E
P

α

[Xs −Xv|Fv] = f(v,Xv, s− v) = E
P

α

[us(v,Xv) − us(s,Xv)|Fv],

with f(v,Xv, s− v) := us(v,Xv) − Xv, recalling that us denotes here the solution of equation (8) on the
time interval [0, s] with final condition us(s, x) = x and f = 0.
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Furthermore, the following decomposition holds:

f(v,Xv, s− v) = F (v,Xv, s− v) + R(v,Xv, s− v),

|F (v,Xv, s− v)| =
∣

∣

∣

∫ s

v

dw

∫

Rd

dyF (w, y)pα(w − s, y −Xv)
∣

∣

∣

≤ C‖F‖
Lr([0,T ],B−1+γ

p,q )(s− v)
1
2 +χ, χ ∈ (0, 1/2],

|R(v,Xv, s− v)| ≤ C(s− v)1+ε′

, ε′ > 0. (74)

Proof.(i) Coming back to point (i) in Section 2.2 we have that the couple
(

(Xm
t ,W

m
t )t∈[0,T ]

)

m≥0
is tight

(pay attention that the stable noise Wm feels the mollifying procedure as it is obtained through solvability
of the martingale problem) so that it converges, along a subsequence, to the couple (Xt,Wt)t∈[0,T ].

(ii) Let 0 ≤ v < s. With the notations of (20), letting for notational convenience us
m ≡ um = (u1

m, . . . , u
d
m)

where each ui
m, i in {1, . . . , d} is chosen as the solution of (16) with terminal condition xi (i.e. the ith

coordinate of x = (x1, . . . , xd) ∈ R
d) at time s and source term f ≡ 0 we obtain, from Itô’s formula

Xm
s −Xm

v

= M s,m
v,s (α, um, X

m) + [um(v,Xm
v ) − um(s,Xm

v )] (75)

=

∫ s

v

∫

Rd\{0}

{um(w,Xm
w− + x) − um(w,Xm

w−)}Ñm(dw, dx)

+[um(v,Xv) − um(s,Xv)]

= Wm
s − Wm

v + [um(v,Xm
v ) − um(s,Xm

v )]

+

∫ s

v

∫

|x|≤1
{um(w,Xm

w− + x) − um(w,Xm
w− ) − x}Ñm(dw, dx)

+

∫ s

v

∫

|x|≥1
{um(w,Xm

w− + x) − um(w,Xm
w− ) − x}Ñm(dw, dx).

:= Wm
s − Wm

v + [um(v,Xm
v ) − um(s,Xm

v )] + Mm
S (v, s) + Mm

L (v, s).

From the smoothness properties of um established in Proposition 6 (in particular |us
m(v,Xm

v )−us
m(s,Xm

v )]| ≤
C(s− v)θ/α and the gradient is uniformly bounded) we have

|U(w,Xm
w− , x)| :=

∣

∣um(w,Xm
w− + x) − um(w,Xm

w−) − x
∣

∣

=
∣

∣

∣

∫ 1

0
dλ(Dum(w,Xm

w− + λx) − I) · x
∣

∣

∣ ≤ C(s− w)
θ−1

α |x|, (76)

recalling that for all z in Rd, um(s, z) = z so that Dum(s, z) = I, and using estimate (18). Note
that

(

Mm
S (v, s)

)

0≤v<s≤T
and

(

Mm
L (v, s)

)

0≤v<s≤T
are respectively L2 and Lq martingales associated

respectively with the “small” and “large” jumps. Let us first handle the “large” jumps. We have by the
Burkholder-Davies-Gundy (BDG) inequality that

E
[

|Mm
L (v, s)|q

]

≤ CℓE
[

[Mm
L ]

q
2

(v,s)

]

,

where [Mm
L ](v,s) denotes the corresponding bracket given by the expression

∑

v≤w≤s |U(w,Xm
w− ,∆Wm

w )|21|∆Wm
w |≥1.

Using the linear growth of U w.r.t. its third variable (uniformly w.r.t. the second one) from (76) together
with the fact that q/2 ≤ 1 we obtain

(

∑

v≤w≤s

|U(w,Xm
w− ,∆Wm

w )|21|∆Wm
w |≥1

)q/2

≤ C(s− w)q θ−1
α

(

∑

v≤w≤s

|∆Wm
w |21|∆Wm

w |≥1

)q/2

≤ C(s− w)q θ−1
α

∑

v≤w≤s

|∆Wm
w |q1|∆Wm

w |≥1.
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We then readily get from the compensation formula that

E
[

|Mm
L (v, s)|q

]

≤ C(s− w)1+q θ−1
α

∫

|x|q1|x|≥1ν(dx) ≤ C′(s− w)1+q θ−1
α

≤ C′(s− w)
q
α +q θ−1

α .

We now deal with the “small” jumps and split them w.r.t. their characteristic scale writing

Mm
S (v, s) = Mm

S,1(v, s) + Mm
S,2(v, s)

=:

∫ s

v

∫

|x|>(s−v)
1
α

1|x|≤1U(w,Xm
w− , x)Ñm(dw, dx)

+

∫ s

v

∫

|x|≤(s−v)
1
α

1|x|≤1U(w,Xm
w− , x)Ñm(dw, dx).

In the off-diagonal regime (namely for Mm
S,1(v, s)), we do not face any integrability problem w.r.t. the

Lévy measure. The main idea consists then in using first the BDG inequality, then the compensation
formula and (76) and eventually usual convexity arguments together with the compensation formula again
to obtain

E[|Mm
S,1(v, s)|q] = E

[∣

∣

∣

∣

∣

∫ s

v

∫

|x|>|s−v|
1
α

1|x|≤1U(w,Xm
w− , x)Ñm(dr, dx)

∣

∣

∣

∣

∣

q]

≤ CqE











∑

v≤w≤s

|U(w,Xm
w− ,∆Wm

w )|21
1>|∆Wm

w |>|v−s|
1
α





q
2







≤ Cq(s− v)1+q θ−1
α

∫

1>|x|>|v−s|
1
α

∣

∣x
∣

∣

q
ν(dx)

≤ Cq|v − s|
q
α + θ−1

α .

In the diagonal regime (i.e. for Mm
S,2(v, s)) we use the BDG inequality and (76) to recover integrability

w.r.t. the Lévy measure and then use the additional integrability to obtain better estimate. Namely:

E[|Mm
S,2(v, s)|q ] = CE

[∣

∣

∣

∣

∣

∫ s

v

∫

|x|≤|v−s|
1
α ∧1

U(w,Xm
w− , x)Ñm(dw, dx)

∣

∣

∣

∣

∣

q]

≤ Cq

(

∫ s

v

∫

|x|≤|v−s|
1
α ∧1

∣

∣U(w,Xm
w− , x)

∣

∣

2
dwν(dx)

)
q
2

≤ Cq

(

(s− v)1+2 θ−1
α

∫

|x|≤|v−s|
1
α ∧1

∣

∣x
∣

∣

2
ν(dx)

)
q
2

≤ Cq(s− v)
q
α +q θ−1

α .

Using the above estimates on the q-moments of Mm
L (v, s), Mm

S,1(v, s) and Mm
S,2(v, s) the statement

follows passing to the limit in m.

(iii) Letting (Fm
v )v≥0 :=

(

σ((Xm
w ,W

m
w )0≤w≤v)

)

v≥0, restarting from (75) and taking the conditional ex-

pectation w.r.t. Fm yields

E[Xm
s −Xm

v |Fm
v ] = E[um(v,Xm

v ) − um(s,Xm
v )|Fm

v ] = us
m(v,Xm

v ) −Xm
v .

Passing to the limit in m, it can be deduced that

E[Xs −Xv|Fv] = us(v,Xv) −Xv =: f(v,Xv, s− v),
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where u is the mild solution of (8) with terminal condition x at time s and source term f ≡ 0. From the
mild definition of u in Theorem 8 we obtain that for all (w, y) ∈ [s, v] × Rd:

Du(w, y) =

∫

Rd

dy′{y′ ⊗Dpα(s− w, y′ − y)}

+

∫ s

w

dw′

∫

Rd

dy[Du(w′, y′)·F (w′, y′)] ⊗Dpα(w′ − w, y′ − y)

= I +

∫ s

w

dw′

∫

Rd

dy′[Du(w′, y′)·F (w′, y′)] ⊗Dpα(w′ − w, y′ − y),

integrating by parts to derive the last inequality. We thus get:

E[Xs −Xv|Fv]

= u(v,Xv) − u(s,Xv)

=

∫ s

v

dw

∫

Rd

dyDu(w, y)F (w, y)pα(w − v, y −Xv)

=

∫ s

v

dw

∫

Rd

dyF (w, y)pα(w − v, y −Xv)

+

∫ s

v

dw

∫

Rd

dy

∫ s

w

dw′

∫

Rd

dy′
[

[Du(w′, y′)·F (w′, y′)] ⊗Dypα(w′ − w, y′ − y)
]

F (w, y)

×pα(w − v, y −Xv),

(77)

where we have again plugged the mild formulation of Du. Let us first prove that the first term in the
above has the right order. Thanks to Lemma 11 (with η = 0 and Ψ = Id therein) that:

F (v,Xv, s− v)

:=
∣

∣

∣

∫ s

v

dw

∫

Rd

dyF (w, y)pα(w − v, y −Xv)
∣

∣

∣

≤ C‖F‖
Lr([0,T ],B−1+γ

p,q )(s− v)1−( 1
r + d

pα + 1−γ
α )

≤ C‖F‖
Lr([0,T ],B−1+γ

p,q )(s− v)
1
2 +
[

1
2 −( 1

r + d
pα + 1−γ

α )
]

. (78)

Let us now prove that χ := 1
2 − (1

r + d
pα + 1−γ

α ) > 0. Recall that we have assumed in Theorem

1 that γ > [3 − α(1 − 1
r ) + d

p ]/2. Note carefully that, for α > (1 − d
p )/(1 − 1

r ) it also holds that

γ > [3 − α(1 − 1
r ) + d

p ]/2 > 2 − α+ α/r+ d/p which was the natural condition appearing in the analysis

of the Green kernel to give a pointwise meaning to the underlying gradient. This eventually gives that
χ > 0.

Let us now prove that the second term in the r.h.s. of (77) is a negligible perturbation. Setting with the
notations of Section 3.3:

ψv,w,s(y) := pα(w − v, y −Xv)

∫ s

w

dw′

∫

Rd

dy′

×[Du(w′, y′)·F (w′, y′)] ⊗Dypα(w′ − r, y′ − y)

= pα(w − v, y −Xv)Dr(w, y),

we write:

R(v,Xv, s− v) :=

∫ s

v

dw

∫

Rd

dyψv,w,s(y)F (w, y).

We thus have the following estimate:

|R(v,Xv, s− v)| ≤ ‖F‖
Lr([0,T ],B−1+γ

p,q )‖ψv,·,s(·)‖
Lr′ ([0,T ],B1−γ

p′,q′ ). (79)

Let us now consider the thermic part of ‖ψv,·,s(·)‖
Lr′ ([0,T ],B1−γ

p′,q′ ), which can be splited again into a lower

and an upper part, as in (39). We first deal with the upper part and then with the lower one. With the
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same previous notations1:
(

T 1−γ
p′,q′ (ψv,w,s(·))

∣

∣

∣

[(w−v),1]

)q′

≤ C(w − v)− 1−γ
α q′

‖Dr(w, ·)‖q′

∞‖pα(w − v, ·,−Xv)‖q′

Lp′

≤ C(w − v)− 1−γ
α q′

(s− w)
(θ−1)

α q′

(w − v)− d
αp q′

, (80)

using (54) and (41) for the last inequality. Hence,
(

∫ s

v

dw
(

T 1−γ
p′,q′ (ψv,w,s(·))

∣

∣

∣

[(w−v),1]

)r′
)1/r′

≤ C(s− v)
1

r′ + θ−1
α − d

αp − 1−γ
α . (81)

Observe that, for this term to be a remainder on small time intervals, we need:

1

r′
+
θ − 1

α
−

d

αp
−

1 − γ

α
> 1 ⇐⇒ γ − 1 + θ − 1 −

d

p
−
α

r
> 0.

Recalling the definition of θ in (10), we obtain the condition:

γ >
3 − α+ 2d

p + 2α
r

2
. (82)

This stronger condition appears only in the case where one is interested in expliciting exactly the dynamics
in terms of a drift which actually writes as the mollified version of the initial one along the density of
the driving noise (regularizing kernel). Note that if one chooses to work in a bounded setting, i.e. for
p = r = ∞, (82) again corresponds to the condition appearing in Theorem 1.

Let us now deal with the lower part of the thermic characterization. Using a cancellation argument,
restarting from (56) and (23), exploiting as well (60), we get for β = θ − 1 − ε:

|Dr(w, y)pα(w − v, y − x) −Dr(w, z)pα(w − v, z − x)| (83)

≤ C

[(

‖Dr(w, ·)‖
Ḃ

β
∞,∞

+
‖Dr(w, ·)‖L∞

(r − v)
β
α

)

× (qα(w − v, y − x) + qα(w − v, z − x))] |y − z|β

≤ C
(

(s− w)
ε
α +

(s− w)
θ−1

α

(w − v)
β
α

)

(qα(w − v, y − x) + qα(w − v, z − x))

×|y − z|β ,

recalling also (54) for the last inequality and denoting by ‖ · ‖
Ḃ

β
∞,∞

the homogeneous Besov norm (Hölder

modulus of order β). Hence:
(

T 1−γ
p′,q′ (ψv,w,s(·))

∣

∣

∣

[0,(w−v)]

)q′

≤
C

(w − v)( d
pα )q′

∫ w−v

0

dv̄

v̄
v̄( γ−1+β

α )q′
(

(s− w)
ε
α +

(s− w)
θ−1

α

(w − v)
β
α

)q′

,

(∫ s

v

dw
(

T 1−γ
p′,q′ (ψv,w,s(·))

∣

∣

∣

[0,(w−v)]

)r′)1/r′

≤
(

∫ s

v

dw(w − v)( γ−1+β
α − d

pα )r′
(

(s− w)
ε
α +

(s− w)
θ−1

α

(w − v)
β
α

)r′
)1/r′

≤ C(s− v)
1

r′ +( γ−1+β
α − d

pα )+ ε
α = C(s− v)

1
r′ +( γ−1+θ−1

α − d
pα ), (84)

which precisely gives a contribution homogeneous to the one of (81).We eventually derive that, under the

condition (82), the remainder in (79) is s.t. there exists ε′ := − 1
r +(γ−1+θ−1

α − d
pα ) > 0 for which

|R(v,Xv, s− v)| ≤ C(s− v)1+ε′

, C := C(‖F‖
Lr([0,T ],B−1+γ

p,q )). (85)

1Pay attention that, in order to absorb some singularities we cannot here directly appeal to Lemma 11 but simply exploit

some L∞ of Dr(t, ·) in terms of (T − t)
θ
α .
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�

Having this result at hand, one can now appeal to the construction implemented in Section 4.4 of [DD16]
in order to conclude the proof of Theorem 3. Let us try to sum up how such a construction can be adapted
in our setting. As in Section 4.4.1 of [DD16], we introduce in a generic way the process (A(s, t))0≤s≤t≤T

as for any 0 ≤ t ≤ t + h ≤ t + h′ ≤ T , (i)A(t, t + h) = Xt+h − Xt or (ii)A(t, t+ h) = Wt+h − Wt or
(iii)A(t, t+ h) = f(t,Xt, h). We then claim that the following estimates hold: for any 1 ≤ q < α there
exists ε0 ∈ (0, 1 − 1/α], ε1, ε

′
1 > 0 and a constant C := C(p, q, r, γ, q, T ) > 0 such that

E[|E[A(t, t + h)|Ft]|
q]

1
q ≤ Ch

1
α +ε0 ,

E[|A(t, t+ h)|q]
1
q ≤ Ch

1
α ,

E[|E[A(t, t + h) +A(t+ h, t+ h′) −A(t, t+ h′)|Ft|
q]

1
q ] ≤ C(h′)1+ε1 ,

E[|A(t, t + h) +A(t+ h, t+ h′) −A(t, t+ h′)|q]
1
q ≤ C(h′)

1
α +ε′

1 . (86)

Then, we aim at defining for any T > 0 the stochastic integral
∫ T

0 ψsA(t, t+dt), for the class of predictable

processes (ψs)s∈[0,t], ((1 − 1/α) − ε2)-Hölder continuous in Lq′

with q′ ≥ 1 such that 1/q′ + 1/q = 1/ℓ,

ℓ < α and 0 < ε2 < ε0, as an Lℓ limit of the associated Riemann sum: for ∆ = {0 = t0 < t1, . . . , tN = T }

S(∆) :=

N−1
∑

i=0

ψtiA(ti, ti+1) →

∫ T

0
ψtA(t, t+ dt), in L

ℓ, (87)

which justifies the fact that such an integral is called Lℓ stochastic-Young integral by the Authors. To
do so, the main idea in [DD16] consists in splitting the process A as the sum of a drift and a martingale:

A(t, t+ h) = A(t, t+ h) − E[A(t, t + h)|Ft] + E[A(t, t+ h)|Ft]

:= M(t, t+ h) +R(t, t+ h), (88)

and define Lℓ-stochastic-Young integral w.r.t. each of these terms. We then have

Theorem 13 (Theorem 16 of [DD16]). There exists C = C(q, q′, p, q, r, γ) > 0 such that, given two
subdivisions ∆ ⊂ ∆′ of [0, T ], such that π(∆) < 1,

‖S(∆) − S(∆′)‖Lℓ ≤ C max{T 1/α, T }(π(∆))η, (89)

where π(∆) denotes the step size of the subdivision ∆ and with η = min{ǫ0 − ε2, ε1, ε
′
1}.

Proof. The main point consists in noticing that the proof in [DD16] remains valid in our setting (for
parameter ℓ = p therein) and that the only difference is the possible presence of jumps. To handle that,
the key idea is then to split the martingale part (which in our current framework may involve jumps) into
two parts: an L2-martingale (which includes the compensated small jumps) and an Lℓ-martingale (which
includes the compensated large jumps). The first part can be handled using the BDG inequality (and
this is what is done in [DD16]) and the other part by using the compensation formula (such a strategy is
somehow classical in the pure-jump setting and has been implemented to prove point (ii) in Proposition
12 above). �

Thus, we obtain that for any fixed t in [0, T ] we are able to define an additive (on [0, T ]) integral
∫ t

0 ψsA(s, s + ds). The main point consists now in giving a meaning on this quantity as a process (i.e.
that all the time integrals can be defined simultaneously). In the current pure-jump setting, we rely on
the Aldous criterion, whereas in the diffusive framework of [DD16], the Kolmogorov continuity criterion
was used. Thanks to Theorem 13, one has

∥

∥

∥

∫ t+h

t

ψsA(s, s+ ds) − ψtA(t, t+ h)
∥

∥

∥

Lℓ
≤ Ch

1
α +η, (90)

so that one can apply Proposition 34.9 in Bass [Bas11] and Proposition 4.8.2 in Kolokoltsov [Kol11] to

the sequence
(

∫ t

0 ψsA(s, s+ ds)
)

s≤t
and deduce that the limit is stochastically continuous.

Eventually, following Section 4.6 of [DD16] we can thus define the the processes
(

∫ t

0 ψsdXs

)

0≤t≤T
and

(

∫ t

0 ψsf(s,Xs, ds)
)

0≤t≤T
for any (ψs)0≤s≤T with ε2 < (θ − 1)/α. Let us conclude by emphasizing the
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following fact underlined in [DD16]. When building the Lℓ stochastic-Young version of the drift, one has
from (88) that

R(t, t+ h) = E[Xt+h −Xt|Ft], M(t, t+ h) = Xt+h −Xt − E[Xt+h −Xt|Ft].

Thanks to Proposition 12 we have that, actually
(

∫ t

0 ψsR(s, s+ ds)
)

0≤t≤T
=
(

∫ t

0 ψsf(s,Xs, ds)
)

0≤t≤T
,

so that the l.h.s. is well defined. Also, we have that
(

∫ t

0 ψs(R(s, s + ds) − F (s,Xs, ds))
)

0≤t≤T
=

(

∫ t

0 ψsr(s,Xs, ds)
)

0≤t≤T
is well defined and is null since the bound appearing in the increment of the

l.h.s. is greater than one. Hence,

(

∫ t

0
ψsf(s,Xs, ds)

)

0≤t≤T
=
(

∫ t

0
ψsF (s,Xs, ds)

)

0≤t≤T
.

On the other hand, we have that
(

∫ t

0 ψsM(s, s+ds)
)

0≤t≤T
is well defined as well and that

(

∫ t

0 ψsM(s, s+

ds) − dWt

)

0≤t≤T
=
(

∫ t

0 ψsM̂(s, s+ ds)
)

0≤t≤T
where

M̂(t, t+ h) = Xt+h −Xt − (Wt+h − Wt) − E[Xt+h −Xt − (Wt+h − Wt)|Ft],

is an Lq martingale with q moment bounded by Cqh
q[1+(θ−1)/α] so that it is null as well, meaning that

when reconstructing the drift as above, we indeed get that only the “original” noise part in the dynamics
matters. �

Proof of (86). The proof follows from Proposition 12 and Theorem 8. Note that the two last estimates
are equals to 0 in case (i) − (ii) since the process A is additive. �

We eventually conclude this part with the following Lemma.

Lemma 14. Under the previous assumptions we have that for any smooth functions (Fm)m∈N satisfying

lim
m→∞

‖F − Fm‖
Lr([0,T ],B−1+γ

p,q (Rd)) = 0,

that for all t in [0, T ],

lim
m→∞

∥

∥

∥

∥

∫ t

0
ψsF (s,Xs, ds) −

∫ t

0
ψsFm(s,Xs)ds

∥

∥

∥

∥

Lℓ(Pα)
= 0. (91)

Proof. We want to investigate:

lim
m→∞

E

∣

∣

∣

∣

∫ t

0
ψsF (s,Xs, ds) −

∫ t

0
ψsFm(s,Xs)ds

∣

∣

∣

∣

ℓ

. (92)

Coming back to the definition of such integrals, this means that we want to control

lim
m→∞

E

∣

∣

∣

∣

∣

lim
N→∞

N−1
∑

i=0

ψti

∫ ti+1

ti

ds

{∫

dyF (s, y)pα(s− ti, y −Xti) − Fm(ti, Xti)

}

∣

∣

∣

∣

∣

ℓ

.
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We have the following decomposition:

lim
m→∞

E

∣

∣

∣

∣

∣

lim
N→∞

N−1
∑

i=0

ψti

∫ ti+1

ti

ds

×

{∫

dyF (s, y)pα(s− ti, y −Xti) − Fm(ti, Xti )

}∣

∣

∣

∣

ℓ

≤ lim
m→∞

E

∣

∣

∣

∣

∣

lim
N→∞

N−1
∑

i=0

ψti

∫ ti+1

ti

ds

×

{

∫

dy[F (s, y) − Fm(s, y)]pα(s− ti, y −Xti )

}∣

∣

∣

∣

∣

ℓ

+ lim
m→∞

E

∣

∣

∣

∣

∣

lim
N→∞

N−1
∑

i=0

ψti

∫ ti+1

ti

ds

∫

dy[Fm(s, y) − Fm(ti, Xti)]

×pα(s− ti, y −Xti )

}∣

∣

∣

∣

∣

ℓ

:= lim
m→∞

‖ lim
π(∆)→0

S1
m(∆)‖Lℓ + lim

m→∞
‖ lim

π(∆)→0
S2

m(∆)‖Lℓ

with the previous notations. Note that limm→∞ ‖S1
m(∆)‖Lℓ = 0, uniformly w.r.t. ∆ and that for each m,

‖S1
m(∆)‖Lℓ tends to some ‖S1

m‖Lℓ as π(∆) → 0. One can hence swap both limits and therefore deduce
that

lim
m→∞

lim
π(∆)→0

‖S1
m(∆)‖Lℓ = lim

π(∆)→0
lim

m→∞
‖S1

m(∆)‖Lℓ = 0.

For the second term, we note that due to the regularity of Fm (using e.g. its Lr(B1
p,q) norm) that

E

∣

∣

∣

∣

∫ ti+1

ti

ds

∫

dy[Fm(s, y) − Fm(ti, Xti )]pα(s− ti, y −Xti )

∣

∣

∣

∣

ℓ

≤ Cm(ti+1 − ti)
ℓ( 1

2 + 1
α +χ),

so that limm→∞ limπ(∆)→0 ‖S2
m(∆)‖Lℓ = 0. This concludes the proof. �

5. Pathwise uniqueness in dimension one.

The aim of this part is to prove Theorem 5, adapting to this end the proof of Proposition 2.9 in [ABM20]
to our current inhomogeneous and parabolic (for the auxiliary PDE concerned) framework. Let us con-
sider (X1,W) and (X2,W) two weak solutions of (13). With the notations of (22), we consider the two

corresponding Itô-Zvonkin transforms XZ,m,i
t := X i

t −um(t,X i
t) = x−um(0, x)+Wt −M0,t(α, um, X

i)+
R0,t(α, Fm,F , X i), i ∈ {1, 2}. We point out that we here use the mollified PDE, keeping therefore the
remainder term and dependence in m for the martingale part. This is mainly to avoid passing to the limit
for the martingale term (as Athreya et al. [ABM20] do but which requires many additional technical
lemmas therein). Of course, we will have to control the remainders, which is precisely possible from
Lemma 14. From now on, we assume that α < 2. The case α = 2 is indeed easier and can be handled
following the arguments below.

As a starting point, we now expand, for a smooth approximation of the absolute value

Vn(x) =

{

|x|, |x| ≥ 1
n ,

3
8n + 3

4nx
2 − 1

8n
3x4, |x| ≤ 1

n ,
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the quantity Vn(XZ,m,1
t − XZ,m,2

t ) approximating |XZ,m,1
t − XZ,m,2

t |. For fixed m,n we can apply Itô’s
formula to obtain:

Vn(XZ,m,1
t −XZ,m,2

t )

= Vn(0) +

∫ t

0
V ′

n(XZ,m,1
t −XZ,m,2

t )
[

F (s,X1
s , ds) − Fm(s,X1

s )ds

−(F (s,X2
s , ds) − Fm(s,X2

s )ds)
]

+

∫ t

0
[Vn(XZ,m,1

s −XZ,m,2
s + hm(X1

s , X
2
s , r)) − Vn(XZ,m,1

t −XZ,m,2
t )]

×Ñ(ds, dr)

+

∫ t

0

∫

|r|≥1
ψn(XZ,m,1

s −XZ,m,2
s , hm(X1

s , X
2
s , r))ν(dr)ds

+

∫ t

0

∫

|r|≤1
ψn(XZ,m,1

s −XZ,m,2
s , hm(X1

s , X
2
s , r))ν(dr)ds

=:
3

8n
+ ∆Rm,n

0,t + ∆Mm,n
0,t + ∆Cm,n

0,t,L + ∆Cm,n
0,t,S ,

(93)

recalling that XZ,m,1
0 = XZ,m,2

0 , using the definition of Vn and denoting for all (x1, x2, r) ∈ R3:

hm(x1, x2, r) = um(x1 + r) − um(x1) − [um(x2 + r) − um(x2)], (94)

ψn(x1, r) = Vn(x1 + r) − Vn(x1) − V ′
n(x1)r.

The point is now to take the expectations in (93). Since ∆Mm,n
0,t is a martingale, we then readily get

E[∆Mm,n
0,t ] = 0. On the other hand, since |V ′

n(x)| ≤ 2, we also have from Lemma 14 that:

E[|∆Rm,n
0,t |] →

m
0. (95)

It now remains to handle the compensator terms. For the large jumps, we readily write:

E[|∆Cm,n
0,t,L|] ≤ 2‖V ′

n‖∞‖Dum‖L∞(L∞)

∫ t

0
E[|X1

s −X2
s |]ds

≤ C

∫ t

0
E[|X1

s −X2
s |]ds, (96)

observing that |hm(x1, x2, r)| ≤ 2‖Dum‖L∞(L∞)|x1 − x2|. Also, from Corollary 7, ‖Dum‖L∞(L∞) ≤
CT −→

T →0
0 uniformly in m (as the terminal condition of the PDE is 0). In particular, for T small enough

one has ‖Dum‖L∞(L∞) ≤ 1/4 and

|x1 − um(t, x1) − (x2 − um(t, x2))| ≥ |x1 − x2| − |um(t, x1) − um(t, x2)|

≥ |x1 − x2|(1 − ‖Dum‖L∞(L∞))

≥
3

4
|x1 − x2|. (97)

Hence,

|hm(X1
s , X

2
s , r)| ≤ 2‖Dum‖L∞(L∞)|X

1
s −X2

s | ≤
2

3
|XZ,m,1

s −XZ,m,2
s |. (98)

Therefore, if |XZ,m,1
s −XZ,m,2

s | ≥ 3/n, we have for any r either that XZ,m,1
s −XZ,m,2

s +hm(X1
s , X

2
s , r) ≥

1/n if Z,m,1
s −XZ,m,2

s ≥ 3/n, either XZ,m,1
s −XZ,m,2

s + hm(X1
s , X

2
s , r) ≤ −1/n if Z,m,1

s −XZ,m,2
s ≤ −3/n.

It is thus readily seen that ψn(XZ,m,1
s −XZ,m,2

s , hm(X1
s , X

2
s , r)) = 0. We thus have:

|E[Cm,n
0,t,S ]|

=
∣

∣

∣E[

∫ t

0

∫

|r|≤1
I|XZ,m,1

s −XZ,m,2
s |≤ 3

n
ψn(XZ,m,1

s −XZ,m,2
s , hm(X1

s , X
2
s , r))ν(dr)ds]

∣

∣

∣

≤ CnE[

∫ t

0

∫

|r|≤1
I|XZ,m,1

s −XZ,m,2
s |≤ 3

n
|hm(X1

s , X
2
s , r)|

2ν(dr)ds],

(99)
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using for the last inequality the definition of Vn which gives that there exists C s.t. for all y ∈ R,
|V ′′

n (y)| ≤ Cn|y|2. We now use the definition of hm and the smoothness of um in order to balance the
explosive contribution in n and to keep an exponent of r which allows to integrate the small jumps. From
(94) and usual interpolation techniques (see e.g. Lemma 5.5 in [ABM20] or Lemma 4.1 in [Pri12]) we
get:

|hm(X1
s , X

2
s , r)| ≤ ‖um‖L∞(Bγ

∞,∞)|X
1
s −X2

s |η1rη2 ,

(η1, η2) ∈ (0, 1)2, η1 + η2 = η < θ − ε. The point is now to apply the above identity with γ1 large
enough in order to get rid of the explosive term in (99) (i.e. η1 > 1/2) and with γ2 sufficiently large
in order to guarantee the integrability of the Lévy measure (i.e. η2 > α/2). This suggests to choose
η1 = 1/2 + ε̃/2 and η2 = α/2 + ε̃/2, with ε̃ > 0 meant to be small. In order to satisfy such constraints,
we obtain that γ must satisfy γ > [3 − α + 2d/p+ 2α/r]/2, which is precisely the thresholds appearing
when reconstructing the dynamics (see condition (12) in Theorem 3 and computations leading to (82) in
the proof of Proposition 12). Hence,

|E[Cm,n
0,t,S ]| ≤ CnE

[

∫ t

0

∫

|r|≤1
I|XZ,m,1

s −XZ,m,2
s |≤ 3

n
|X1

s −X2
s |1+ε̃rα+ε̃ dr

r1+α
ds

]

≤ CnE

[∫ t

0
I|XZ,m,1

s −XZ,m,2
s |≤ 3

n
|XZ,m,1

s −XZ,m,2
s |1+ε̃ds

]

≤ Cn−ε̃, (100)

using (97) and the definition of (XZ,m,i)i∈{1,2} for the last but one inequality. Plugging (100), (96) into
(93) (taking therein the expectations) and recalling that E[∆Mm,n

0,t ] = 0, eventually yields:

E[Vn(XZ,m,1
t −XZ,m,2

t )] ≤
3

8n
+ E[|∆Rm,n

0,t |] + C

∫ t

0
E[|X1

s −X2
s |]ds+

C

nε̃
.

Passing to the limit, first in m recalling that E[|∆Rm,n
0,t |] →

m
0 uniformly in n, gives (from the smoothness

properties of (um)m≥1 in Proposition 6, see also point (ii) in Section 2.2):

E[Vn(XZ,1
t −XZ,2

t )] ≤
3

8n
+ C

∫ t

0
E[|X1

s −X2
s |]ds+

C

nε̃
,

XZ,i
t := X i

t − u(t,X i
t), i ∈ {1, 2}.

Take now the limit in n and write from (97) (which also holds replacing um by u):

3

4
E[|X1

t −X2
t |] ≤ E[|XZ,1

t −XZ,2
t |] ≤ C

∫ t

0
E[|X1

s −X2
s |]ds,

which readily gives from the Gronwall Lemma E[|X1
t − X2

t |] = 0. This concludes the proof for T small
enough. One may then iterate the argument on small time intervals to extend the result for any arbitrary
T > 0 and then on the whole positive real line. �

A. Proof of Lemma 11.

We start with the proof of estimate (34). Having in mind the thermic characterization of the Besov norm
(31), the main point consists in establishing suitable controls on the thermic part of (31) (i.e. the second
term in the r.h.s. therein) viewed as the map

s 7→ T 1−γ
p′,q′ [Ψ(s, ·)Dηpα(s− t, · − x)].
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Splitting the interval [0, 1] in function of the current time increment s− t (meant to be small) considering
[0, 1] = [0, s− t]∪]s− t, 1] (low and high cut-off), we write:

(

T 1−γ
p′,q′ [Ψ(s, ·)Dηpα(s− t, · − x)]

)q′

=

∫ 1

0

dv

v
v(1− 1−γ

α )q′

‖∂vp̃α(v, ·) ⋆
(

Ψ(s, ·)Dηpα(s− t, · − x)
)

‖q′

Lp′

=

∫ (s−t)

0

dv

v
v(1− 1−γ

α )q′

‖∂vp̃α(v, ·) ⋆
(

Ψ(s, ·)Dηpα(s− t, · − x)
)

‖q′

Lp′

+

∫ 1

(s−t)

dv

v
v(1− 1−γ

α )q′

‖∂vp̃α(v, ·) ⋆
(

Ψ(s, ·)Dηpα(s− t, · − x)
)

‖q′

Lp′

=:
(

T 1−γ
p′,q′ [Ψ(s, ·)Dηpα(s− t, · − x)]|[0,(s−t)]

)q′

+
(

T 1−γ
p′,q′ [Ψ(s, ·)Dηpα(s− t, · − x)]|[(s−t),1]

)q′

. (101)

For the high cut-off, the singularity induced by the differentiation of the heat kernel in the thermic part
is always integrable. Hence using L1 − Lp′

convolution inequalities we have

(

T 1−γ
p′,q′ [Ψ(s, ·)Dηpα(s− t, · − x)]|[(s−t),1]

)q′

≤

∫ 1

(s−t)

dv

v
v(1− 1−γ

α )q′

‖∂vp̃α(v, ·)‖q′

L1 ‖Ψ(s, ·)Dηpα(s− t, · − x)‖q′

Lp′ .

From (10) and similarly to (41), we have

‖D
ηpα(s− t, · − x)‖

Lp′ ≤
C̄p′

(s− t)
d

αp + |η|
α

.

We thus obtain

(

T 1−γ
p′,q′ [Ψ(s, ·)Dηpα(s− t, · − x)]|[(s−t),1]

)q′

≤ ‖Ψ(s, ·)‖q′

L∞

C

(s− t)( d
pα + η

α )q′

∫ 1

(s−t)

dv

v

1

v
1−γ

α q′

≤
C‖Ψ‖q′

L∞(L∞)

(s− t)[
1−γ

α + d
pα + η

α ]q′
. (102)

To deal with the low cut-off of the thermic part, we need to smoothen the singularity induced by the
differentiation of the heat kernel of the thermic characterization. Coming back to the very definition
(101) of this term, we note that

‖∂v p̃α(v, ·) ⋆Ψ(s, ·)Dηpα(s− t, · − x)‖
Lp′ (103)

=
(

∫

Rd

dz|

∫

Rd

dy∂v p̃α(v, z − y)Ψ(s, ·)Dηpα(s− t, y − x)|p
′
)1/p′

=
(

∫

Rd

dz
∣

∣

∣

∫

Rd

dy∂vp̃α(v, z − y)

×
[

Ψ(s, ·)Dηpα(s− t, y − x) − Ψ(s, ·)Dηpα(s− t, z − x)
]∣

∣

∣

p′
)1/p′

.
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To smoothen the singularity, one then needs to establish a suitable control on the Hölder moduli of the
product Ψ(s, ·)Dηpα(s− t, · − x). We claim that for all (t < s, x) in [0, T ]2 × Rd, for all (y, z) in (Rd)2:

|Ψ(s, y)Dηpα(s− t, y − x) − Ψ(s, z)Dηpα(s− t, z − x)| (104)

≤ C

[

(‖Ψ(s, ·)‖
Ḃ

β
∞,∞

(s− t)
η
α

+
‖Ψ(s, ·)‖L∞

(s− t)
η+β

α

)

× (qα(s− t, y − x) + qα(s− t, z − x))

]

|y − z|β

≤
C

(s− t)
η+β

α

‖Ψ(s, ·)‖
B

β
∞,∞

(qα(s− t, y − x) + qα(s− t, z − x)) |y − z|β.

This readily gives, using L1 − Lp′

convolution estimates and (41), that

(

T 1−γ
p′,q′ [Ψ(s, ·)Dηp(s− t, · − x)]|[0,(s−t)]

)q′

(105)

≤
C‖Ψ(s, ·)‖q′

B
β
∞,∞

(s− t)[
d

pα + η
α + β

α ]q′

∫ s−t

0

dv

v
v(1− 1−γ

α −1+ β
α )q′

≤
C‖Ψ(s, ·)‖q′

B
β
∞,∞

(s− t)[
d

pα + η
α + β

α + 1−γ−β
α ]q′

.

Putting together estimates (102) and (106) into (101) yields the estimate (34) in Lemma 11.

Remark 15 (On the control of the first term in the r.h.s. (31)). This term is easily handled by the Lp′

norm of the product Ψ(s, ·)Dηpα(s − t, · − x) and hence on Lp′

norm of Dηpα times the L∞ norm of
Ψ. This, in view of (41), clearly brings only a negligible contribution in comparison with the one of the
thermic part.

To conclude with (34), it remains to prove (104). From (23) (see again the proof of Lemma 4.3 in [HMP19]
for details), we claim that there exists C s.t. for all β′ ∈ (0, 1] and all (x, y, z) ∈ (Rd)2,

|Dηpα(s− t, z − x) − D
ηpα(s− t, y − x)|

≤
C

(s− t)
β′+η

α

|z − y|β
′
(

qα(s− t, z − x) + qα(s− t, y − x)
)

. (106)

Indeed, (106) is direct if |z − y| ≥ [1/2](s − t)1/α (off-diagonal regime). It suffices to exploit the bound

(23) for Dηpα(s− t, y − x) and Dηpα(s− t, z − x) and to observe that
(

|z − y|/(s− t)1/α
)β′

≥ 1. If now

|z− y| ≤ [1/2](s− t)1/α (diagonal regime), it suffices to observe from (28) that, with the notations of the
proof of Lemma 10 (see in particular (27)), for all λ ∈ [0, 1]:

|DηDpM (s− t, y − x+ λ(y − z))|

≤
Cm

(s− t)
η+1

α

pM̄ (s− t, y − x− λ(y − z))

≤
Cm

(s− t)
η+1+d

α

1
(

1 + |y−x−λ(z−y)|

(s−t)
1
α

)m

≤
Cm

(s− t)
η+1+d

α

1
(

1
2 + |y−x|

(s−t)
1
α

)m ≤ 2
Cm

(s− t)
η+1

α

pM̄ (s− t, y − x). (107)

Therefore, in the diagonal case (106) follows from (107) and (27) writing |Dηpα(s− t, z − x) − Dηpα(s−

t, y− x)| ≤
∫ 1

0 dλ|DηDpα(s− t, y− x+ λ(y− z)) · (y− z)| ≤ 2Cm(s− t)−[(η+1)/α]qα(s− t, y− x)|z − y| ≤

C̃m(s− t)−[(η+β′)/α]qα(s− t, y−x)|z−y|β
′

for all β′ ∈ [0, 1] (exploiting again that |z−y| ≤ [1/2](s− t)1/α

for the last inequality). We conclude the proof of (104) noticing that for all s in (0, T ] the map
Rd ∋ y 7→ Ψ(s, y) is β-Hölder continuous and choosing β′ = β in the above estimate.
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We now prove (35). Splitting again the thermic part of the Besov norm into two parts (high and low
cut-off) we write

(

T 1−γ
p′,q′ [

(

Ψ(s, ·)
(

D
ηpα(s− t, · − x) − D

ηpα(s− t, · − x′)
)

]
)q′

=

∫ 1

0

dv

v
v(1− 1−γ

α )q′

×‖∂vp̃α(v, ·) ⋆
(

Ψ(s, ·)
(

D
ηpα(s− t, · − x) − D

ηpα(s− t, · − x′)
)

)

‖q′

Lp′

=

∫ (s−t)

0

dv

v
v(1− 1−γ

α )q′

×‖∂vp̃α(v, ·) ⋆
(

Ψ(s, ·)
(

D
ηpα(s− t, · − x) − D

ηpα(s− t, · − x′)
)

)

‖q′

Lp′

+

∫ 1

(s−t)

dv

v
v(1− 1−γ

α )q′

×‖∂vp̃α(v, ·) ⋆
(

Ψ(s, ·)
(

D
ηpα(s− t, · − x) − D

ηpα(s− t, · − x′)
)

)

‖q′

Lp′

=:
(

T 1−γ
p′,q′ [

(

Ψ(s, ·)
(

D
ηpα(s− t, · − x) − D

ηpα(s− t, · − x′)
)

)

]|[0,(s−t)]

)q′

+
(

T 1−γ
p′,q′ [

(

Ψ(s, ·)
(

D
ηpα(s− t, · − x) − D

ηpα(s− t, · − x′)
)

)

]|[(s−t),1]

)q′

.

Proceeding as we did before for the high cut-off and using (106), we have for any β′ in [0, 1]:

(

T 1−γ
p′,q′ [

(

Ψ(s, ·)
(

D
ηpα(s− t, · − x) − D

ηpα(s− t, · − x′)
)

)

]|[(s−t),1]

)q′

≤

∫ 1

(s−t)

dv

v
v(1− 1−γ

α )q′

‖∂vp̃α(v, ·)‖q′

L1

×‖
(

Ψ(s, ·)
(

D
ηpα(s− t, · − x) − D

ηpα(s− t, · − x′)
)

)

‖q′

Lp′

≤
C‖Ψ(s, ·)‖q′

L∞

(s− t)( d
pα + η+β′

α )q′

∫ 1

(s−t)

dv

v

1

v
1−γ

α q′
|x− x′|β

′q′

≤
C‖Ψ(s, ·)‖q′

L∞

(s− t)

[

1−γ
α + d

pα + η+β′

α

]

q′
|x− x′|β

′q′

.

To deal with the low cut-off, we proceed as we did for (103) in order to smoothen the singularity in-
duced by the differentiation of the thermic kernel. We are hence led to control the Hölder moduli of

Ψ(s, ·)
(

Dηpα(s − t, · − x) − Dηpα(s − t, · − x′)
)

. We claim that for any β′ in (0, 1] and all (t < s, x) in

[0, T ]2 × Rd, we have that for all (y, z) in (Rd)2:

∣

∣

∣

∣

Ψ(s, y)
(

D
ηpα(s− t, y − x) − D

ηpα(s− t, y − x′)
)

−Ψ(s, z)
(

D
ηpα(s− t, z − x) − D

ηpα(s− t, z − x′)
)

∣

∣

∣

∣

≤
C

(s− t)
η+β+β′

α

‖Ψ(s, ·)‖
B

β
∞,∞

(

qα(s− t, y − x) + qα(s− t, z − x)

+qα(s− t, y − x′) + qα(s− t, z − x′)
)

|y − z|β|x− x′|β
′

. (108)
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Repeating the computations in (103) and using the above estimate, we obtain that:

(

T 1−γ
p′,q′ [

(

Ψ(s, ·)
(

D
ηpα(s− t, · − x) − D

ηpα(s− t, · − x′)
)

)

]|[0,(s−t)]

)q′

≤
C‖Ψ(s, ·)‖q′

B
β
∞,∞

(s− t)

[

d
pα + η+β′

α + β
α

]

q′

∫ (s−t)

0

dv

v
v(1− 1−γ

α −1+ β
α )q′

|x− x′|β
′q′

≤
C‖Ψ(s, ·)‖q′

B
β
∞,∞

(s− t)

[

d
pα + η+β′

α + 1−γ
α

]

q′
|x− x′|β

′q′

,

provided

β + γ > 1. (109)

It thus remains to prove (108). It directly follows from (106) that:

∣

∣

∣

∣

Ψ(s, y)
(

D
ηpα(s− t, y − x) − D

ηpα(s− t, y − x′)
)

−Ψ(s, z)
(

D
ηpα(s− t, z − x) − D

ηpα(s− t, z − x′)
)

∣

∣

∣

∣

≤ ‖Ψ(s, ·)‖
Ḃ

β
∞,∞

|z − y|β
C

(s− t)
η+β′

α

|x− x|β
′

×
(

qα(s− t, y − x) + qα(s− t, y − x′)
)

(110)

+‖Ψ(s, ·)‖L∞

∣

∣

∣

(

D
ηpα(s− t, y − x) − D

ηpα(s− t, y − x′)
)

−
(

D
ηpα(s− t, z − x) − D

ηpα(s− t, z − x′)
)

∣

∣

∣.

Setting:

∆(s− t, x, x′, y, z) :=
∣

∣

∣

(

D
ηpα(s− t, y − x) − D

ηpα(s− t, y − x′)
)

−
(

D
ηpα(s− t, z − x) − D

ηpα(s− t, z − x′)
)

∣

∣

∣,

it now remains to control this term. Precisely,

- If |x− x′| ≥ (s− t)1/α/4, we write:

∆(s− t, x, x′, y, z) (111)

≤
∣

∣D
ηpα(s− t, y − x) − D

ηpα(s− t, z − x)
∣

∣

+
∣

∣D
ηpα(s− t, y − x′) − D

ηpα(s− t, z − x′)
∣

∣

≤
(106)

C

(s− t)
η+β

α

|y − z|β
(

qα(s− t, y − x) + qα(s− t, y − x′)

+qα(s− t, z − x) + qα(s− t, z − x′)
)

≤
4C

(s− t)
η+β+β′

α

|y − z|β|x− x′|β
′(

qα(s− t, y − x) + qα(s− t, y − x′)

+qα(s− t, z − x) + qα(s− t, z − x′)
)

.
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- If |z − y| ≥ (s− t)1/α/4, we write symmetrically:

∆(s− t, x, x′, y, z) (112)

≤
∣

∣D
ηpα(s− t, y − x) − D

ηpα(s− t, y − x′)
∣

∣

+
∣

∣D
ηpα(s− t, z − x) − D

ηpα(s− t, z − x′)
∣

∣

≤
(106)

C

(s− t)
η+β′

α

|x− x′|β
′(

qα(s− t, y − x) + qα(s− t, y − x′)

+qα(s− t, z − x) + qα(s− t, z − x′)
)

≤
4C

(s− t)
η+β+β′

α

|y − z|β|x− x′|β
′(

qα(s− t, y − x) + qα(s− t, y − x′)

+qα(s− t, z − x) + qα(s− t, z − x′)
)

.

- If |z − y| ≤ (s− t)1/α/4 and |x− x′| ≤ (s− t)1/α/4, we get:

∆(s− t, x, x′, y, z) (113)

≤

∫ 1

0
dλ

∫ 1

0
dµ|D2

xD
ηpα(s− t, z − x′ + µ(y − z) − λ(x− x′))|

×|x− x′||z − y|

≤
C

(s− t)
η+β+β′

α

|y − z|β |x− x′|β
′(

qα(s− t, y − x) + qα(s− t, y − x′)

+qα(s− t, z − x) + qα(s− t, z − x′)
)

proceeding as in (107) and exploiting (27) for the last identity. Plugging (113), (112) and (111) into (110)
eventually yields the control (108).
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