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BACKGROUND: Available toxicity data can be optimally interpreted if they are integrated using computational approaches such as systems biology
modeling. Such approaches are particularly warranted in cases where regulatory decisions have to be made rapidly.

OBJECTIVES: The study aims at developing and applying a new integrative computational strategy to identify associations between bisphenol S
(BPS), a substitute for bisphenol A (BPA), and components of adverse outcome pathways (AOPs).
METHODS: The proposed approach combines a text mining (TM) procedure and integrative systems biology to comprehensively analyze the scientific
literature to enrich AOPs related to environmental stressors. First, to identify relevant associations between BPS and different AOP components, a list
of abstracts was screened using the developed text-mining tool AOP-helpFinder, which calculates scores based on the graph theory to prioritize the
findings. Then, to fill gaps between BPS, biological events, and adverse outcomes (AOs), a systems biology approach was used to integrate informa-
tion from the AOP-Wiki and ToxCast databases, followed by manual curation of the relevant publications.

RESULTS: Links between BPS and 48 AOP key events (KEs) were identified and scored via 31 references. The main outcomes were related to repro-
ductive health, endocrine disruption, impairments of metabolism, and obesity. We then explicitly analyzed co-mention of the terms BPS and obesity
by data integration and manual curation of the full text of the publications. Several molecular and cellular pathways were identified, which allowed
the proposal of a biological explanation for the association between BPS and obesity.
CONCLUSIONS: By analyzing dispersed information from the literature and databases, our novel approach can identify links between stressors and
AOP KEs. The findings associating BPS and obesity illustrate the use of computational tools in predictive toxicology and highlight the relevance of
the approach to decision makers assessing substituents to toxic chemicals. https://doi.org/10.1289/EHP4200

Introduction
Integrative computational approaches that combine systems biol-
ogy and toxicology can increase our understanding of the links
between environmental chemical exposure and human health.
Systems biology and advanced bioinformatics tools generate new
hypotheses. They furnish new insights into and predictions of bi-
ological mechanisms induced by chemical substances, including
drugs and environmental pollutants. Compelling evidence indi-
cates that a number of chemical substances may play a causative
role in diseases (Heindel and Blumberg 2018). Computational
sciences, including systems toxicology, can speed up the identifi-
cation of linkage between adverse outcome pathways (AOPs)
and a chemical stressor as well as its effects on health (Ankley
et al. 2010).

The concept of anAOPwas originally proposed byAnkley et al.
(2010). AOPs integrate various key events (KEs) to connect bio-
logical perturbations, at the molecular or cellular levels, to toxicity
events [i.e., adverse outcomes (AOs)] at organismal and popula-
tion levels. The use of clearly identified AOPs for decision-making
is part of a global methodological initiative, which has, among its
goals, the reduction of animal use in toxicity testing. AOPs are
expected to be usedmore andmore in regulatory frameworks since

they provide evidence-basedmechanistic insights (Bopp et al. 2018).
The AOPs, which have been identified, are stored in the AOP-Wiki
online database (SAAOP 2016). The database is part of a collabora-
tive program that involves the Organisation for Economic Co-
operation andDevelopment (OECD) and the European Commission.
The AOP knowledge database (AOP-KB) is another tool from the
OECDprogram forAOPdevelopment, to support and share informa-
tion to the scientific community and harmonize the format of gener-
ated novel AOP (OECD). All the terms defined in the AOPs are
standardized according to structured ontologies (Ives et al. 2017).

Although the development of AOPs has a great potential to
address existing knowledge gaps, AOP development and assem-
bly is laborious and time-consuming, since extensive toxicity
data need to be gathered. Much of the information that is accu-
mulating derives from omics technologies, high-throughput test-
ing with robots [ToxCast (U.S. EPAa) (Judson et al. 2010)], and
novel databases derived from the compilation of heterogeneous
information such as the Comparative Toxicogenomics database
(CTD) (Davis et al. 2018). Therefore, the development of innova-
tive computing methodologies that allow the prioritization of
chemicals according to their inferred threats is highly relevant
both for the research community and for health agencies (Richard
et al. 2016; Thomas et al. 2013). Such in silico methods that use
available data sources also can accelerate the description of new
AOPs and provide integrated data to increase the information
content of existing AOPs (Berggren et al. 2015; OECD 2014).

The breadth of the currently available scientific literature and
diversity of synonyms for chemicals complicates meaningful inte-
gration of the information. Thus, it can be difficult to completely
and accurately acquire the information on a selected topic, even if
specific databases related to a given field have been compiled and
information stored [e.g., the Developmental and Reproductive
Toxicology database, DART (NIH and TOXNETb)]. In addition to
enriching toxicological databases, there is a need for tools allowing
better exploration of available databases (including available pub-
lished literature), and to improve text mining (TM) is such a way to
facilitate the establishment of links between a chemical and relevant
AOP components. Such tools should be able to explore a wider range
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of data and have the potential to prioritize the chemical–health out-
come connections. We describe here a strategy that integrates a
new tool called AOP-helpFinder version 1.0, downloadable on
github (https://github.com/jecarvaill/aop-helpFinder). Using the
available literature, AOP-helpFinder can automatically find,
extract, and score links between chemical substances (i.e., stres-
sors) and diverse biological elements, i.e., molecular initiating
events (MIEs), KEs, and AOs, which are the components of AOPs
(Villeneuve et al. 2014). The novelty of AOP-helpFinder is that it
consists of a hybrid approach that combines TM and graph theory
to explore the contents of abstracts for the identification of reliable
associations between a chemical and AOPs. The main objective of
AOP-helpFinder is to assist toxicologists and biologists in the
identification of relevant associations between AOP components
and small molecules through the analysis of large-scale, existing
(published in peer-review journals and databases), text-based
knowledge (in vitro, in vivo, and in silico data). As a proof of con-
cept, we applied AOP-helpFinder to bisphenol S (BPS), a struc-
tural analog of bisphenol A (BPA) that is suspected to have
endocrine-disrupting properties (Karrer et al. 2018). The biologi-
cal mode of action (MoA) and potential toxicity of BPS are still
poorly characterized. Using our computational method, links
between BPS andAOP components have been uncovered.

Methods
A workflow of the strategy is shown in Figure 1.

Data Input: Data Description and Preprocessing
Development of the adverse outcome pathway dictionary. In
order to explore associations between AOP-related terminologies
(e.g., “obesity”) and a term of interest (here a chemical), an AOP
dictionary that includes AOP events, i.e., MIEs, KEs, and AOs
(Karrer et al. 2018), was generated. From the AOP-Wiki data-
base, we downloaded the available .xml file that contains all AOP
information (aop-wiki-xml-2017.gz, 3 July 2017). We extracted
the AOP identifier (for example, “72”), the key event name (i.e.,
“obesity”), the key event identifier (“1447” for obesity), and the
key event type (that is, whether the term is a MIE/KE or AO; for
example, adipogenesis is defined as an AO). The AOP dictionary
contained two files: one containing the AO names and one with the
MIE/KE names. MIEs and KEs were combined into one unique
table.

Development of the disease dictionary. Controlled disease
vocabulary from the U.S. National Library of Medical Subject
Headings (MeSH, https://www.nlm.nih.gov/mesh/meshhome.html)
was used, which represented 11,850 disease terms (downloaded
from theCTDdatabase as of September 2017) (Davis et al. 2017).

Development of the bisphenol S dictionary. According to the
data sources, BPS is identified by different terms for its name,
synonyms, and Chemical Abstracts Service (CAS) registry num-
ber. In order to capture, as fully as possible, the existing biologi-
cal and toxicological information related to BPS, chemical terms
were retrieved using the PubChem database (NIH) (Table S1).

Text-based toxicological data. To compile abstracts linked to
BPS, we used an integrative approach that consisted of manual
searches of five specific toxicological databases; some from the
U.S. Toxnet platform [the Chemical Carcinogenesis Research
Information System (CCRIS) (NIH and TOXNETa), DART,
Toxicology Literature Online (TOXLINE) (NIH and TOXNETd),
and Hazardous Substances Data Bank (HSDB) (NIH and
TOXNETc) databases, which are collections of publicly available
information] and the Registry of Toxic Effects of Chemical
Substances (RTECS) database (Biovia). For each database, using
the BPS dictionary, we extracted information concerning abstracts,

authors, journal, year of publication, title, toxic effects, targets, and
species. According to the databases, these data were mentioned
under various fields. To avoid the duplication of information (since
the same article can be present in several data sources) and subse-
quent overestimation of MIE/KE/AO, the parsing of extracted data
was necessary since the toxicological data are not collected under
the same field in the different data sources. For example, in the
CCRIS format, the field “Target data”was found, and in the RTECS
source, the field “Toxics Effects”was found. Therefore, to facilitate
further analysis, three fields that contained toxicological informa-
tion were retained to be screened against AOPs. These three fields
were “Abstract,” “Toxic effects,” and “Target data,” sinceMIE, KE,
and AO can be found in all these fields. The DART database pro-
vided more than >400,000 journal references related to teratology
and other aspects of developmental and reproductive toxicology.
The CCRIS database contained data curated from published studies
that possess chemical records that have carcinogenicity,

Figure 1.Workflow of the strategy for linking bisphenol S (BPS) to health
effects. (A) Data input: we compiled a) published data from multiple sources
related to BPS and its associated toxic effects, and b) adverse outcome path-
way (AOP) events to prepare a dictionary of AOP events (standardization
and storage in an in-house database), which includes molecular initiating
events [MIEs (squares with small dots)], key events [KEs (squares with large
dots)], and adverse outcomes [AOs (square with solid lines)] as defined in
the AOP-Wiki database. (B) Data extraction: we performed preprocessing
followed by text mining of the data using the developed AOP-helpFinder
tool in order to identify links between BPS (black circle) and different AOP
events (MIE, KE, and AO). Scores, represented by the width of the edges,
were calculated to indicate the confidence of the association. (C) Data inte-
gration: To fill potential gaps between two nodes (such as a KE and an AO),
existing AOP information was integrated into the network as well as infor-
mation from the ToxCast database. Full-text manual curation of the identi-
fied publications (by text mining) was performed by experts, thus increasing
the availability of knowledge (dashed nodes/edges lines).
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mutagenicity, tumor promotion, and tumor inhibition test results.
TOXLINE is a database based on bibliographic data, which includes
specialized journals. It provided references from diverse fields,
including toxicological effects of environmental chemicals. The
HSDB is a database focusing on the toxicology of potentially haz-
ardous chemicals. The RTECS database is a comprehensive collec-
tion of basic toxicity information that includes various types of
chemicals such as drugs, food additives, and environmental pollu-
tants. It covers six categories of toxicity data: acute toxicity, tumori-
genicity, mutagenicity, skin and eye irritation, reproductive effects,
andmultiple dose effects.

Development of a relational database for storing data. All
selected information were stored in an in-house database to facili-
tate further analyses. Data were entered once in a relational SQLite,
version 3.27.2, (https://www.sqlite.org/index.html) database to
avoid any redundancy. The architecture of the database consisted
of twelve tables, in which the previously compiled information
[database source, first author, journal, year of publication, title,
data text (abstract, target text, and toxic effects information),
related animal and sex information, and MIE, KE, and AO data
linked to AOP] were stored and connected together.

Data Extraction: The AOP-helpFinder Tool
To identify reliable associations between MIE/KE/AO and BPS,
we developed a new method called AOP-helpFinder, which is
based on Natural Language ToolKit (NLTK, version 3.2.5)
(https://www.nltk.org/) and on Dijkstra graph theory (Dijkstra
1959). NLTK is a leading platform for building programs that
employ human language data. It contains a suite of libraries and
small programs for symbolic and statistical natural language proc-
essing under the Python programming language. NLTK initially
was created for fields such as cognitive science, artificial intelli-
gence, and machine learning, to mention a few areas. Dijkstra’s
algorithm identifies the shortest path between two nodes in a graph,
and in the AOP-helpFinder, it was used to determine the shortest
path betweenwords (by computing the distance between the terms,
for example between a substance and an AOP event in an abstract).
The AOP-helpFinder is a multistep TM procedure, consisting of
the following:

1. data preprocessing
To maximize the chances of matching MIEs, KEs, and
AOs in text data, it was necessary to clean and simplify
them (Figure 2). This consisted of filtering out the noise
and stemming the words remaining (the stem is the root or
main part of a word to which inflections or formative ele-
ments are added), as well as considering spaces, conjunc-
tion, and punctuation. For example, for AOP 7, the text
“Aromatase (Cyp19a1) reduction leading to impaired fer-
tility in adult females” was simplified to “aromata cyp19a1
reduct lead impair fertil adult female.” This multistep pre-
processing consisted of a) dividing an abstract into senten-
ces, b) splitting all sentences into words, c) removing
sentences that contain a negation word (never, neither, no,
not, did not, hasn’t, should not, . . .) to reduce the risk of
false positives, d) deleting stop words (coordinating con-
junction, punctuation, most common words) from senten-
ces, and e) stemming the remaining words. As a result, we
obtained stemmed data for information related to AOPs
and text data related to the chemical of interest ready to be
screened against the AOPs’ data stored into the database.

2. identification of association and scoring function
Two different approaches were developed to screen for AO
and MIE/KE terms. As AO is more related to a few words
and MIE/KE to complex sentences, the approaches were
based on the calculation of scoring functions that took into

consideration the complexity of the terms/sentences related
to AO/KE/MIE.

Matching AO data. The stemmed AO were screened in the
“abstracts,” “targets,” and “toxic effects” fields. Associations
between chemicals and AO are likely to have different meanings
if they are found in the beginning or at the end of an abstract.
Generally, in published studies, a working hypothesis is found at
the beginning of an abstract. However, chemical–AO associa-
tions co-mentioned at the end of an abstract are more likely to be
considered as true positives because results and findings are often
cited at the end of an abstract. Therefore, in order to differentiate
working hypothesis from findings, we calculated a score based
on the position (pS) using pS=AOindex=LTMA. Both the position
of the AO term relative to the other words (AOindex) and the total
number of words in the text mined abstract (LTMA) are taken into
consideration. An optimal value is around 1.0, which corre-
sponded to the last position in the abstract. The more the AO is
placed toward the end of the abstract, the more it can be consid-
ered as a result and not a working hypothesis.

Matching molecular initiating event and key event data. On
the average, a MIE/KE consisted of four terms in the AOP-Wiki
database. Fifty-four percent of the MIE/KE contained at least
four terms (for example, “allergic contact dermatitis challenge”),
and among these, 21% were composed of exactly four terms.
Moreover, 40% of the MIEs/KEs had between four and six terms.
The minimum number of terms was one (such as “obesity”), and
the maximum was 21 terms [KE 1,119: failure gamma glutamyl
carboxylation glutamine residues clotting factors ii vii ix x under
carboxylation clotting factors (gamma carboxy prothrombins)].
Based on these data, when a MIE/KE was composed of >three
terms, we assumed that 25% of the information could be missing
(for example, for “allergic contact dermatitis challenge,” we
retrieved “allergic contact dermatitis”), whereas for a MIE/KE
having <four, we assumed that every term was important.
Therefore, we applied a threshold of 75% of stemmed terms in
order to identify relevant MIE/KE in the screened abstracts. The
matching process continued under these conditions; otherwise, it
was stopped.

The search forMIE/KE in an abstract was based on the creation
of acyclicweighted graphs that use the positions of stemmed terms.
The edges characterizing these graphs had a weight that was the
distance between two nodes (positions of two different terms).
Given the notion of weight on edges, we decided to use Dijkstra’s
algorithm because it supports finding the shortest path in a
weighted acyclic graph (Dijkstra 1959). The acyclic property was
composed of a step-by-step process, starting from the term n to the
term n+1, without returning to the nth term (unidirectional). Since
the graphs that are formed are acyclics, the algorithmic complexity
was solved by a maximum ofOðn2 +mÞ calculations, where n rep-
resents the number of nodes, andm the number of edges in a graph
O. Dijkstra’s theory is represented by a quadratic complexity, i.e.,
Oðn2Þ. Considering all the existing MIE/KE, which have an aver-
age of four terms, the use of Dijkstra’s algorithm resulted in a faster
calculation compared with the use of a table. Therefore, the weight
of the edges was used to find the shortest paths of the stemmed
terms. The nearer the stemmed terms are to one another, the lower
the total weight is. In order to identify a MIE/KE in texts and to
classify the MIE/KE scores, we calculated a weighted score (wS)
using wS= ðminTW +1Þ=LMK . The wS is based on the lowest total
weight calculated using graph theory (minTW ) and the total number
of words in aMIE orKE (LMK). The ideal score is 1.0. At this score,
all the stemmed terms are present and close to one another; that is,
the expression/sentence found in the abstract is very similar to the
MIE/KE of the reference (AOP-Wiki). The more the score varies
from 1.0 (higher or lower), the less the MIE/KE is likely. Scores
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<1:0 indicate that there are missing MIE/KE stemmed terms in
a sentence of an abstract. Scores >1:0 indicate that MIE/KE
stemmed terms are far from each other. Scores <0:0 indicate that
stemmed terms are missing (if a stemmed term is missing, a minus
sign is added).

Performance of the AOP-helpFinder.Manual curation of the
abstracts was used to assess the ability of the AOP-helpFinder to
find relevant associations.

Data Integration: Linking a Chemical to Health Effects
Integrating known adverse outcome pathways and ToxCast in-
formation. A biological network of the key AOP event names
for BPS was developed using the events (MIE, KE, and AO)
identified with the AOP-helpFinder. To fill potential gaps
between a MIE and a KE, or a KE and an AO, integration of an
updated version of the AOP-Wiki (23 April 2018) was performed.
We also integrated additional evidence of molecular events related

to BPS using the ToxCast database (April 2018). In this 2018
version, ToxCast provided data for 9,076 chemicals, tested on
359 assays, and information for 1,192 high-throughput end-
point components.

Integrating published data by manual curation. AOP-
helpFinder identified relevant publications. To estimate their toxi-
cological relevance as well as the importance of the experiments
carried out for BPS, scientific experts manually analyzed the
abstracts of the publications. For example, articles that used BPS
to introduce a study or as a reference molecule in a study that
involved other compounds were not taken into consideration for
further analysis. Following this first manual curation, articles
were classified according to the AOs to which they belong, and
the corresponding full texts were read. This step highlighted the
molecular events that were most often described, and particular
attention was paid to those that are confirmed repeatedly by dif-
ferent articles. Based on the extracted results, AOP networks
were suggested, and experts examined additional publications

Figure 2. Data preprocessing in the AOP-helpFinder tool. Before identifying and scoring associations between a chemical and an adverse outcome pathway (AOP)
event, text information collected frommultiple sources (publications, databases) was preprocessed in order to obtain stemmed data, which were stored in a relational
in-house database. Negation words (never, neither, no, not, did not, hasn’t, should not, . . .) were identified with squares surrounded with small dots, stop words
(coordinating conjunctions, punctuations, most common words such as “the”) with squares surrounded with large dots, and “words to stem” with solid lines (e.g.,
files! file or finder! find, considering that a word has a single stem, namely the part of the word that is common to all its inflected variants).

Environmental Health Perspectives 047005-4 127(4) April 2019



(cited references in the selected publications) to identify potential
indirect linkages between events (KEs).

Results

Data Preparation
We first had to retrieve the AOP terms on one hand and the BPS
synonyms on the other hand. Annotations of AOPs were retrieved
by downloading the full AOP-Wiki database. As of July 2017,
there were 1,073 biological events (MIEs and KEs) and 61
defined AOs, some of which were under development, and others
were included in the OECD work plan. These events were at dif-
ferent biological levels and ranged from the molecular (ID 18:
Activation, AhR) to cellular (ID 52: decreased, calcium influx),
tissue (ID 68: accumulation, collagen), organ (ID 161: increase,
liver and splenic hemosiderosis), individual (ID 270: induction,
sustained hepatotoxicity), and population (ID 417: skewed, sex
ratio). To create the list of terms related to BPS (i.e., synonyms),
we queried the PubChem database (Kim et al. 2019). We were
able to retrieve 129 terms that include the MeSH vocabulary and
depositors’ names (see Table S1). For example, BPS has several
synonyms such as bis(4-hydroxyphenyl)sulfone and 4,4’-sulfo-
nyldiphenol, and has the CAS number of 80-09-1. Raw text data
that mention BPS or synonyms were acquired from five toxico-
logical databases (CCRIS, DART, TOXLINE, HSDB, and
RTECS), and processed in an SQLite3 database. A total of 109
publications involving BPS and toxicological effects were identi-
fied (Table S2). Then, in order to identify co-occurrence between
the BPS compound and the AOP terms in the 109 abstracts
extracted from five databases, the BPS dictionary and the AOP
dictionary were used.

Process of the AOP-helpFinder Tool
The central feature of the AOP-helpFinder was its ability to find
associations between compounds (e.g., BPS) and AOP terms
using a NLTK TM approach. After the calculation of scoring
functions using the Djikstra graph theory, only the most relevant
information to support linkage of a compound to an AOP was
kept. As a result, the relationships between a chemical (i.e., a
stressor) and a MIE, which is the initial component of an AOP
(e.g., chemical binding to a receptor or a protein), were identified.
Other types of associations also were uncovered between BPS,
AOP KEs, and AOs, which are the ultimate component of an
AOP that impacts health at an individual or a population level.

Performance of the AOP-helpFinder
To evaluate the performance of the method, we manually curated
the 109 abstracts. We obtained a success rate of 76% with 85 true
positive (existing MIE/KEs that were found) and 27 false posi-
tive (MIE/KEs found by the AOP-helpFinder, but not present in
the 109 publications). The sensitivity of the method, i.e., the abil-
ity to find the right AOP related term, was 67%, with 41 false neg-
atives (not found by AOP-helpFinder, but existing in at least one
of the abstracts; for example, “reproductive defects” was not
found but could be linked to the KE “decreased reproductive
success”).

The relevance of the position score was also evaluated. In
other words, we evaluated the hypothesis that the position of the
AO terms in the abstract relates to the context, that is, whether
the statement was a working hypothesis or a finding. We man-
ually checked the abstracts that co-mention BPS and at least one
AO, and found a good correlation between the pS and the real
position of the AO term. All the high pS scores (close to 1) were
related to a result in an abstract, whereas low pS related to the

introduction or a hypothesis in the abstract. For example, a pS of
0.95 was obtained for steatosis from the study of Héliès-
Toussaint et al. (2014). Examination of the abstract revealed that
BPS and steatosis were co-mentioned in the last sentence (“the
findings suggest that both BPA and BPS could be involved in
obesity and steatosis processes, but through two different meta-
bolic pathways”).

Linking Bisphenol S to Health Effects
The 109 publications that were obtained were filtered using AOP-
helpFinder and only the ones mentioning associations between

Table 1. List of the adverse outcomes (AOs) and molecular initiative and
key events (MIEs and KEs) associated with bisphenol S (BPS).

Name
Score

(pS or wS)a AOP-Wiki ID

AO name
Adipogenesis 0.96 16
Cancer 0.47 11
Hepatic steatosis 0.28 17
Steatosis 0.95 18

MIE/KE name
Activated LXR 3 1,421
Activation androgen receptor 1.6 785
Activation estrogen receptor 4 1,181
Activation estrogen receptor alpha −1 1,065
Activation glucocorticoid receptor 2 122
Activation hepatic nuclear receptor(s) −2 1,157
Activation LXR 3 167
Activation oxidative stress pathway −2:25 1,238
Allergic contact dermatitis challenge −0:75 312
Alteration lipid metabolism 2.66 1,060
Altered gene expression 1.66 1,239
Apoptosis 1 1,262
Binding antagonist NMDA receptors −1:5 201
Breast cancer 1 1,193
Chronic high-fat diet −0:75 1,454
Decrease fertility 2 330
Decrease thyroid hormone synthesis −0:75 277
Decreased androgen receptor activity −1:25 742
Decreased body length 1.66 315
Decreased body weight 1.66 864
Decreased testosterone 1 808
Depletion of GSH 1 130
Estrogen receptor activation 4 1,180
Glucocorticoid receptor agonist activation −1:5 494
Hippocampal gene expression altered −1:25 756
Impaired development 1 577
Increase DNA damage 1 1,194
Increase lipid peroxidation 2.3 1,445
Increase plasma vitellogenin concentrations −1:25 220
Increase reactive oxygen species production −1 257
Increased DNA damage repair −0:75 1,281
Increased lethality 8.5 342
Increased neuronal synaptic inhibition −4 1,015
Increased reactive oxygen species −0:75 1,115
Increased triglyceride 2 881
Liver fibrosis 5.5 344
Increased glucocorticoid receptor activity −1:5 1,396
Necrosis 1 1,263
Obesity 1 1,447
Oxidative stress 1 210
Production reactive oxygen species −0:75 249
Reduction testosterone level 2.3 446
ROS formation 1 1,278
Skewed sex ratio 1 417

Note: GSH, glutathione; LXR, liver X receptor; NMDA, N-methyl-d-aspartate; ROS, re-
active oxygen species.
aThe position score (pS) reflects the position of the AO term in the abstract. The
weighted score (wS) allows the user to quantify the extent to which a MIE/KE expres-
sion is retrieved in an abstract.
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AOP-related terms (MIEs, KEs, and AOs) and BPS were kept (see
Table S2). Among the 109 publications, seven co-mention BPS
and an AO term (e.g., “steatosis”), and 46 co-mention BPS and
MIE/KE terms (for example, “activation estrogen receptor alpha”
or “decrease body weight”). Very few AOP event duplicates were
retrieved. Therefore, for further analysis, we kept a total of four
uniqueAOs (for example, the AO “cancer”was retrieved in four of
the seven publications that co-mention BPS and an AO term) and
45 uniqueMIE/KEs.We also removed the publicationswith the in-
significant term “decrease” found among theMIE/KE, when it was
alone, as it could not be mapped to a specific biological event.
Thus, we ended upwith fourAOs and 44MIEs/KEs (Table 1) pres-
ent in 31 references (Table S2). To visualize these findings, we dis-
played bipartite networks using Cytoscape, version 3.5.1 (https://
cytoscape.org/) (Figure 3). Among others, an association was
found between BPS and “decrease thyroid hormone synthesis.”
This corresponded to KE 277 in the AOP-Wiki database “Thryroid
hormone synthesis, Decreased”with a score of 0.75. Themost rele-
vant health outcomes resulting from our study were reproductive
effects (decreased testosterone, skewed sex ration, decreased fer-
tility), endocrine disruption (estrogen and androgen receptor
activation, as observed biologically with BPA), and metabol-
ism impairment (adipogenesis, increased triglycerides, obesity).

Among the latter, the most optimal score was associated with obe-
sity (KE 1,447 in the AOP-Wiki database, belonging to the AOP
72) with a wS value of 1. Furthermore, obesity was mentioned in
six of the 31 publications (Figure 3) (Table S2). Few published
articles link directly BPS to obesity (Héliès-Toussaint et al. 2014);
nevertheless, our approach allowed us to highlight this connection.
Since BPS is a substitute for BPA, which is suspected to be an obes-
ogen, the link between BPS and obesity that we found is of interest.
The AOP-helpFinder tool allowed us to identify publications that
mention a link between BPS and increased adipogenesis (ID 1,449
in the AOP-Wiki database). In order to have a more accurate assess-
ment of the MoA leading to obesity, an integrative systems biology
approach was used. We integrated information from current avail-
able sources such as the AOP-Wiki and ToxCast databases (as of
April 2018). In theAOP-Wiki database, aMIE involving the peroxi-
some proliferator–activated receptor gamma (PPARγ), “PPARγ,
activation” (ID 1028 in the AOP-Wiki database) was identified as
being connected to other AOP terms such as “increase adipogene-
sis” and “obesity.” Indeed, PPARγ activation is a known initiating
event for increased adipogenesis (Lefterova et al. 2014). PPARγ
also is known to be involved in the regulation of adipocyte differen-
tiation and has been implicated in several pathologies including obe-
sity, diabetes, and cancer (Polvani et al. 2016). The investigation of

RE11

increase dna damageincrease plasma 
vitellogenin

concentrations

activation androgen 
receptor

impaired development

RE12

RE61skewed sex ratio

increased dna damage 
repair

glucocorticoid receptor 
agonist activation 

RE15

activation glucocorticoid 
receptor

increased glucocorticoid 
receptor activity decreased androgen 

receptor activity 

RE32production reactive 
oxygen species 

adipogenesis

breast cancer

RE33

RE16

cancer

RE14

RE103

RE7

allergic contact 
dermatitis challenge 

depletion gsh

increased neuronal 
synaptic inhibition 

decreased testosterone

increased lethality

RE2

decreased body weight

RE3

RE4

decrease fertility

decreased body length

RE101

decrease thyroid 
hormone synthesis 

activation estrogen 
receptor alpha 

increased triglyceride

RE86 RE23

altered gene expression

hippocampal gene 
expression altered 

binding antagonist 
nmda receptors 

chronic high fat diet

activated lxr

RE46

alteration lipid 
metabolism

activation lxr

liver fibrosis activation hepatic 
nuclear receptor(s) 

activation oxidative 
stress pathway 

ros formation

RE53

RE6

RE19

RE90oxidative stress

increased reactive 
oxygen species 

necrosis

RE59

RE84

RE73

RE37

RE10

RE5

increase lipid 
peroxidation

RE39

apoptosis

RE9

RE82

hepatic steatosis

reduction testosterone 
level

increase reactive oxygen 
species production 

obesity

RE110

estrogen receptor 
activation

steatosis

activation estrogen 
receptor

Figure 3. Bipartite networks of the relevant references and adverse outcome pathway (AOP) events for bisphenol S (BPS), identified by text mining. The bipar-
tite networks consisting of 48 AOP terms: 4 AOs (rectangle), 44 molecular initiating events (MIEs)/key events (KEs) (ellipse), and 31 references (RE) (dia-
mond) (see Table S2 for the corresponding references). The width of each AOP term–reference edge is proportional to the corresponding scores: position score
(pS) for AO and weighted score (wS) for MIE/KE. Note: LXR, liver X receptor; NMDA, N-methyl-D-aspartate.
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the ToxCast database allowed us to identify positive associations
between BPS and PPARγ through two assays, i.e., ATG-PPARγ_
TRANS_up (mRNA activation in human HepG2 cell lines, 1:13
log 10 uM) and NVS_NR_hPPARγ (active binding, 1:62 log
10 uM) (Figure 4).

We attempted to identify other biological pathways that link
BPS to obesity. We sought to build patterns with coherent MoA
using the full text of the publications that were identified by AOP-
helpFinder through the screening of abstracts (Figure 5). Several
molecular and cellular pathways, whose disruption could be linked
to obesity, were identified: a) formation of adipocytes, b) increased
lipogenesis, or c) decreased lipolysis (Table 2). Regarding adi-

pogenesis, the activation of estrogen receptor alpha (ERa) by BPS
was shown to trigger the expression of several adipogenic markers
inMCF-7 cells (Molina-Molina et al. 2013), HEK293T cells (Teng
et al. 2013), and preadipocytes (Boucher et al. 2016a), such as Ap2
(adipocyte protein 2, a carrier protein for fatty acids). Since Ap2
was also shown to increase the expression of ERa in ER-negative
MDA-MB-231 cells (McPherson and Weigel 1999), the existence
of a positive feedback loop contributing to adipogenesis could be
suggested. Interestingly, Ap2 was also shown to be a transcrip-
tional target of PPARγ in 3T3-L1 adipocytes (Rival et al. 2004),
whose pathway was activated by BPS (Boucher et al. 2016a).
Further, the expression of the PPARγ coactivator 1 α, which is

Figure 5. Identification of the mechanistic effects linking BPS to obesity. The AOP-helpFinder tool allowed us to select relevant publications that associated
BPS, key events (KEs), and obesity. A manual curation of these studies by experts led to the identification of potential molecular targets of BPS (small dots
surrounding squares), molecular processes (large dots surrounding squares), and hormone disruption (solid lines). Thick arrows: “increased” or “decreased.”
Note: ApoC, apolipoprotein C-III; Ap2, adipocyte protein 2; Ascl5, Acyl-CoA synthetase long-chain family member 5; BPS, bisphenol S; ERRg, estrogen-
related receptor gamma; ERs, estrogen receptors; FA, fatty acids; FABP, fatty acid–binding proteins; HSL, hormone-sensitive lipase; insulin R, insulin recep-
tor; LPL, lipoprotein lipase; PGC1a: peroxisome proliferator–activated receptor gamma coactivator 1-alpha; SOCS3, suppressor of cytokine signaling 3.

Figure 4. Potential mode of action for bisphenol S (BPS) leading to obesity resulting from text mining and integrated systems toxicology (data integration
from the AOP-Wiki and ToxCast databases). Small dots (arrows and square lines) indicate information from the ToxCast database, large dots from the AOP-
Wiki database, and solid lines, information identified using AOP-helpFinder.
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recruited by PPARγ to transactivate its target genes, was shown to
be specifically up-regulated by BPS in the 3T3-L1 cell line
(Héliès-Toussaint et al. 2014).

Additional observations collected from the retrieved articles
could also contribute to the increased adipogenesis outcome,
notably through metabolic disruption: BPS promotes the cellular
uptake of glucose in two cell lines (3T3-L1 and HepG2), which
could contribute to the production of glycerol-3-phosphate and
then subsequently to the synthesis of triglycerides (Héliès-
Toussaint et al. 2014). One study also has linked the activation of
PPARγ to an increased uptake of glucose (Zhang et al. 2017).
Several key factors that regulate lipogenesis and lipolysis
(including fatty acids binding proteins (FABP4 and FABP5)
(Boucher et al. 2016b), perilipin 4 (Crump et al. 2016; Boucher
et al. 2016b), or acyl-CoA synthetase long-chain family member
5 (ACSL5) (Crump et al. 2016) also were found to be associated
with BPS exposure by AOP-helpFinder. Together, these proteins
could contribute to an increased fatty acid uptake in preadipo-
cytes (Boucher et al. 2016a) and to the production of triglycerides
and, subsequently, of lipid droplets. Furthermore, BPS nega-
tively regulates the expression of the hormone-sensitive lipase
(HSL) in adipose tissue of C57BL/6 mice (Ivry Del Moral et al.
2016) and estrogen-related receptor gamma (ERRc) in the 3T3-
L1 cell line (Héliès-Toussaint et al. 2014). ERRc regulates posi-
tively the expression of uncoupling protein 1 during the browning
of 3T3-L1 adipocytes, which suggests that its down-regulation
contributes to the increase in white adipose tissue, whereas
down-regulation of HSL contributes to decreased lipolysis
(Akter et al. 2008). In addition to metabolic disruption, AOP-
helpFinder identified references that showed that BPS could be
associated to the establishment of insulin resistance through both
decreased expression of the insulin receptor and an increased
inflammatory response in adipose tissue of C57BL/6 mice (Ivry
Del Moral et al. 2016). Taken together, the studies retrieved
through AOP-helpFinder suggested a link between BPS exposure
and an AOP network related to adipogenesis and metabolic
disruption.

In order to test additional applications of the AOP-helpFinder
tool, we screened other data sources such as PubMed and included
more disease terms than those in the AOP dictionary. Specifically,
we used AOP-helpFinder to investigate BPS in the 109 selected
publications, but instead of using AOP terms, the 11,850 MeSH
disease terms were used (downloaded from the CTD database as of
28 September 2017). Obesity (MESH: D009765) was retrieved
with a pS value of 0.93. Other disorders or phenotypes were also
found, such as “diabetes mellitus” (pS of 0.84) or “body weight”
(pS of 0.73) (see full list in Table S3).

Thus, our computational approach highlighted the need to
integrate various data sources (publications, databases) in order
to capture as much information as possible when studying links
between a selected chemical and AOs.

Discussion
We have developed a novel computational approach using TM,
graph theory, and systems biology to improve our capacity to
link chemicals with AOPs. The AOP-helpFinder tool is particu-
larly well suited to explore putative toxicity of chemicals to be
used as replacements for toxic compounds, since studies explor-
ing the human effects of the substitutes usually are scarce,
whereas public decisions concerning the suitability of their use
are urgently needed. The ability to identify chemical–biological
associations is illustrated using BPS as an example. There is a
large amount of published data for BPA. However, much less in-
formation is available for alternatives to BPA (BPS, for exam-
ple), even though there has been a recent surge in the number of
publications due to increased use of alternatives in consumer
products (Rochester and Bolden 2015). We mined available in-
formation from multiple sources using the AOP-helpFinder tool.
The ability to make novel observations or to confirm suspected
effects using this tool, combined with integrative systems biol-
ogy, is clearly illustrated by our observations on putative links
between BPS and obesity. This method increases our knowledge,
may give orientation for further experimental analysis, and sup-
ports the development of models that provide alternatives to ani-
mal testing [Replacement, Reduction and Refinement (3Rs)]. The
advantages of our approach include the rapid exploration and the
integration of existing information from multiple sources (data-
bases and literature). It therefore has the potential to accelerate
information gathering and is useful particularly when data are
limited and present in diverse sources, which is the case for a
large number of chemicals.

The strategy described here is complementary to existing sys-
tems toxicological models already developed for the identification
and prediction of linkages between chemicals and human health.
Some of these models are hybrid methods that combine multiple
methods (Krysiak-Baltyn et al. 2014). Others are chemical structure
based (Thomas et al. 2013; Ball et al. 2016), involving the physico-
chemical and reactivity properties of the chemicals [read-across and
quantitative structure–activity relationships (QSARs)]. Both are im-
portant for the interactions with specific biological targets and path-
ways, and therefore allow the prediction of toxic effects (Dang et al.
2017; Zang et al. 2017). Following the OECD recommendations for
the construction of robust QSARs (OECD2014), several models are
now available such as the OPERA version 1.5 (Mansouri et al.
2018) or the VEGA platform (www.vegahub.eu). Recently, a new
tool that integrates both chemical similarity and biosimilarity has
been developed, the Chemical In vitro-In vivo Profiling (CIIPro)
(Russo et al. 2017). This tool profiles compounds of interest utilizing
biological data from public resources. It uses the data for read-across
assessmentwith the aim of predicting complex bioactivities. Several
web-based tools, such as the REACHAcross™ tool (Hartung 2016)
and the ChemProt database (using virtual screening) (Kim Kjærulff
et al. 2013), are available.

Table 2. List of the seven publications, identified with AOP-helpFinder, fully explored to identify biological linkage between bisphenol S and obesity.

References Detailed MIE–KE
Molina-Molina et al. 2013 Activation of human ERa and ERb by BPS
Boucher et al. 2016a Activation of the expression of the adipogenic marker, adipocyte protein 2 (Ap2) (blocked by ERa antagonist)
Teng et al. 2013 Activation of ERa (EC50 of 2.2 lM)
Héliès-Toussaint et al. 2014 BPS increased lipid content in the 3T3-L1 cell line and decreased the expression of ERRc
Boucher et al. 2016a BPS transactivates the expression of FABPs and perilipin 4 (microarray data, differentially expressed genes).
Crump et al. 2016 BPS transactivates the expression of ACSL5.
Ivry Del Moral et al. 2016 BPS decreased the expression of HSL.

Note: ACSL5, acyl-CoA synthetase long-chain family member 5; BPS, bisphenol S; EC50, half-maximal effective concentration; ER, estrogen receptor; ERRc; estrogen-related recep-
tor gamma; FABPs, fatty acids binding proteins; HSL, hormone-sensitive lipase; KE, key event; MIE, molecular initiating event.
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Other methods are primarily based on the delineation of the
MoA and on systems biology. Chemicals can disrupt a variety of
pathways and lead to complexmanifestation of toxicities. However,
different chemicals can have similar MoA if they dysregulate the
same target or targets that belong to the same signaling pathway
(Bopp et al. 2018). Such pathway-based approach is recapitulated in
AOPs and can be addressed by systems biology. Integrative systems
biology models, which combine toxicogenomics, protein–chemical
associations, protein–protein interactions (Audouze et al. 2010;
Audouze and Grandjean 2011), disease phenotype information,
genome-wide association, and genetic disease similarities (Audouze
et al. 2013), have revealed molecular mechanisms of xenobiotics
and have linked them to diseases such as obesity and endocrine dis-
ruption. Recently, data-driven approaches have been designed to
generate and enrich AOP descriptions. For example, Nymark et al.
(2017) proposed a multistep procedure based on an in silico pipeline
to identify a network of functional elements for pulmonary fibrosis-
associated genes. This generated novel AOP-linked molecular path-
ways (WP3624 in WikiPathways). Another recent study based on a
systems toxicology profiling approach using information from the
U.S. Environmental Protection Agency database (ToxRefDB) (U.S.
EPAb), the ToxCast database, and a comprehensive literature analy-
sis, identified links between environmental chemicals, molecular tar-
gets, and AOs for male reproduction (Leung et al. 2016). Another
type of data-driven approach is the use of TM and frequent item-set
mining (FIM) to extract fragmented information in texts (e.g.,
abstracts or the full text of publications) (Jensen et al. 2012) or large
datasets (clinical data, biobank, electronic patient records) (Jiang
et al. 2019) and establish relevant associations. Currently, suchmeth-
ods are used widely in the biomedical area to identify information
regarding biological entities (e.g., genes and proteins, metabolites,
phenotypes, pathways) (Jensen et al. 2006; Krallinger et al. 2008).
These approaches have been used less frequently in the toxicological
field. However, in the case of U.S. biomonitoring surveys and
Danish clinical studies, a study based on FIM has led to the success-
ful identification and prioritization of connections between environ-
mental chemicals, biomarkers, and human disorders (Krysiak-
Baltyn et al. 2014). FIMhas been also used to create computationally
predicted AOPs, using the chemicals as the common aggregators
between data (Oki and Edwards 2016), employing information from
the in vitro ToxCast HTS assays and disease information from the
CTD database (Davis et al. 2017). As a case study, they predicted an
uncharacterized connection between the aryl hydrocarbon receptor
and glaucoma resulting from changes in CYP1B1. This connection
is in agreement with experimental data that shows an association
between rare CYP1B1-activating mutations and congenital glau-
coma (Alsaif et al. 2018; Stoilov et al. 1997).

As compared to the abovementioned structural or systems
biology–basedmethods, the added value of the presented approach
is that it combines the exploration of several databases (including
ToxCast) with an improvedmethod of TM that is based on the scor-
ing of connections between chemicals and relevant AOP compo-
nents. Therefore, it explores a wider range of data and has the
potential to prioritize the chemical–health outcome connections,
thus allowing further targeted studies. It also provides hints as to
potential MoAs and, therefore, could be of use in risk assessment.
We believe that such a proposed approach could be improved by
screening more available data (the PubMed database, for example)
and by including other disease terms in the disease dictionary that
was initially limited to the AOP terms. As an example, when we
used MeSH disease terms, the method was also efficient and con-
firmed the links betweenBPS and obesity.

In addition to providing a new tool to explore the putative toxic-
ity of chemicals and chemical mixtures, our study highlights the
need for methods improvements and for additional tools. Novel

computational systems toxicology models are needed to better char-
acterize and predict the complex toxic effects of the chemicals to
which humans are exposed. The current lack of high-quality data for
some of the environmental chemicals and the current limitation of
defined AOPs restricts approaches such as the one described here.
An extension of AOP-helpFinder, which would implement a com-
prehensive dictionary of synonyms related to AOP terms, would
increase the sensitivity of themethod. Furthermore, themanual cura-
tion, used here, of the full texts of the selected publications could be
automated by a TM approach. A recent comprehensive comparison
of text mining of 15 million full-text articles vs. their corresponding
abstracts from the period 1,823–2016 concluded that access to the
full text improved findings (Westergaard et al. 2018).

We believe that the most relevant applications of the method
described here are the delineation of chemical mixtures effects
and a more rapid and efficient evaluation of the safety of substi-
tutes to toxic chemicals. In both cases, it is critical to determine
whether different chemicals exhibit similar MoA, and this can be
accelerated by computational methods. Indeed, a critical issue in
mixtures studies is to determine whether the compounds have
similar modes of action (Kortenkamp and Faust 2018) because,
in such a case, dose addition is the most appropriate method to
assess the global effect of the mixture. Similarly, it is critical to
determine whether substitutes to toxic chemicals exhibit an MoA
that is similar to that of the parent compound. We have illustrated
this aspect here by the study of BPS, which appears to be a puta-
tive obesogen, like BPA and other bisphenol compounds.

Conclusion
Exposure to chemical substances that can produce multiple health
effects, such as endocrine disruption or metabolic disruption, rep-
resents one of the most critical public health threats at present.
Novel, innovative computational methods, such as the AOP-
helpFinder, are useful resources for exploring and predicting
potential links among environmental chemicals and molecular tar-
gets, biological events, and AOs. We believe that the development
and improvement of such in silico approaches has the potential to
significantly impact relevant frameworks to assess chemical toxic-
ity, such as the integrated approaches for testing and assessment,
the reduction of animal testing, and the identification of safe chem-
ical substituents.
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