Pierre-Yves Massé

Online Policy Gradient Methods for Decision Optimisation on a Network Through Restarted Diffusion

We study the decision problem on a network, through the use of a restarted diffusion Markov process. The restart is triggered by the failure of a random Bernoulli variable, which parameter is the so-called "discount factor" in the reinforcement learning community. We provide a complete model of the process, allowing in particular the "discount factor" to depend on the action taken. We study precisely the diffusion model both from a deterministic point of view, and show in particular links with vector analysis, and the probabilistic one, where we noticeably derive Feynman-Kac representations. We propose two online algorithms for policy optimisation, one in the deterministic, and the other in the probabilistic representation.

Eventually, we leverage the fact that restarting means we work with a "never ending process" on the network to devise online algorithms to optimise the policy, which update the policy as the process evolves on the network. Theoretical contribution. Our contribution is twofold, both theoretical and practical. In the theoretical part, we consider a network where the "discount factors", which we will from now on reference as transmittance factors depend on the action taken. We offer a full study of the model, both from the deterministic and the probabilistic viewpoint. Allowing transmittance factors to depend on the action taken represents a significant theoretical generalisation of the constant factor case.

The network model viewed as a deterministic model is actually a particular case of a vector analysis setting. In the case of graphs, this approach is studied in Friedman and Tillich (2004). We define the tools we need in the more general network setting, and show noticeably that the duality formula expressing the cumulated costs, and in particular the formula often used as the definition of the value function, is the integration by parts formula over the network (or, in its more general form, the divergence theorem or Stokes's theorem). Moreover, the dynamics followed by the potentials and that followed by the flows is that of a discrete partial differential equation. This framework would arguably enable easy translation of continuous settings results to discrete frameworks, one task which we however do not undertake here, but which would certainly be worth investigating further in future works.

Since we are studying diffusions, these partial differential equations have a special structure, so that their solutions may be represented as expectations of functionals involving the Markov process killed at some random time. In the constant transmittance factor case, the killing time is distributed geometrically, with parameter this factor. We provide the corresponding killing time in the non-constant case, and the corresponding formula.

, the authors study processes killed at state-dependent rates, in continuous time, and exhibit the corresponding Feynman-Kac formulae.

Eventually, using notably the Feynman-Kac formula, we recover the integration by parts formula which, in the probabilistic representation, is the ergodic theorem for the diffusion process.

Introduction

We study the decision problem on a network: at any member of a given set of states, one is required to choose an action, depending only on the state. The network structure, together with the choices of actions, define dynamics on the network, according to which an agent transitions from state to state as time goes on. The choice of actions, called a feedback control in control theory (Trélat 2005), or a policy in reinforcement learning (Sutton and Barto 2018), must meet two requirements. First, the agent must reach some target in the network: this is the controllability problem. However, each action has some cost. The cumulated costs incurred by the agent as they travel through the network is a function of the actions chosen. In reinforcement learning, this function is called the value fonction. The devised policy must minimise this total cost: this is the optimal control problem.

Depending on the structure of the network, among others, the decision problem takes various forms, and solving it requires different tools. Among the main approaches used to tackle it are (by rough chronological order of appearance of the field) graph theory [START_REF] Ahuja | Network Flows, Theory, Algorithms, and Applications[END_REF], dynamic programming [START_REF] Bertsekas | Dynamic Programming and Optimal Control[END_REF], control theory [START_REF] Bertsekas | Dynamic Programming and Optimal Control[END_REF]Trélat 2005), and reinforcement learning (Sutton and Barto 2018).

Network primal-dual problem. The network problem is a primal-dual problem. The primal problem considers functions on the state space: these are the value functions of reinforcement learning, the lenghts of paths in graph theory, or the potentials (the most famous ones, dating back to works in the XIX th century, being electrical potentials), in network approaches such as that developped in [START_REF] Ahuja | Network Flows, Theory, Algorithms, and Applications[END_REF]. The dual problem considers linear forms, or measures, acting on those functions: these are occupation distributions in reinforcement learning, or flows (in particular, the intensity of the electrical current), in network approaches.

We study the decision problem on a network in the general framework studied in reinforcement learning. A diffusion kernel on a finite state space governs the transitions of an agent, which occur at each moment of a discrete timescale. Often, the agent does not incur costs while chosing actions, but rather gains rewards, which however only means we want to maximise the cumulated rewards instead of minimising the cumulatad costs. This diffusion problem on a network admits deterministic and probabilistic representations. The deterministic approach studies potentials and flows, while the probabilistic approach studies the Markov decision process constructed from the diffusion kernel and the policy.

Interpreting the "discount factor". In dynamic programming and reinforcement learning, the so-called "discount factor", a real number in the unit segment, enters the definition of the value function. It is often assumed it should be as close to unity as possible. In time-varying settings, this factor ensures weaker influence of later costs compared to earlier ones, as is for instance the case for time-staggered payments the value of which diminishes due to inflation. In non-time-varyings settings, the interpretation as discounting seems less clear. We provide, in both the deterministic and probabilistic representations, a clear technical interpretation of this number. In the deterministic representation, in the electrical network model, the "discount factor" is the inverse of the resistance of the electrical dipoles, with the latter corresponding to the actions. Such numbers are called transmittances. In the Markov decision process setting, the "discount factor" is the parameter of a Bernoulli variable which, after each choice of action, decides whether the process is allowed to proceed according to the action, or rather should restart: the Markov process is as a result a restarted diffusion process. Therefore, one of the practical consequences of this interpretation is a clear definition of the Markov process one should simulate.

While the "discount factor" is often assumed constant, there is no reason it should be, as the network model we introduce in Section 1 makes clear. In control theory, where continuous states spaces are discretised, the "discount factors" are often not constant (Munos and Moore 2002). In our work, we allow "discount factors" to depend on the actions taken.

Using a restarted diffusion process. In Steinhardt and Liang (2015), the authors use randomly-triggered restarts so as to improve simulations. On the one hand, restarting a process allows it to mix more rapidly than the original problem would but, on the other hand, doing so shifts the invariant distribution one would like to compute. Thus, the authors explain there is a trade-off between the coverage restarting provides, and the loss of precision entailed by no longer working with the original model.

In our work, in addition to the random restarting in general states triggered by the Bernoulli variables, which rationale we just discussed, we force the process to restart once target states are reached1 , which allows us to treat at the same-time episodic and continuous tasks, which are often studied separately, even though they do not differ in essence (Sutton and Barto 2018).

First practical contribution: using the online real-time recurrent learning algorithm to optimise the policy. Building on our work on the network model, we then present two algorithms designed to compute the optimal policy, one in the deterministic setting, and the other in the probabilistic one.

In the deterministic setting, we observe that the dynamics followed by the flow on the network is that of a parameterised dynamical system. Optimising these systems is a key issue in machine learning, as recurrent neural networks are an instance of those. We focus on gradient-descent based optimisation techniques. Computing the gradient of the state of a dynamical system at some time involves differentiating the composition through time of the transition operator of the system (the feedforward pass for neural networks). Two main algorithms aiming at computing this differentiation are the backpropagation through time algorithm, and the real-time recurrent learning algorithm (Pearlmutter 1995;[START_REF] Jaeger | A tutorial on training recurrent neural networks, covering BPPT, RTRL, EKF and the "echo state network" approach[END_REF].

The backpropagation through time algorithm computes the gradient by going backwards in time, with a memory cost of the order of the size of the system, but with a time cost which is quadratic, making it unfit for online training. On the other hand, the real time recurrent learning algorithm proceeds online, but with a very high memory cost. As we wish to proceed online, we decide to use the latter.

The real-time recurrent learning algorithm computes the correct derivative of the state of the system, with respect to its parameter, at order zero in the update rule of the parameter. As a result, the gradients it computes are approximations of the true gradients, which are still accurate enough for the optimisation procedure to succeed, if the parameter is updated slowly enough. We provide a bound controlling the time needed between two updates for the quantities computed to allow reasonably good approximation of the correct gradients.

As the real time recurrent learning algorithm has high memory cost, it may only be used efficiently on small-size systems. This is a serious limitation of our work, since networks studied in reinforcement learning are often very large ones. We tried to circumvent this difficulty by testing the "No Back Track" algorithm (Ollivier, Charpiat, and Tallec 2016; Tallec and Ollivier 2018) (the "Unbiased Online Recurrent Optimization" improved version is better-known), which reduces the memory costs while computing unbiased approximations of the gradients, but so far our attempts have not proved successful, since this algorithm is very slow at improving the policy. As a result, it worked satisfyingly only for small networks. Trying to make it fit for large-scale training may constitute an interesting direction of future investigation.

Second practical contribution: online stochastic algorithms using the Feynman-Kac formula. Looking from the probabilistic viewpoint, one way of expressing the gradient of the cumulated costs with respect to the policy is using the policy gradient theorem. One then represents the gradient as an expectation, as in the "reinforce" algorithm (Sutton and Barto 2018). The algorithm we propose differs from "reinforce" in two ways. First, we compute the potentials, needed to compute the gradient, using the Feynman-Kac formula we derived. Secondly, we use ergodicity of the restarted Markov diffusion process on the network to express the gradient as an ergodic mean. We then compute the corresponding ergodic sums, converging to this mean, as time goes on, but update the policy while doing so. As a result, the sums used to estimate the gradient are no longer exact but, provided the update of the policy is slow enough, they are still sufficiently accurate for optimisation to succeed.

Experiments conducted. We conduct sanity-check experiments, in which we try and solve the shortest-path problem in small graphs (up to around one thousand states). The transition kernel of the diffusion process we study is deterministic (hence the network reducing to a graph). Such a model is simple, but precisely defined, and therefore useful to control our algorithms are sound, and well-grounded. Moreover, it is still a fairly general model, even though transitions are only deterministic.

We believe our experiments establish the soundness of our algorithms, in that they validate their working principle. Proving they can deliver in larger scale sit-uations, involving richer models, would constitute the next stage of the work we present here.

Organisation of the exposition. We describe the network model in the deterministic setting in Section 1. We then present our use of the real time recurrent learning algorithm in Section 2. The probabilistic viewpoint is presented in Section 3, as well as the stochastic algorithm. Eventually, the experiments on the shortest-path in a graph model and their results are described in Section 4. Most of the proofs are carried on in the appendices.

Diffusion over a network

We now present the network model in the deterministic viewpoint. We first define the network, the policies with which we take decisions, as well as the dual objects living on it: the potentials and the flows, in Section 1.1. We then introduce the vector analysis formalism we work with in Section 1.2. The next two sections introduce potentials and flows. We are then able to define the discrete partial differential equations on the network which govern the dynamics we study in Section 1.5, before deriving the integration by parts formula, from which we define optimal policies.

Network, potentials, flows and policies

Let us start by introducing the model of the network we work on.

Definition 1 (Network). We define a network as follows.

1. We let S be a finite state space.

We let

A = s∈S A s be a finite action space where, for each state s, A s is the finite space of actions available in s2 .

For every state s, every action a ∈ A s has a cost3 C s (a).

3. To every state s and every action a ∈ A s is associated a probability distribution over the state space S, (p s, a (s)) s ∈S .

4. For each state s, for each action a s ∈ A s available in s, we call transmittance coefficient for action a s some number 0 ≤ γ s, as ≤ 1. We write γ = (γ s, as) s∈S, a∈As .

5. We let μ be a probability distribution over S, which we call the restart distribution.

s 1 s 3 s 4 s 2 s 5 s 6 p s 1 , a 1 (s 3) = 1/2 p s 1 , a 1 (s 4) = 1/4 p s 1 , a 1 (s 2) = 1/4 p s 1 , a 2 (s 5) = 1/2 p s 1 , a 2 (s 6) = 1/2
Figure 1: The goods transportation setting as a realisation of the network. States s 1 to s 6 are for instance cities. Two actions are possible in s 1 . The first one, a 1 , sends p s 1 , a 1 (s 2) = 1/2 of the goods present in s 1 to s 3 , and 1/4 each to s 2 and s 4 . The second one, a 2 , sends 1/2 each to s 5 and s 6 . Of course, actions should be available in other states, but we do not represent them so as to keep the diagram simple.

Technical probabilistic interpretation of the network. The probabilistic representation of the network is studied in Section 3. Let us just mention for now that, for every state s and every action s ∈ A s , the probabilities p s, a (s), for s ∈ S, are the probabilities, for a Markov agent evolving on the network, of transitioning from state s to state s having chosen to perform action a. For every state s, and every action a ∈ A s , the transmittance coefficient γ s, a is the probability of transitioning according to p s, a (•) once action a has been chosen, while 1 -γ s, a is the probability of restarting. For every state s, μ (s) is the probability that the agent restarts in state s, once the restart condition has been triggered.

The goods transportation setting as a realisation of the network. Let us describe a realisation of the network model, which Figure 1 illustrates. The network is composed of cities, linked by roads. The aim is to transfer goods from all the cities, to one target city. The goods are transported along the roads linking the cities. In a shortest-path in a graph setting, the actions would be, for every city, the choice of a road to leave it. In our setting, the actions correspond to dispatching schedules for the goods: while in city s, choosing an action a ∈ A s means choosing a set of cities s linked by a road to the city s, and sending to each city s the ratio p s, a (s) of the goods present in city s. For every city s, we aim at computing the cost it takes for one unit of good starting in the city to reach the target: this corresponds to the potential of the city, or the value function in this city. In a shortest-path setting, this would be the length of the path the good follows when leaving s to reach the target state. The cumulated cost is then the sum of all unitary costs per city, weighted by the amount of goods entering the network in the city. On the dual viewpoint, the amount of goods in a city is the flow in this city. The cumulated cost is expressed as the product of the amount of goods in every city, weighted by the costs of the actions chosen in the city. This duality equality is established in Lemma 19.

In the probabilistic interpretation, the Markov chain evolving on the network represents the current location of one unit of good, which transitions from city to city according to the dispatching schedule: while in city s, having chosen the dispatching schedule a ∈ A s , the Markov chain transitions to s with probability the weight assigned to it by the schedule, that is p s, a (s), for every destination city s it designates. Its law at each time is the distribution of the goods over the network. By ergodicity, temporal averages of the cost incurred by the chain as it travels across the network equal the cumulated cost of its stationary distribution.

Electric circuits as another realisation of the network. The network model also describes electric circuits. Cities correspond to places where one may connect an electrical component and roads correspond to the electrical components. The unitary costs per city correspond to the potentials, and the flow of goods in a city corresponds to the intensity of the current at this point. This is an important example both for historical reasons since, as far as the author knows, the study of networks originated in the XIX th century, with the study of electrical circuits, and because it provides a realisation of the network model from which one may build its understanding of it. We refer the interested reader to the section "Potential theory" of Norris (1998) and to [START_REF] Doyle | Random Walks and Eletric Networks[END_REF].

We now formulate our working assumptions on the network, which are designed so that the network problem is well-defined, and therefore admits solutions.

Assumption 2 (Well-defined network problem). We say a network problem is welldefined when the following properties are satisfied.

1. Transmittance coefficients bounded away from 1. The supremum of the transmittance coefficients, which we write γ ∞ , satisfies

γ ∞ = sup s∈S sup a∈As γ s, a < 1.
2. Target states. We call target states the states s target such that, for every action a ∈ A s target , we have γ s target , a = 0. We then require that, for every non-target state s, μ (s) > 0 while, for every target state s target , μ (s target) = 0. We require that the target states are a strict subset of S, possibly empty4 .

3. Reachability of the target states. For every target state s target , there is a nontarget state s such that, for sor some action a ∈ A s such that γ s, a > 0, we have p s, a (s target) > 0.

4. Costless restart from the target states. For every target state s target , for every a ∈ A s target , we have C s target (a) = 0.

In terms of the probabilistic representation, the hypotheses above ensure that the restarted Markov decision process introduced in Definition 36 is ergodic, and admits a stationary distribution. Indeed, the hypothese ensures the chain is irreducible in a very simple way (which, given the state space is finite, implies ergodicity): under these assumptions, starting from any state, it is possible to attain any other state, with positive probability, in two transitions; this is proved below Lemma 57, and implies irreducibility.

In deterministic terms, the hypothesis ensures the operator introduced in Definition 14 admits a unique fixed point. It mainly ensures that the square of the endomorphism associated to it only has positive coefficients, so that a simple case of the Perron-Frobenius theorem implies the existence of an appropriate eigenvector.

Importantly, ergodicity is satisfied for every family of probability distributions p, as introduced in Definition 1. Indeed, this family is determined from the problem studied (for instance, when modelling chess, the family must model the rules of the game), while there may be situations where the transmittance coefficients, and the measure μ, are chosen by the user. In those situations, enforcing ergodicity is entirely at the discretion of the user.

In all the following, we assume given one network satisfying Assumption 2. Let us now define potentials and flows over a network, which are functions and measures over it.

Definition 3 (Functions and measures over a network, or potentials and flows). The space of functions over S is written R S . Functions over the network are called potentials.

The space of probability measures over a network is written P (S). Probability measures over a network are called flows.

We now define policies in the way which is classical in reinforcement learning5 . Definition 4 (Random policies). Let s ∈ S. Let P (A s) be the simplex of probability measures over the associated action space A s . Let

Π = s∈S P (A s)
be the space of random policies. For every policy π ∈ Π, for every state s, π s ∈ M (A s) is a probability distribution over A s , which we write (π s (a)) a∈As .

For every s ∈ S, and a ∈ A s , Π s, a (•) is the coordinate function associated with s and a: Π s, a (π) = π s (a).

Eventually, we call strict policy a policy π such that, for every state s, π s belongs to the interior of P (A s): for every action a ∈ A s , we have π s (a) > 0.

Diffusion kernels, and vector analysis operators over a network

As is common in Markov chain theory, we now introduce diffusion kernels over the network, and define the way they operate on potentials and flows, through the usual Fokker-Planck equations.

Definition 5 (Diffusion kernel over a network). The forward and backward diffusion kernels over a network are defined as follows.

1. Forward kernel. We call forward kernel over a network the kernel

- → K : Π → S × S → R π → - → K π (or - → K (π))
defined by, for every states s and i,

- → K (π, s, i) = a∈As π s (a) (γ s, a p s, a (i) + (1 -γ s, a) μ (i)) .
In the probabilistic interpretation, -→ K is the kernel of the Markov diffusion process X over the network, introduced in Definition 36: for every states s and i, P (

X 1 = i| X 0 = s) = - → K (π, s, i).
2. Operation of a forward kernel: they operate on functions on S, according to the Fokker-Planck forward equation. We define * :

R S × Π → R S V, π → - → K π * V
by, for every state s,

- → K π * V (s) = i∈S - → K (π, s, i) V (i) .
3. Backward kernel. For every forward kernel, we define the corresponding backward kernel by, for every states s and i,

← - K (π, s, i) = - → K (π, i, s) .
4. Operation of a backward kernel: they operate on measures on S, according to the Fokker-Planck backward equation. We define * :

P (S) × Π → P (S) µ, π → ← - K π * µ
by, for every state s,

← - K π * µ (s) = i∈S ← - K (π, s, i) µ (i) = i∈S - → K (π, i, s) µ (i) .
We decompose every backward kernel between a tangent kernel, and a transverse kernel. The tangent kernel puts in motion the flow already in the network, thanks to the probabilities p i, a (•)'s, while the transverse kernel moves the part of the flow which is entering the network, through the probability μ. The usefulness of this decomposition is the meaning it provides the duality formula expressing the cumulated cost of a policy, which is established in Lemma 19 and discussed thereafter. The same decomposition is used for forward kernels.

Definition 6 (Tangent and transverse decomposition of kernels). For every policy π, we decompose the backward kernel ← -K π according to:

← - K (π) = ← - K (π) + ← - K ⊥ (π) ,
where ← -K (π) and ← -K ⊥ (π) are defined as follows. For every states s and i, the tangent kernel verifies

← - K (π, s, i) = a∈A i π i (a) γ i, a p i, a (s) , while the transverse kernel verifies ← - K ⊥ (π, s, i) = a∈A i π i (a) (1 -γ i, a) μ (s) .
The same construction also applies for the forward kernel -→ K .

We now define two vector analysis operators on a network: the gradient and divergence operators. In a graph setting, the analogous tools are developped in [START_REF] Friedman | Calculus on Graphs[END_REF].

Definition 7 (Gradient over a network). We call gradient operator over the network the operator

∇ : Π × R S → R S π, V → ∇ π V defined by ∇ π V = - → K (π) * V -V = - → K (π) -Id * V
that is, for every state s,

∇ π V (s) = - → K (π) -Id * V (s) = a∈As γ s, a π s (a) i p s, a (i) V (i) -V (s) .
More precisely, for every policy π, ∇ π defines a gradient. The choice of the definition of the gradient, together with that of the potential computation operator, introduced in Definition 11, is decisive in shaping the problem we study. Indeed, we could have used the whole kernel -→ K (π), instead of just its tangent component -→ K (π). However, working with the latter, we recover the classical update formulae for the potentials, the meaning of which is best understood in a graph setting, with all transmittance coefficients equal to 1: in that case, the potentials they aim at computing are the lengths of paths going to the target states. As a result, the definition we use is that which allows us to compute meaningful quantities.

Notations 8 (Tangent space of P (S)). We write T P (S) the set of signed measures over S such that the sum of their coordinates vanishes: for every µ ∈ T P (S), we have s∈S µ (s) = 0. This space is described in more details at the beginning of Section 2.1. In particular, we see this is the tangent space of the affine manifold P (S), which the calligraphed "T " we use in the notation symbolises.

Definition 9 (Divergence over a network). We call divergence operator over the network the operator div : Π × P (S) → T P (S)

π, µ → div π (µ) defined by div π (µ) = ← - K π * µ -µ = ← - K π -Id * µ
that is, for every state s,

div π (µ) (s) = i∈S a∈A i π i (a) (γ i, a p i, a (s) + (1 -γ i, a) μ (s)) µ (i) -µ (s) .
More precisely, for every policy π, div π defines a divergence. For every policy π, for every flow µ, since the p i, a (•)'s, the π i (•)'s and μ are probability distributions, we have

s∈S div π (µ) (s) = i∈S a∈A i π i (a) µ (i) - s∈S µ (s) = i∈S µ (i) - s∈S µ (s) = 0,
so the divergence operator is well-defined.

Divergence evaluates "the lack of stationarity" of a flow, or by how much a flow is not conservative. The conservative flows satisfy div π (µ) = 0 or, in other words, they are fixed points of the flow transfer operator T (•, π) introduced in Definition 14 below. We see after the definition that such flows are uniquely defined for every strict policy. Corollary 58 clarifies the structure of the divergence operator. However, one needs to read Section 1.4, and Section A.1 in the appendices, before reading it.

We conclude by defining the finite difference operator, which acts on families of functions and measures over the network which depend on time.

Definition 10 (Finite difference temporal derivation). Let, for t ≥ 0, u (t, •) be a function over S (respectively, µ (t, •) be a probability measure over S). Then, for every t ≥ 0, for every s ∈ S, we write

∆ u (t, s) = u (t + 1, s) -u (t, s) , and ∆ µ (t, s) = µ (t + 1, s) -µ (t, s) .

Potentials associated to policies

Once a policy has been selected, we are interested in computing the unitary costs per state it entails: the potential computation operator is the necessary tool for this purpose.

Definition 11 (Potential computation operator). We call potential computation operator the operator

T : R S × Π → R S V, π → V
defined by, for every s,

V (s) = a∈As π s (a) C s (a) + - → K (π) * V (s) = a∈As π s (a) C s (a) + a∈As γ s, a π s (a) i p s, a (i) V (i) .
Let us now introduce a notation which we will use occasionally throughout our work, depending on the context. Notations 12 ("Electrical field" associated to π). For every policy π, we define E π ∈ R S by, for every state s,

E π (s) = a∈As π s (a) C s (a) .
In the electrical circuit interpretation of the network, E π is homogeneous to an electrical field over the network: this way, the difference between two potentials (V , and that "on the right of the right-hand side") is homogeneous to a field, as it should be.

We now study the potentials computed through iterations of the operator.

Lemma 13 (Fixed point of T, convergence of its iterates). Under Assumption 2, T satisfies the following properties.

1. For every policy π, the operator T (•, π) is contracting. As a consequence, it admits a unique fixed point, which we write V π . We call V π the potential associated to π.

2. For any initial function V 0 , the sequence (V t) t≥0 of functions over S defined by, for all t ≥ 0,

V t+1 = T (V t , π) ,
that is, for every s ∈ S,

V t+1 (s) = a∈As π s (a) C s (a) + a∈As π s (a) γ s, a i∈S p s, a (i) V t (i) ,
converges to this fixed point.

3. For every π, V π satisfies, for every s ∈ S,

V π (s) = a∈As π s (a) C s (a) + a∈As γ s, a π s (a) i p s, a (i) V π (i) . 4. Π π → V π ∈ R S is a continuous fonction of π.
Proof. T is contracting. Indeed, for V and V two functions over S, for every s ∈ S, we have

T (V (•) , π) (s) -T V (•) , π (s) = a∈As π s (a) γ s, a i∈S p s, a (i) V (i) -V (i) .
As a result, writing • ∞ the infinity norm over R S , we have

T (V (•) , π) -T V (•) , π ∞ ≤ sup s∈S sup a∈As γ s, a V -V ∞ .
Contractivity then comes from Assumption 2. Continuity is a consequence of the fact that the map from Π to the space of affine maps on R S , π → T (•, π), is continuous, and of the fact the majoration above does not depend on π.

Flows associated to policies

We now turn to the dual objects defined on the network: the flows. Flows represent the repartition of goods, for instance, on the network. The flow transfer operator describes how goods are moved through the network.

Definition 14 (Flow transfer operator). We call flow transfer operator the operator

T : P (S) × Π → P (S) µ, π → µ defined by µ = ← - K (π) * µ = ← - K (π) + ← - K ⊥ (π) * µ,
that is, for every state s,

µ (s) = i∈S a∈A i π i (a) (γ i, a p i, a (s) + (1 -γ i, a) μ (s)) µ (i) . (1)
The fact μ is a probability distribution ensures that T is mass preserving (and, as a result, well-defined), bearing in mind that the p i, a (•)'s and the π i (•)'s are probability distributions. For every flow µ ∈ P (S), we have div π (µ) = T (µ, π) -µ.

Under the assumptions we formulated on the network, for every strict policy π, T (•, π) admits a stationary flow. In the probabilistic representation, this is the invariant distribution of the Markov diffusion process over the network.

Let us write • ∞ the sup norm over linear forms on R |S| : for every such linear form µ, we have µ ∞ = sup s∈S |µ (s)|.

Lemma 15 (Stationary flow associated to a policy, or invariant distribution). Under Assumption 2, and for every strict policy π, T (•, π) satisfies the following properties.

1. Stationary flow. The operator T (•, π) admits a unique fixed point, which we note µ π . µ π is positive: for every state s, we have µ π (s) > 0. For every state s, the invariant distribution satisfies

µ π (s) = i∈S a∈A i π i (a) (γ i, a p i, a (s) + (1 -γ i, a) μ (s)) µ π (i) .
We call µ π the flow associated with π, which we also refer to as the stationary flow, or the invariant distribution, associated with π.

2. Convergence to the invariant distribution. For any intial probability distribution µ 0 , the sequence defined by, for t ≥ 0,

µ t+1 = T (µ t , π) ,
converges to this fixed point.

Rate of convergence.

There exists 0 ≤ ρ 2 < 1 and an integer d ≤ |S|6 such that, for every µ 0 , for all t ≥ 0,

µ t -µ π ∞ ≤ µ 0 -µ π ∞ O |S| t d ρ t 2 ,
with the constants in the big O term bounded independently of |S|.

Moreover, for two sequences (µ t) and (µ t) initialised at µ 0 and µ 0 , for all t ≥ 0,

µ t -µ t ∞ ≤ µ 0 -µ 0 ∞ O |S| t d ρ t 2 .
4. Continuity. The map which, to every strict policy π, associates µ π , is continuous.

The proof, which is a simple particular case of the Perron-Frobenius theorem, is a consequence of Lemma 57, which is in Section A.1.

Speed of convergence.

The rate of convergence is of the order of magnitude t d ρ t 2 and since ρ 2 < 1, it does tend to zero. However, the presence of the term |S| t d , and the fact d may equal |S|, show convergence may be extremely slow for large networks. We should qualify this assertion because d and ρ 2 are linked. Indeed, if ρ 2 vanishes, the proof of Lemma 57 shows that d = |S| -1 (which is the maximum value it may assume). However, we do not know how to control this link in all generality. Therefore, the control on the rate of convergence we give aims at quantifying the order of magnitude of the speed of convergence, but is not as stringent a bound as could be.

Nonetheless, one key feature of the algorithms we study is thus to update the policy slowly enough so that we remain close to stationarity, once it has first been reached. As a result, the bulk of the computations necessary to reach stationarity may be carried on at initialisation time. We quantify the time needed to reach stationarity, as a function notably of the size of the updates, in Lemma 32.

Controlling ρ 2 , the second largest eigenvalue modulus. The ρ 2 factor is the modulus of the second largest eigenvalue of the endomorphism associated to T (•, π), which is a well-known object in the study of non-negative matrices in the spirit of the Perron-Frobenius theorem, and in the study of Markov chains. Lemma 57 gives a precise definition of ρ 2 . It may a priori be very close to one, which only deepens the issues discussed in the paragraph above. Being able to control it quantitatively would therefore be of much value.

In Proposition 3.1 of Steinhardt and Liang (2015), the authors bound the modulus of the second largest eigenvalue of the restart process they study by the restart parameter, a result they say is well-known in Markov chain theory. Applying the result to our setting, we also obtain that ρ 2 is upper-bounded by γ, in the case were all transmittance coefficients are constant equal to γ: this is done in Lemma 60. We hoped to obtain the same bound in the general transmittance coefficients setting, replacing γ by γ ∞ . Unfortunately, we did not manage to do it: we quickly discuss in Section A.2 the reason for which, up to our best knowledge, the proof argument does not carry over to this setting.

Building on our definition of the tangent and transverse kernels, introduced in Definition 6, we now decompose a flow associated to a policy between its tangent and its tranverse components.

Definition 16 (Tangent and transverse components of a flow). The flow associated to π may be decomposed between its tangent and its transverse components:

µ π = µ π + µ ⊥ π , with µ π = ← - K (π) * µ π and µ ⊥ π = ← - K ⊥ (π) * µ π that is, for every state s, µ π (s) = ← - K (π) * µ π (s) = i∈S a∈A i γ i, a π i (a) p i, a (s) µ π (i) ,
and

µ ⊥ π (s) = ← - K ⊥ (π) * µ π (s) = i∈S a∈A i (1 -γ i, a) π i (a) μ (s) µ π (i) .
Mass dissipated within the network, and reintegrated. For every state i, for every action a ∈ A i , (1 -γ i, a) π i (a) µ π (i) corresponds to the amount of mass sent from i, through action a, which is dissipated: indeed, the fraction of mass which is allowed to go through is γ i, a . Now, the bigger this coefficient, the more mass is allowed to pass (a transmittance is the inverse of a resistance). On the other hand, the bigger the transmittance, the lower the amount of mass which is dissipated.

Notations 17 (Total amount of mass dissipated within the network). For every strict policy π, we write (letting the direct dependence on π be implicit)

µ π , 1 -γ = i∈S µ π (i) a∈A i π i (a) (1 -γ i, a) .
the total amount of mass which is dissipated within the network.

Of this dissipated mass, a fraction μ (s) enters the network again through state s. Summing over all states, we see that the total amount of mass which enters the network equals the total amount which is dissipated, as μ is a probability distribution: indeed, the flow transfer operator is mass preserving.

Discrete time, discrete space partial differential equations over a network

We may now rip the rewards of the vector analysis formalism we have developped, as it allows us to identify the structure of the dynamics governing the computations of the potentials (V t) of Lemma 13, and the flows (µ t) of Lemma 15, together with their stationary limits.

Lemma 18 (Discrete time, discrete space partial differential equations). The potentials (V t) and the flows (µ t) defined in Lemma 13 and Lemma 15, as well as their stationary values V π and µ π , are solutions of the following discrete time and discrete space analogous of partial differential equations of diffusion.7 Let C I be a function over the action space, A, which stands as an initial condition for the potentials. Let π be a policy.

The discrete partial differential equation on the potentials is

         ∆ u (t, s) -∇ π u (t, s) = a∈As π s (a) C s (a) , s ∈ S u (0, s) = a∈A π s (a) C I (s, a) , s ∈ S, (2)
while its stationary form writes

-∇ π u (s) = a∈A π s (a) C s (a) , s ∈ S.

The discrete partial differential equation on the flows is

∆ µ (t, •) -div π (µ (t, •)) = 0 µ (0, •) = µ 0 ,
while its stationary form writes div π (µ) = 0.

3. For all t ≥ 0, we have V t = u (t, •), and µ t = µ (t, •).

4. Write, for every state s, assuming π is strict for the part about the flows,

u (∞, s) = lim t→∞ u (t, s) , and µ (∞, s) = lim t→∞ µ (t, s) .
Then, u (∞, •) is a solution of the stationary equation for the potentials, µ (∞, •) is a solution of the stationary equation for the flows, and we have

V π = u (∞, •) and µ π = µ (∞, •), so that 8 -∇ π V π = E π and div π (µ π) = 0.
Proof. Existence, unicity, and convergence of the u (t, •)'s (respectively, of the µ (t, •)'s) towards a solution of the stationary equation have already been established: expanding the ∆ operator, and recalling the definition of the gradient, introduced in Definition 7, we see that the u (t, •)'s exactly correspond to the V t 's of Lemma 13, even if, at the time, the initial condition C I was nil, which does not change the proof (respectively, recalling the definition of the divergence, introduced in Definition 9, we see that the µ (t, •)'s exactly correspond to the µ t 's of Lemma 15). Indeed, the equation on the potentials reads: for all t ≥ 0, for all s ∈ S,

u (t + 1, s) = a∈As π s (a) γ s, a i∈S p s, a (i) u (t, i) + a∈As π s (a) C s (a) ,
while the equation on the flows reads: for all t ≥ 0, for all s ∈ S,

µ (t + 1, s) = i∈S a∈A i π i (a) (γ i, a p i, a (s) + (1 -γ i, a) μ (s)) µ (t, i) .
Since the potentials and the flows at time t satisfy the partial differential equation above, they also satisfy the integration by parts formula, also known as Stoke's theorem in dimension more than one.

Lemma 19 (Integration by parts formula over a network). For all strict policy π, for all t ≥ 0,

s∈S µ t (s) (V t+1 (s) -V t (s)) + i V t (i) div (µ t) (i) = - i V t (i) μ (i) µ t , 1 -γ + s µ t (s) a∈As π s (a) C s (a) .

Moreover, when t → ∞ (or by direct computation), we obtain

s V π (s) μ (s) µ π , 1 -γ = s µ π (s) a∈As π s (a) C s (a) .
8 Recall that, for every state s, we said in Notations 12 that we write Eπ (s) = a∈A πs (a) Cs (a).

The proof is in Section A.3. After the proof, we present Corollary 61, which shows that, up to a second order term in ∆ V t and ∆ µ t , the left-hand side of the integration by parts formula is the discrete time derivative of s V t (s) µ t (s).

Corresponding conservation equation in physics, in electrostatics. Let us present the following physical realisation of the integration by parts formula, in the stationary case. The analogy could be carried over to the non stationary case, but the former is simpler technically wise, while containing all the key ideas, so that the analogy is clearer in that case.

We use usual notations of electrostatics. Let Ω be a domain Ω, on which is defined a potential V . The potential generates a field by E = -∇ V . The boundary of the domain is a surface ∂ Ω, with unit outgoing normal vector dS. A flow j flows through the domain. We then have (this is Stoke's formula, or a consequence of the divergence theorem)

9 Ω div (j) V = ∂ Ω V j • dS + Ω j • E.
(3) This is precisely, term by term, the stationary equation we obtained in Lemma 19:

s div (µ π) (s) V π (s) = s V π (s) (-μ (s) µ π , 1 -γ)+ s µ π (s) a∈As π s (a) C s (a) .
Let us now explain the reason why these two relations are the same.

1. Divergence term. Let us assume the divergence of the flow j vanishes. Then, the left-hand side of Equation (3) vanishes while, thanks to Lemma 18, we know that div π (µ π) = 0, identically over S.

2. Joule heating term: scalar product between the flow and the electric field. Again thanks to Lemma 18, the potential V π generates a field -∇ π V π , which equals the field E π = a∈As π s (a) C s (a) s∈S introduced in Notations 12, while the flow is j = µ π . This explains the last term of the right-hand side:

Ω j • E = s µ π (s) a∈As π s (a) C s (a) .
3. Integral over the boundary. In our case, the domain is the network and its boundary is ∂ Ω = S. Now, the vector dS is normal to the surface. As a result, only the component of j which is also normal to the surface contributes to the scalar product j • dS. As a result, in our case, we have (with the scalar product by d S being symbolical),

µ π • dS = µ π + µ ⊥ π • dS = µ ⊥ π • dS = -µ ⊥ π = -μ µ π , 1 -γ ,
since the normal vector dS is outoing, while µ ⊥ π is the ingoing flow. As a result,

∂ Ω V j • dS = s∈S V π (s) -µ ⊥ π (s) = s V π (s) (-μ (s) µ π , 1 -γ) .
Now, we see that the duality equation has the following meaning. The side with the potentials computes the cumulated cost as the sum over all states s of the unit cost of one unit starting in state s, and weighs it with the amount of goods which enter the network at s that is, µ ⊥ π . The side with the flow computes the total cost as the sum over all states of the amount of goods present in a state, µ π (s), weighted by the cost it takes to make the goods transition to the next states.

In particular, we note that we explain the reason of the presence of the term µ ⊥ π = μ (s) µ π , 1-γ . The meaning of it, were it not for our decomposition between tangent and transverse flows, might otherwise have been a bit cryptic.

Dual optimisation problem over a network, optimal policies

We may now define the dual optimisation problem over the network we wish to solve. A quick discussion about the choice may be found in Section A.4.

Definition 20 (Average potential function). We call average potential function, the function

V : Π → R + π → V (π)
defined by, for every policy π,

V (π) = s V π (s) μ (s) .
Thanks to Lemma 19, we know moreover that, for every strict policy π, we have10

V (π) = s µ π (s) µ π , 1 -γ a∈As π s (a) C s (a) .
Definition 21 (Optimal policy). We call optimal policy a policy π ∈ Π realising

min π ∈Π V (π) .
Such a policy is then a solution of the dual optimisation problem:

inf π strict s µ π (s) µ π , 1 -γ a∈As π s (a) C s (a) = inf π strict s V π (s) μ (s) .
Thanks to Lemma 13, we know that π → V π is continuous over Π. Moreover, since the action space is finite, the space of policies is compact. As a result, the minimum over Π is attained, and optimal policies do exist. However, they may not be strict policies. Often, they assign zero mass to some actions, the extreme case being that of deterministic policies which, in every state, assign unit mass to one specific action.

Optimal policies do not depend on μ, in the sense given by the following lemma.

Lemma 22 (Independence of optimal policies with respect to μ). For every optimal policy π * , for every state s, we have

V π * (s) = inf π strict V π (s) .
As a result, for all ν ∈ P (S), equivalent to μ in the sense that

ν (s) > 0 ⇔ μ (s) > 0,
the set of optimal polices for the network using ν is the same as that for the network using μ.

The result is standard in dynamic programming, but we present it so as to have a proof corresponding exactly to our setting. It is in Section A.5.

Boundary value problem

We conclude the section devoted to the construction of the network model with the following discussion about the case when transmittance coefficients in non-target states all equal 1, which is often a case of interest. Indeed, for instance, in a shortest path in a graph setting, the equation linking the lenghts of paths to some target states between two adjacent cities linked by a road a reads length (city 1, target) = length road a + length (city 2, target) , so that the transmittance coefficient γ city 1, a should equal one. In this setting, the potentials would satisfy the following discrete partial differential equations (we do not write here the corresponding equations for the flows, as they do not have added interest). The equation on the potentials is a boundary value problem.

Let π be a policy. Let C I be an initial cost function on A. The equation on the potentials reads

               V 1 t+1 (s) = a∈As π s (a) C s (a) + a∈As π s (a) i∈S p s, a (i) V 1 t (i) , s / ∈ S target V 1 t+1 (s) = 0, s ∈ S target V 1 0 (s) = a∈As π s (a) C I (s, a) , s ∈ S,
while its stationary form is

     V 1 π (s) - a∈As π s (a) i∈S p s, a (i) V 1 π (i) = a∈As π s (a) C s (a) , s / ∈ S target V 1 π (s) = 0, s ∈ S target .
If costs represent distances, in a shortest-path setting, the potentials V 1 π are the lenghts of the paths starting at the non-target states, and going to the target states, while following π.

Now, even if we wished to compute the potentials and flows with transmittance coefficients equal to 1, it may be difficult in practice. Indeed, in this setting, the potential computation operator is no longer contracting, and simulations would thus be much more unstable. For instance, many policies may lead to infinite potentials. In the probabilistic representation, having transmittance coeffients equal to one means the process would never restart before it reaches a target state, which may be undesirable. As a result, in our work, we carry on with transmittance coefficients less than one.

Though our result does not go that far, we may arguably expect that, under suitable assumptions, and for convenient policies, the potentials V π converge to the potentials V 1 π , as γ ∞ , defined in Assumption 2, tends to one. This may be an interesting problem to address.

Optimising the policy thanks to the RTRL online gradient descent algorithm

We now turn to gradient descent optimisation of the policy. After going through technicalities about the differentiation on affine manifolds of probabilities in Section 2.1, we express the differential of the average potential function in Section 2.2.

Having obtained the so-called "policy gradient theorem", we turn towards estimating the differential of the invariant distribution with respect to the policy in Section 2.3.

We are eventually able to apply the real time recurrent learning algorithm to policy optimisation in Section 2.4.

Differentiating flows and potentials associated to policies

The spaces Π of policies, and P (S) of probability distributions over S, are affine manifolds and, with the necessary precautions, we may differentiate functions defined on them. We precise below the necessary concepts. Useful notations are introduced in Notations 54, at the beginning of Section A.1.

Tangent space of P (S). The space of probabilities over S is the intersection of an affine space in R |S| * , and the space of linear form with non-negative coordinates: for any fixed µ b ∈ P (S) (b stands for "basis point"), we have

P (S) = (µ b + ker (µ → µ (e))) ∩ {µ ≥ 0} .
For any probability distribution which belongs to the interior of P (S), that is, has only positive coordinates, P (S) admits therefore a tangent space at this distribution, which is ker (µ → µ (e)), the set of vectors of R |S| * such that the sum of their coordinates vanishes. Since it does not depend on the distribution, we write this tangent space T P (S). We have

T P (S) = ker (µ → µ (e)) , so that P (S) = (µ b + T P (S)) ∩ {µ ≥ 0} .
Tangent space of Π. Likewise, for every state s, for every space A s , the simplex P (A s) satisfies, for some any basis policy π b on A s ,

P (A s) = (π b + ker (π → π (a s))) ∩ {π ≥ 0} ,
where a s is the vector with all coordinates equal to 1 of R |As| . As a result, P (A s) admits a tangent space at every strict policy, this tangent space is the same for every such policy, and is T P (A s) = ker (π → π (a s)) , so that Π admits likewise the same tangent space at every strict policy, which is

T Π = s∈S T P (A s) = s∈S ker (π → π (a s)) .
In what follows, we use the notation V for vectors in T Π.

We may now prove potentials and flows associated to a policy are differentiable functions of the (strict) policy. This justifies the use of gradient descent techniques to optimise the policy.

Lemma 23 (Differentiating flows and potentials associated to policies). The map π → V π is smooth on the interior of Π

The map π → µ π is smooth on the interior of Π.

The proof is in Section B.1.

Lemma 24 (Space of the differential of the invariant distribution). Let us write L (T Π, T P (S)) the space of linear applications going from T Π to T P (S). Then, with meaning "isomorphic", we have

L (T Π, T P (S)) S × T Π s 0 ∈S a 0 ∈As 0 T P (S).
The proof is at the end of Section B.1.

Notations 25 (Notations for linear maps in L (T Π, T P (S))). We use the following notations. Let J ∈ L (T Π, T P (S)), and let us describe it as a member of s 0 ∈S a 0 ∈As 0 T P (S), which we may do thanks to Lemma 24. For all s 0 ∈ S and a 0 ∈ A s 0 , let J (s 0 , a 0) = J (s 0 , a 0), s s∈S ∈ T P (S).

J (s 0 , a 0) is the lign associated to (s 0 , a 0) of the matrix associated to J (we do not distinguish between J and its matrix).

Computing the gradient of the average potential function with respect to the policy

We wish to optimise the average potential function introduced in Definition 20 with gradient descent over the policy. To do so, we need to compute its derivative with respect to the policy.

Corollary 26 (Differentiating the average potential function). V is differentiable and, for every strict policy π, its differential ∂ V ∂π (π) equals any of the two following expressions:

∂ ∂π π s∈S μ (s) V π (s) = ∂ ∂π π   s µ π (s) µ π , 1 -γ a∈As Π s, a (π) C s (a)   . (4)
Proof. V is differentiable thanks to Lemma 23. The second statement is a consequence of the definition of V, which is introduced in Definition 20.

Differentiating the potentials: the policy gradient theorem. We may do so by working with the expression on the left-hand side, which may be expressed in a form known as the "policy gradient theorem" (Sutton and Barto 2018). However, in our work with the real time recurrent learning algorithm, we will process with the expression on the right-hand side. Before we do, we still derive the "policy gradient theorem".

Corollary 27 ("Policy gradient theorem"). For a policy π, a state s and an action a ∈ A s , let us write, as custom has it (see for instance Sutton and Barto 2018),

Q π (s, a) = C s (a) + γ s, a i∈A p s, a (i) V π (i) .
Then, for every strict policy π, we have

∂ ∂π π s∈S μ (s) V π (s) = 1 µ π , 1 -γ s∈S µ π (s) a∈As ∂ Π s, a ∂π (π) Q π (s, a) .
The proof is identical to that of Lemma 19, and is in Section B.2.

Estimating online the Jacobian of the invariant distribution

We now tackle the task of optimising the average potential function by using the right-hand side of Equation (4). For every strict policy π, its differential equals

s ∂ ∂π π µ π (s) µ π , 1 -γ a∈As Π s, a (π) C s (a)+ s µ π (s) µ π , 1 -γ a∈As ∂ Π s, a ∂π (π) C s (a) .
Now, for every state s, we have

∂ ∂π π µ π (s) µ π , 1 -γ = 1 µ π , 1 -γ ∂ µ π ∂π (s) - µ π (s) µ π , 1 -γ 2 ∂ ∂π π µ π , 1 -γ .
Since the term µ π , 1 -γ depends on µ π and the transmittance coefficients, which are fixed, all we need to evaluate this differential is to compute the ∂ µπ ∂π (s)'s. This is the issue we address in the rest of this section.

Definition 28 (Jacobian computation operator). We call Jacobian computation operator the operator

J : L (T Π, T P (S)) × P (S) × Π → L (T Π, T P (S)) J, µ, π → J defined by, for s ∈ S, J (s) = i∈S a∈A i Π i, a (π) (γ i, a p i, a (s) + (1 -γ i, a) μ (s)) J (i) + i∈S a∈A i ∂ Π i, a ∂π (π) (γ i, a p i, a (s) + (1 -γ i, a) μ (s)) µ (i) .
For every strict policy π, the Jacobian computation operator, when evaluated with the distribution µ π as second argument, admits the true Jacobian as a fixed point. Moreover, for any distribution µ, the operator admits a unique fixed point, towards which its iterates converge. The lemma below formalises these statements.

Notations 29 (Norm on T P (S)). We consider some norm • on T P (S) and, abusing notations, we write J = sup (s 0 , a 0) J (s 0 , a 0) , where the notation J (s 0 , a 0) was introduced in Notations 25.

Lemma 30 (Fixed points properties of J). Let π be a strict policy. Let J π be the differential of π → µ π at π, which is well-defined thanks to Lemma 23. Let µ be a probability distribution on S. We have the following results.

1. Fixed point of the Jacobian computation operator. J (•, µ, π) admits a unique fixed point.

2. The Jacobian as a fixed point of J. If µ = µ π , this fixed point is the true Jacobian, which we write J π , and which therefore satisfies J π = J (J π , µ π , π). For every state s, we then have

J π (s) = ∂ µ π ∂π (s) = i∈S a∈A i Π i, a (π) (γ i, a p i, a (s) + (1 -γ i, a) μ (s)) ∂ µ π ∂π (i) + i∈S a∈A i ∂ Π i, a ∂π (π) (γ i, a p i, a (s) + (1 -γ i, a) μ (s)) µ π (i) .
3. Convergence to the fixed point. For any initial differential J 0 ∈ L (T Π, T P (S)), the sequence (J t) defined by J 0 and the equations, for t ≥ 0,

J t+1 = J (J t , µ, π) ,
converges to the fixed point of 1., which we write

J ∞ = J ∞ (π, µ).
4. Rate of convergence. For every t ≥ 0, we have

J t = J ∞ + J 0 -J ∞ O |S| t d ρ t 2 ,
with the constants in the big O term bounded independently of |S|.

Proof. The equality of the second point is a consequence of the differentiation of the fixed-point equation satisfied by the stationary distribution, µ π , introduced in Lemma 15. The remainder of the proof is in Section B.3.

While using the real time recurrent learning algorithm, which we introduce in Section 2.4 below, we feed the algorithm with some initial distribution µ, some initial differential J 0 , and iterate the Jacobian computation operator from these. This allows us to successfully approximate the true Jacobian, which we prove in the following lemma.

Lemma 31 (Approximating the true Jacobian). Let π be a strict policy, µ 0 ∈ P (S) and J 0 ∈ L (T Π, T P (S)). Define the sequences (µ t) and (J t) by, for t ≥ 0, µ t+1 = T (µ t , π) and J t+1 = J (J t , µ t , π) .

(5)

Then, for t ≥ 0,

J t = J π + J 0 -J π O |S| t d ρ t 2 + µ 0 -µ π O |S| 3 t 2 d+1 ρ t 2 ,
with the constants in the big O terms bounded independently of |S|.

In particular, J t → J π , as t tends to infinity.

The proof is in Section B.3.

As a result, we may now bound the time we need to approximate µ π and J π by running the updates of Equation (5).

Lemma 32 (Update time necessary for precise approximation). Let µ 0 ∈ P (S), and J 0 ∈ L (T Π, T P (S)). Let ε > 0. Then, there exists t (ε) such that

t (ε) ∼ 1 2 d + 1 1 log ρ -1 2 log 1 ε ,
when ε tends to zero and, for any t ≥ t (ε), we have

µ t -µ π ≤ ε and J t -J π ≤ ε.
The proof is at the end of Section B.3. The dependencies of t (ε) look sound. First, the smaller ε is, the bigger t (ε) is: the smaller we want the approximation error to be, the longer we have to wait to obtain it. Secondly, the smaller ρ 2 is, the smaller t (ε) is: if ρ 2 is small, then the stationary distribution is reached quickly, and therefore we do not have to wait much for approximation errors to be small. Eventually, the dependency in d is trickier to analyse since, as we discussed after Lemma 15, the values of d and ρ 2 are linked, in a way we do not know.

Optimising the policy thanks to the Real Time Recurrent Learning algorithm

The average potential function, which we want to optimise, depends on µ π , which is the limit, as t goes to infinity, of the µ t 's defined in Lemma 15. Since they satisfy a parameterised (by the policy) dynamical system evolution equation, we may use the real time recurrent learning (RTRL) algorithm (Pearlmutter 1995) to optimise the average potential function, as this algorithm aims at using gradient descent to optimise functions depending on the state of some parameterised dynamical system.

One issue with such functions is the computation of the gradient, and more precisely the computation of the derivative of the state of the system with respect to the parameter. The RTRL algorithms provides a way to compute it online, as the system evolves, without having to back-track over the past. However, it needs to store in memory the Jacobian, which is a sizeable object, quadratic in the size of the state space, and therefore it is difficult to use it on large systems. Indeed, the size of the Jacobian is |S| × |A|, and |A| contains another term in |S|, as it is the cartesian product over the state space of the action spaces for every state.

The RTRL algorithm maintains an estimate of the Jacobian of the state of the system with respect to the policy, which it updates at each iteration (thanks to the Jacobian computation operator introduced in Definition 28). It then uses this estimate to compute the differential of the average potential function with respect to the policy, and performs a gradient descent update on the latter.

The gradient descent update is carried on by a policy update operator, which may be any gradient-like update, taking as input the policy and some gradient 11 and updating the policy. So as to guarantee that the underlying Markov chain remains ergodic for every π computed (which is established in Lemma 15), we further ask that Φ lets stable the space of strict policies. We do not specify a specific choice for the policy update operator, as many choices may be relevant, and we do not focus here on this choice. We define a "generic" policy update operator as follows.

Definition 33 (Policy update operator). We call policy update operator a map

Φ : Π × T Π → Π π, V → Φ (π, V) .
We moreover require that, for every strict policy π, for every V ∈ T Π, Φ (π, V) is a strict policy as well.

Let us now introduce the real time reccurent learning algorithm for policy optimisation.

Algorithm 34 (RTRL algorithm for policy optimisation). We define the RTRL algorithm for policy optimisation as follows.

Quantities maintained. The algorithm maintains the flow µ t ∈ P (S), initialised to some distribution µ 0 , an approximation of the Jacobian of it with respect to the policy, J t ∈ L (T Π, T P (S)), initialised to 0, and a strict random policy, π t ∈ Π, initialised for instance as an uniform policy on each action space A s , for s ∈ S.

Quantities computed, but not maintained. At each time t, the gradient V t ∈ T Π is computed12 .

Parameters of the algorithm. The algorithm needs a policy update operator.

Update equations. For every t ≥ 0, the following computations and updates are carried on 13 .

     V t = s J t (s) µ t , 1 -γ - µ t (s) µ t , 1 -γ 2 ∂ ∂π π=πt µ t , 1 -γ a∈As Π s, a (π t) C s (a) + s µ t (s) µ t , 1 -γ a∈As ∂ Π s, a ∂π (π t) C s (a) J t+1 (s) = i∈S a∈A i Π i, a (π t) (γ i, a p i, a (s) + (1 -γ i, a) μ (s)) J t (i) + i∈S a∈A i ∂ Π i, a ∂π (π t) (γ i, a p i, a (s) + (1 -γ i, a) μ (s)) µ t (i) µ t+1 (s) = i∈S a∈A i Π i, a (π t) (γ i, a p i, a (s) + (1 -γ i, a) μ (s)) µ t (i) π t+1 = Φ (π t , V t) .
We now discuss several points about the algorithm.

Using the RTRL algorithm to optimise fixed-point limits quantities. The RTRL algorithm is designed to optimise functions depending on the state of some parameterised dynamical system. However, in our case, the function we wish to optimise, the average potential function, depends on some quantity we may only access as a limit: the stationary flow µ π . Let us discuss now why using RTRL is still relevant for this task. First, the RTRL updates are exact when the policy is not updated, in the sense that RTRL computes the correct derivative of the time of the system at time t, with respect to the policy. Indeed, we have the following result.

Lemma 35 (RTRL without updating the policy). Let π be a strict policy, µ 0 ∈ P (S) and J 0 ∈ L (T Π, T P (S)). Define the sequences (µ t) and (J t) by, for t ≥ 0,

µ t+1 = T (µ t , π) and J t+1 = J (J t , µ t , π) . (6
)
We have the following results. For every t ≥ 0, µ t is a differentiable function of π, and, if J 0 = 0, for every t ≥ 0,

∂ µ t ∂π (π) = J t .
As a result, writing V t ∈ T Π the tangent vector computed at time t by RTRL, we have

V t = ∂ ∂π π   s µ t (s) µ t , 1 -γ a∈As Π s, a (π) C s (a)   .
Proof. By recurrence, for all t ≥ 0, µ t is a diffentiable function of π. Moreover, the differentiation of Equation (5) shows the differential of µ t satisfies the same update equations as J t . The first statement then stems from the fact ∂ µ 0 ∂π (π) vanishes. The second statement is then a straightforward consequence of the differentiation of the right-hand side, and of the use of the fact ∂ µt ∂π (π) = J t .

In other words, the RTRL algorithm computes the correct derivatives of the state of the dynamical system (the correct Jacobian), at order 0 in the update (when there is no update). However, µ t may differ from the stationary distribution µ π , even when the policy is not updated, as it takes time (potentially infinite time) to reach µ π . Indeed, consider the algorithm at time t. The policy is then some π t . Let us then consider the following three flows.

1. Current flow maintained by the algorithm: µ t .

2. Stationary flow for π t : this is µ πt .

3. Flow at time t obtained by running the algorithm from τ = 0 with π t : this is μt , which is defined by μ0 = µ 0 and the equations, for τ < t:

μτ+1 = T (μ τ , π t) .
Usually, the RTRL algorithm is used with cases three and one, and its justification comes from the fact that, provided the policy is updated slowly enough, at time t, we have µ t ≈ μt (and likewise for the corresponding Jacobians). In our case, we justify using RTRL by claiming that, provided the policy is updated slowly enough, at time t, we have µ t ≈ µ πt , and J t ≈ ∂ µπ ∂π (π t), so that

V t ≈ ∂ ∂π π=πt   s µ π (s) µ π , 1 -γ a∈As Π s, a (π) C s (a)   .
These claims are supported by Lemma 32.

Initialising the algorithm. To initialise the algorithm, we may run the transition operators for some time without updating the policy, so that the flow and Jacobian obtained are relatively close to µ π 0 and J π 0 . Once we have waited long enough, we may start running the algorithm. Using as close to uniform an initial policy as possible may be desirable, in that it a priori (though this obviously depends on the family p of probability distributions introduced in Definition 1) makes the process "more ergodic", which increases the speed of convergence to stationarity.

Probabilistic representation of the diffusion

We now develop the probabilistic representation of the diffusion over the network. We start by defining the restarted diffusion process over the network, which law at time t is the flow µ t , in Section 3.1. Then, in Section 3.2, we derive the Feynamn-Kac representation of the discrete partial differential equation on the potentials obtained in Lemma 18. Next, in Section 3.3, we present the ergodic theorem, for the restarted diffusion process, which is the probabilistic version of the duality equation of Lemma 19. Eventually, we summon all these to define two stochastic algorithms which optimise online the policy, in Section 3.4.

Restarted Markov diffusion process over a network

Let us start by introducing the following Markov diffusion process. Its law at time t is the flow µ t , as Corollary 37 just below establishes. Studying this process will give us new tools to address the decision problem over the network, as well as improved understanding of the diffusion over the network. In all that follows, random variables are defined on some probability space, on which a probability distribution P is defined.

Definition 36 (Restarted Markov diffusion process over a network). Let π be a policy. We define the random process (X t) t≥0 over S by X 0 ∼ µ 0 for some probability distribution µ 0 over S and, for t ≥ 0, by the conditional law of X t+1 given X t , which we define as follows.

1. First, an action a ∈ A Xt is chosen with probability π Xt (•); 2. then, with probability γ Xt, a , X t+1 is distributed according to p Xt, a (•); 3. and, with probability 1 -γ Xt, a , X t+1 is distributed according to μ.

At each time t, X t either successfully accomplishes action a ∈ A Xt and transitions according to p Xt, a (•), with probability γ Xt, a , or disappears with probability 1γ Xt, a . In this case, it reappears according to μ.

Corollary 37 (Markov diffusion process and flow). Let π be a policy. Then, the process X introduced in Definition 36 is a Markov chain. For every t, its law at time t equals µ t where, for every t ≥ 0, µ t+1 = T (µ t , π) that is, µ t is the flow introduced in Lemma 15.

Moreover, under Assumption 2, if π is strict, X admits µ π as a stationary distribution.

We write X ∞ the limit in distribution of X t , which law is then µ π .

Proof. X is a Markov chain by construction. Let t ≥ 0. Then, for s ∈ S,

P (X t+1 = s) = i∈S P (X t = i) P (X t+1 = s| X t = i) = i∈S P (X t = i) a∈A i π i (a) (γ i, a p i, a (s) + (1 -γ i, a) μ(s)) = T P • X -1 t , π ,
where P • X -1 t is the law of X t . As a result, the law of X t and µ t share the same update equation which, given they were both initialised to µ 0 , establishes the second statement.

The third statement then comes from Lemma 15.

The Markov diffusion process X may be realised in the following way.

Lemma 38 (Realisation of the restarted Markov diffusion process). Let π be a policy. We define independent, and identically distributed families of random actions A t t≥0 , random choices B t t≥0 and random new states ξ t t≥0 in the following way. The three families are also independent from each other.

For every state s, for every time t ≥ 0, A t (s) has law π s (•). For every state s, for every action a ∈ A s , B t (s, a) is a Bernoulli variable of parameter γ s, a .

For every state s, for every action a, ξ t (s, a, 1) has law p s, a (•), while ξ t (s, a, 0) has law μ.

Define the Markov chain X = (X t) t≥0 by some variable X 0 and, for t ≥ 0,

X t+1 = ξ t X t , A t (X t) , B t X t , A t (X t) .
Then, X realises a process as defined in Definition 36.

The proof of the lemma is straightforward.

In what follows, we use A, B and ξ to designate random variables distributed as, respectively, all the A t 's, all the B t 's, and all the ξ t 's, and independent of these families.

Let us now introduce the following functional over sequences of states belonging to S. In what follows, we will evaluate it on the random sequences (X t) and X 1 t (which is defined just after), thus obtaining stopping times.

Definition 39 (Time on sequences over S). For every sequence (s t) over S, we define the time

T (s t) t≥0 = inf t ≥ 0 B t s t , A t (s t) = 0 .
We now define the process X 1 , and the associated stopping time T X 1 , which will allow us to describe the behaviour of X between restarts.

Definition 40 (Process with unit transmittance coefficients, associated stopping time). Define the process X 1 = X 1 t t≥0 by X 1 0 ∼ μ and, for t ≥ 0,

X 1 t+1 = ξ t X 1 t , A t X 1 t , 1 .
Define the random time

T = T X 1 = inf t ≥ 0 B t X 1 t , A t X 1 t = 0 .
X 1 starts at μ, and then transitions through the network with the probabilities p s, a (s)'s. In other words, X 1 is the process X introduced in Definition 36 when µ 0 = μ and when all transmittance coefficients equal one.

Let us conclude with the following lemma, which shows restarts occur in finite time with probability one.

Lemma 41 (Stopping time property, integrability). For t ≥ 0, write F t the σalgebra generated by the X 1 s 's the A s 's, the B s 's and the ξ s 's, for 0 ≤ s ≤ t. Then, T is a stopping time with respect to the filtration {F t }.

Under Assumption 2, T is integrable. As a result, it is finite with probability one.

Proof. The stopping time property is true by construction of T . For all t ≥ 0,

P (T > t) = P (T > t| T > t -1) P (T > t -1) = P B t X 1 t , A t X 1 t = 1 P (T > t -1) = E γ X 1 t , A t (X 1 t) P (T > t -1) ≤ max s∈S, a∈As
γ s, a P (T > t -1) .

As a result, for all t ≥ 0,

P (T > t) ≤ max s∈S, a∈As γ s, a t+1 = γ t+1 ∞ .
Since the maximum in the right-hand side is strictly less than one, P (T > t) is summable, so that T is integrable. It is consequently finite, with probability one.

Feynman-Kac representation for the discrete PDE

Since the potentials V t satisfy a discrete partial differential equation, which is a diffusion equation, they admit a Feynman-Kac representation (see for instance Norris 1998). We establish it in the following lemma.

Lemma 42 (Feynman-Kac representation for the discrete PDE). Let π be a strict policy, and C I be a function over A. Then, we have the following Feynman-Kac representation of the function u introduced in Lemma 18: for all t ≥ 0, for all s ∈ S,

u (t, s) = E T ∧t τ =0 C X 1 τ A τ X 1 τ + C I X 1 t -C X 1 t A t X 1 t 1 {t ≤ T } X 1 0 = s ,
where the sum in the right-hand side must be interpreted as

∞ τ =0 1 {τ ≤ T ∧ t} C X 1 τ A τ X 1 τ .
Recall as well that, provided u (0, •) = 0, for all time t and all state s, V t (s) = u (t, s), so that

V t (s) = E T ∧t τ =0 C X 1 τ A τ X 1 τ -C X 1 t A t X 1 t 1 {t ≤ T } X 1 0 = s .
Moreover, for all s ∈ S,

V π (s) = u (∞, s) = E   τ ≥0 1 {τ ≤ T } C X 1 τ A τ X 1 τ X 1 0 = s   .
The proof is in Section C.1.

Theoretical and practical importance of the Feynamn-Kac formula. The Feynman-Kac formula provides yet further insight into the structure, and behaviour, of the network problem we study. Indeed, for instance, we use it to decompose the trajectories of (X t), in Lemma 48 below. The Feynman-Kac formula also has important practical consequences. Indeed, it allows us to estimate, in a unbiased way, the potentials, by running the process X 1 up to the triggering of the stopping-time T : the sum of costs cumulated along that trajectory is an unbiased estimator of the potential V π .

The time it takes for the stopping-time to be activated is upper-bounder by (1 -γ ∞) -1 , as Corollary 44 below entails. As a result, when the choice of transmittance coefficients belongs to the user (as opposed to being constrainted by the problem considered), the user may control the time necessary for the simulations, as controlling the transmittance coefficients means controlling the number of steps the process X 1 takes before the stopping time is activated. The closer to 1 the transmittance coefficients are, the longer it takes for the stopping-time to be triggered. In the extreme case where transmittance coefficients for non-target states all equal one, the stopping-time is only triggered upon reaching the target states.

We now present a second representation for the potentials.

Lemma 43 (Second representation of the potential). For all t ≥ 0, for all state s,

V π (s) = E   C X 1 T A T X 1 T 1 -γ X 1 T , A T (X 1 T) X 1 0 = s   .
As a consequence, for every state s,

E   τ ≥0 1 {τ ≤ T } C X 1 τ A τ X 1 τ X 1 0 = s   = E   C X 1 T A T X 1 T 1 -γ X 1 T , A T (X 1 T) X 1 0 = s   .
Proof. The first statement is proved in Section C.2. The second statement is a consequence of the first one and of Lemma 42.

We therefore dispose of two representations of the potentials. However, in practice, we favour the Feynman-Kac one, for the two following reasons. First, the second formula only uses the cost of the state the process X 1 finds itself in when the stopping time rings. However, to reach this state, we will have gone through all the previous states, and therefore not using them makes no true economy. Secondly, we may expect, though we have no proof of it, that the variance of the second formula is higher than that of the Feynman-Kac representation.

We deduct from the last lemma the following relation satisfied by the stopping time. In particular, as we said above, this allows us to evaluate the average number of steps of the processus X 1 before the stopping time is reached.

Corollary 44 (Relation for the stopping time). For every state s,

E [T | X 1 0 = s = E   1 1 -γ X 1 T , A T (X 1 T) X 1 0 = s   .
Proof. We use C s (a) = 1 in the second part of Lemma 43.

Eventually, we show that, when all transmittance coefficients equal some 0 ≤ γ < 1, we recover the well-known following formulae.

Corollary 45 (Relations in the constant transmittance factor case). When all the transmittance factors equal some 0 ≤ γ < 1, the following relations hold for every strict policy π.

Average cost at stationarity.

E [C

X∞ (A (X ∞))] = (1 -γ) s∈S μ (s) V π (s) .
2. Formula for the potentials. For every state s,

V π (s) = (1 -γ) -1 E C X 1 T A X 1 T X 1 0 = s = E   t≥0 γ t C X 1 t (A t) X 1 0 = s   .
3. Law of the stopping time. T is geometrically distributed, with parameter γ. In particular, E [T] (1 -γ) = 1.

Feynman-Kac representation for the boundary value problem. We have the following representations for the boundary value problem of Section 1.7, under the same assumptions of existence we formulated in this Section. We do not provide the proofs here, but they may be found, in a setting maybe slightly different from ours, in Norris (1998).

Lemma 46 (Feynman-Kac representation for the boundary value problem). Let

T = T X 1 = inf t ≥ 0 X 1 t ∈ S target .
Then, we have the following Feynman-Kac representation. For all t ≥ 0, for every s ∈ S,

V 1 t (s) = E   T ∧t τ =0 C X 1 τ A τ X 1 τ X 1 0 = s   . Moreover, the V 1 t 's converge to V 1 π . Eventually, for every s ∈ S, V 1 π (s) = E   τ ≥0 1 τ ≤ T C X 1 τ A τ X 1 τ X 1 0 = s   .

Ergodic theorem for the restarted process

We now derive the probabilistic aspect of the integration by parts formula of Lemma 19.

The case where the transmittance coefficients all equal some 0 ≤ γ ≤ 1 is simple, the stationary distribution is the law of the process X 1 killed at some independent geometric time of parameter γ.

Lemma 47 (Representation of the stationary distribution, constant transmittance factor case). If all the γ s, a 's equal some γ, T may be chosen independent of X 1 . It is distributed according to a geometric law with parameter γ, and X ∞ is distributed according to X 1 T .

The proof is in Section C.3. Now, we cannot represent the stationary distribution in the general case as that of a killed process. Indeed, solving the constant transmittance factor case amounts to solving an arithmetico-geometric equation over some normed vector space: u t+1 = (1 -γ) b + γ a u t , where b and the u t 's are vectors, and a is an operator while, in the general case, we are faced with an equation of the form

u t+1 = (1 -γ) a 1 u t + γ a 2 u t = ((1 -γ) a 1 + γ a 2) u t ,
where a 1 and a 2 are operators and have operator norm equal to one.

However, the ergodic theorem for the process X still gives us the following valuable relations. Its proof makes use in a crucial way of the Feynman-Kac formula.

Lemma 48 (Ergodic theorem for the restarted diffusion process). Let π be a strict policy. Define

N t = |{τ ≤ t | B τ (X τ , A τ (X τ)) = 0 }|
the number of times the process X is restarted at μ before time t. Then,

1 N t τ ≤t C Xτ (A τ (X τ)) → E V π X 1 0 ∼ μ ,
as t tends to infinity. As a consequence, we recover the duality formula of Lemma 19:

E [C X∞ (A ∞)] = E [1 -γ X∞, A∞] E V π X 1 0 ∼ μ ,
the terms of this equation being equal, term by term, to those of the equation below:

s∈S µ π (s) a∈S π s (a) C s (a) = µ π , 1 -γ s∈S μ (s) V π (s) .
The proof is in Section C.4. It follows the standard proof for the ergodic theorem which is presented in Norris (1998). However, it differs in that we consider here a restart time, and not the return time to some state, and because we make use of the Feynamn-Kac formula to identify one expression.

Online stochastic optimisation algorithms

We now express the gradient as the expectation of some random variable, in the same spirit as that of Sutton and Barto (2018), which uses it for the "reinforce" algorithm. We moreover express the gradient as an ergodic limit. We will then use these representations to introduce two simple stochastic algorithms for policy optimisation.

Lemma 49 (Expressing the gradient as an expectation). Let π be a strict policy. For s ∈ S, and a ∈ A s , let us write

g (s, a) = ∂ log (Π s, a) ∂π (π) (C s (a) + γ s, a E [V π (ξ (s, a, 1))]).
Then, for every strict policy π, we have

∂ V ∂π (π) = E [g (X ∞ , A (X ∞))] E 1 -γ X∞, A(X∞) . (7
)
Moreover, still for every strict policy π, with the N t 's introduced in Lemma 48, we have the ergodicity relation:

1 N t τ ≤t g (X τ , A τ (X τ)) → ∂ V ∂π (π) , (8
)
as t tends to infinity.

Proof. Thanks to Corollaries 26 and 27, we know that

µ π , 1 -γ ∂ V ∂π (π) = E   a∈A X∞ ∂ Π X∞, a ∂π (π) Q π (X ∞ , a)   = E 1 π X∞ (A (X ∞)) ∂ Π X∞, A(X∞) ∂π (π) Q π (X ∞ , A (X ∞)) . Moreover, Q π (s, a) = C s (a) + γ s, a E [V π (ξ (s, a, 1))] ,
and

µ π , 1 -γ = E 1 -γ X∞, A(X∞) .
The first statement is therefore established.

The second is obtained like the ergodicity relation of Lemma 48.

Having obtained these representations, we are now able to introduce two simple algorithms which optimise online the policy by estimating the gradient either through Monte-Carlo simulation thanks to Equation (7), or using the ergodicity relation of Equation (8). Both have much lower memory cost than the real time recurrent learning algorithm for policy optimisation. However, they need more computational time in terms of iterations, in order to estimate accurately the gradients. Indeed, Monte-Carlo or ergodicity based estimations are slow, so that it may be difficult to implement these algorithms on large networks.

The first algorithm is semi-stochastic, in that it maintains the distribution of the diffusion process. Its memory cost, in addition of the storage of the policy, is then |S|.

Algorithm 50 (Semi-stochastic online algorithm for policy optimisation). The algorithm maintains the distribution µ t ∈ P (S), initialised to some distribution µ 0 , and a strict random policy, π t ∈ Π, initialised for instance as an uniform policy.

At each iteration, it computes an estimate V t ∈ T Π of the gradient. For every t ≥ 0, these quantities are updated in the following way:

                 V t ≈ E g X t , A t (X t) E 1 -γ Xt, A t (Xt) Monte-Carlo simulation with X t ∼ µ t µ t+1 (s) = i∈S a∈A i Π i, a (π t) (γ i, a p i, a (s) + (1 -γ i, a) μ (s)) µ t (i) π t+1 = Φ (π t , V t) .
The rationale is that, if µ t ≈ µ π , then

V t ≈ E g X t , A t (X t) E 1 -γ Xt, A t (Xt) ≈ E [g (X ∞ , A (X ∞))] E 1 -γ X∞, A(X∞) = ∂ V ∂π (π) .
The second algorithm is fully stochastic, so that its memory cost only consists in the storage of the policy. Before we present it, let us describe how we estimate the expectation E [V π (ξ (s, a, 1))] which appears in the definition of the function g in Lemma 49.

Definition 51 (Estimator of the potentials). Let us write

H (s) = τ ≥0 1 {τ ≤ T } C X 1 τ A τ X 1 τ ,
for a processus X 1 as introduced in Definition 40, but started at s.

Let H l be a family of independent, and identically distributed random variables, distributed like H, and independent of all other families of random variables used in this work.

Let R and L be positive integers. Define then, for every state s, and action a ∈ A s , the estimator for the expectation E [V π (ξ (s, a, 1))]:

v R, L (s, a) = 1 R r≤R 1 L l≤L H l (ξ r (s, a, 1)) .
Correctness of the estimator for the potentials. Thanks to the representation of the potentials derived in Lemma 42 we know that, for every state s, H (s) is an unbiased estimator of V π (s). As a result, for every action a ∈ A s , since H is independent from ξ, H (ξ (s, a, 1)) is an unbiased estimator of E [V π (ξ (s, a, 1))]. As a consequence, for every R and L positive integers, v R, L (s, a) is an unbiased estimator of the same expectation and, thanks to the law of large numbers, it converges towards it, as R and L tend to infinity.

Notations 52 (Time-scale). We call time-scale any increasing sequence (τ k) of times such that τ 0 = 0 and τ k → ∞, when k tends to infinity.

Obviously, the sequence 0, 1, . . . , t, t + 1, . . . is a time-scale.

Algorithm 53 (Stochastic online algorithm for policy optimisation). We define a stochastic online algorithm for policy optimisation as follows.

Quantities maintained. The algorithm maintains a strict random policy, π t ∈ Π, initialised for instance as an uniform policy on each action space A s , for s ∈ S.

It maintains the state X t ∈ S of the restarted Markov diffusion process, initialised to some distribution µ 0 , as well as the number N t of times X has restarted, up to time t (N 0 is then 0). It also maintains the sum of past gradients S t ∈ T Π, initialised at 0. Quantities computed but not maintained. At each time t, an estimate gt ∈ T Π of the function g of Lemma 49, evaluated at X t , A t (X t) , is computed, thanks to the estimator v R, L introduced in Definition 51.

Parameters of the algorithm. The algorithm needs a policy update operator, Φ. It also needs to fix R and L which appear in Definition 51. Eventually, the algorithm needs a time-scale (τ k) k≥0 .

Update equations.

For every k ≥ 0, the policy is updated through

π k+1 = Φ π k , S τ k N τ k .
For every τ k ≤ t < τ k+1 , the update and computation equations are:

                     gt = ∂ log Π Xt, A t (Xt) ∂π (π) C Xt A t (X t) + γ Xt, A t (Xt) v R, L X t , A t (X t) S t+1 = S t + gt X t+1 = ξ t X t , A t (X t) , B t X t , A t (X t) N t+1 = N t + 1 B t X t , A t (X t) = 0 .
The rationale is that, if the strict policy π = π 0 is not updated then, for all t ≥ 0,

S t N t = 1 N t τ ≤t g (X τ , A τ (X τ)) → ∂ V ∂π (π) ,
as t tends to infinity, thanks to Lemma 49.

Variations on the stochastic algorithms.

Of course, many variations on these algorithms are possible. In the second one, one might wish to store, at each iteration, the potentials already computed, so as to avoid computing them several times. It may also be possible to keep the potentials from iteration to iteration, with appropriate decay being used so as to enforce the forgetting of old values.

Variations on the deterministic and stochastic algorithms

We conclude with two remarks which may be applied to both the RTRL algorithm and the stochastic algorithms. We do not investigate these directions further here, but they might make for interesting future work.

Variant with time-varying transmittance coefficients and restart distribution.

As time goes on, the policy π gets better and better, and therefore we may expect the Markov process which transitions according to the probabilities p s, a (s) weighted by the probabilities π s (a), to get "more and more ergodic", without the need to increase ergodicity through restarts. Now, this process is obtained by taking all transmittance coefficients equal to one (but for those of the target states). Therefore, we could let the transmittance coefficients of non-target states get closer to 1 as time goes by. Likewise, we could let the restart distribution μ evolve with time, for instance assigning more mass to some states which would appear especially relevant at some point during the optimisation process.

Parameterised policies. Eventually, we believe our algorithms would still be useful when policies are parameterised.

Experiments on a synthetic all source one sink shortest path in a graph problem

We now present the experiments we conducted to test our algorithms. We first describe the shortest-path in a graph setting we work on in Section 4.1. We then present the experiments we conducted with the RTRL algorithm in Section 4.2, and eventually we present those we conducted on the fully stochastic algorithm in Section 4.3 (we do not conduct experiments on the semi-stochastic algorithm).

Hardware and software set-up. All experiments were conducted on a laptop with standard (at the time of writing) performances. Algorithms were implemented in C++, and agressive compiler optimisation was used. We present experimental results for the biggest models upon which our algorithms performed reasonably well, reasonably quickly enough, but did not try to push the experiments to the limits of our hardware-software-algorithm setting.

Model set-up

A special case of network. The shortest path in a graph problem is a sub-case of the general network optimisation problem, where the transitions between states are deterministic: for every state s, and every action a ∈ A s , p s, a (•) is concentrated on one state, which is thus uniquely defined by s and a. We write this state s • a.

We therefore consider the graph whose state space is S and where, for every state s, for every action a ∈ A s , there is an edge from s to s • a, labeled by a. Actions therefore correspond to edges. The distance between s and s • a is C s (a).

Let us consider the all source one sink shortest-path problem: one aims at finding the shortest path between every state, and some target state s final . Only one action a final is possible in s final , and it does nothing (due to what follows on γ s final , a final , p s final , a final (•) is never used in this context), and its cost vanishes: C s final (a final) = 0. Its transmittance coefficient is γ s final , a final = 0: all mass is lost once it has reached s final 14 . Every other γ s, a is set to one. In particular, using this in the potential computation formula of Definition 11 implies that V (s final) = 0. Eventually, as we know thanks to Lemma 22, μ may be any probability distribution with support S deprived of s final : in the probabilistic interpretation, the Markov process starts anew whenever it reaches s final , and its startpoint may be every state s = s final . We choose μ uniform over the states s = s final .

As a result, the optimisation problem on the network we just described is the same as the shortest path problem on the graph defined above. The potentials V 1 π of Section 1.7 (when all transmittance coefficients equal one, but for that of the target state) are the lengths of the paths leading to s final .

However, to remain in our setting, we work with transmittance coefficients strictly less than 1. For simplicity, we set every γ s, a , for every s = s final , to some 0 < γ < 1, and we test two settings. On the one hand, for γ close to one, we are looking for policies which are close to the optimal policy for the shortest-paths problem. On the other hand, when γ is significantly lower than one, this will no longer be true.

Simplified expression for the total mass dissipated within the network. In this setting, the expression of the total mass dissipated within the network simplifies as follows. For every strict policy π, for every flow µ, the total mass dissipated within the network by the flow µ is

µ, 1 -γ = i∈S µ (i) a∈A i π i (a) (1 -γ i, a) = i∈S, i =s final µ (i) a∈A i π i (a) (1 -γ) + µ (s final) π s final (a final) = (1 -γ) i∈S, i =s final µ (i) + µ (s final) = (1 -γ) (1 -µ (s final)) + µ (s final) = (1 -γ) + γ µ (s final) .
As a result, the stationary distribution satisfies, for every state s,

µ π (s) = i∈S, i =s final a∈A i , i•a=s γ π i (a) p i, a (s) µ π (i) + μ (s) ((1 -γ) + γ µ π (s final)) .
Graphs issuing from synthetic mazes. We consider synthetic, rectangle-shaped mazes, of various sizes, with natural connectivity structure: each cell is adjacent to the cells with which it shares a border. The costs of moving from cell to cell are chosen randomly, and span uniformly from 0.1 to 1. In each simulation, a target cell is chosen randomly over the maze. We then construct the graph associated to the maze, with which we work.

Policy update operator.

For all the experiments, we parameterise the policies as softmax distributions, and we use a standard gradient descent in euclidean metric: Φ (θ, V) = θ -η V, where η is the step-size of the descent, and θ the parameter for the policy. The step-size was handed tuned in each experiment.

V (s final) would be fixed to 0. Setting γs final , a final = 0 thus allows us to keep the general formalism.

Experiments with the RTRL algorithm

First experiment, transmittance coefficients close to 1. We first test the RTRL algorithm with transmittance coefficients close to one. We therefore expect the policy we compute to be close to the optimal policy for the shortest-path problem.

Algorithm set-up. We consider a 45 × 45 maze as, for bigger mazes, the personal computer we carry our experiments on gets very slow, principally because the size of the Jacobian it has to store in memory is huge.

We use the transmittance factor γ = 0.99. The step size of the policy update operator is η = 1. Eventually, we initialise the algorithm by letting it run without updating the policy for T init = 100 iterations.

Results displayed.

We first display the average potential function computed with the potentials, and then the flow (they are indicated respectively by "(potentials)" and "(flow)" in the legend), thus using the two expressions of Definition 20. We compute the optimal policy thanks to dynamic programming, and evaluate the average potential function at this policy, which we display as well. These results are displayed in the left plot of Figure 2.

We would also like to assess the quality of the policy with respect to the original shortest-path in a graph problem we wished to solve. As a result, we use the policy to compute the lenghts of the paths one travels when following this policy. These lengths are the potentials obtained when all transmittance factors equal 1 (but of course for that of the target state), that is, the potentials V 1 π introduced in Section 1.7.

We then compute the optimal paths thanks to Dijkstra's algorithm, as well as a corresponding optimal policy. We then display the mean, and the 9 th decile, of the errors on the lengths of paths, as a function of the number of iterations elapsed. These results are displayed in the right plot of Figure 2.

Eventually, in the left plot, we also display the average potential function evaluated at the optimal policy for the shortest-path problem.

Analysis of results.

On the left figure, we see the average potential function diminishes quickly, and is lower-bounded by the value of the average potential function evaluated at the optimal policy.

The values of the average potential function computed with the potentials, and that computed with the flow, are close, but differ a little: indeed, we compute the stationary distribution and its Jacobian as fixed points, therefore the discrepancies may be due to the fact convergence has not been fully reached. On the right figure, we see that the mean and the 9 th decile of the errors diminish quickly.

Moreover, the value of the average potential function for the optimal policy for the shortest-path problem, and that for the optimal policy for the problem we did solve, are nearly indistinguishable: this is due to γ = 0.99 being very close to one. As a result, solving the slightly different problem we worked on provides a very good approximation of the optimal policy for the shortest-path in a graph problem we wished to solve.

Second experiment, lower than 1 transmittance coefficients. We now test the RTRL algorithm with the transmittance coefficient γ significantly less than 1. Algorithm set-up. We used a 20×20 maze. γ = 0.9, and η = 2. As before, we initialise the algorithm by letting it run without updating the policy for T init = 100 iterations.

Results displayed. We display the same results as for the first experiment, in Figure 3: on the left plot, we see the average potential function, the optimal policy, and the optimal policy for the shortest-path problem, while on the right plot we see the mean and 9 th of the errors on the lengths of paths computed with the policy.

Analysis of results.

On the left plot, we see that optimisation does succeed: the value of the average potential function converges towards its value at the optimal policy. However, we now see that the value of the optimal policy is significatively different from that of the optimal policy for the shortest path problem: this is due to γ = 0.9 being significatively different from 1.

On the right plot, we see the errors first diminish, then go up again. Again, working with γ significatively different from 1 means we are no longer chosing a policy close to the optimal policy for the shortest path problem, so much so that the lenghts of paths computed with this policy differ significatively from the shortest paths lengths.

Experiments with the "fully" stochastic algorithm

We now present experiments conducted on Algorithm 53.

Algorithm set-up. We consider a 20 × 20 maze. We use the transmittance factor γ = 0.8, so that the average time between restarts is 1/ (1 -0.8) = 5 steps. This seems reasonable given the size of the maze. The step-size is η = 1.5 for the stochastic algorithm, and η = 2 for RTRL.

In our case, with the notations of Definition 51, R = 1 since a state and an action uniquely define a new state, so that the variable ξ (s, a, 1) is not random. We use L = 50, and τ k+1 -τ k = 550.

Results displayed.

In Figure 4, we display the trajectories of the average potential function evaluated at the policy computed with the stochastic algorithm, and at the policy computed with RTRL. We also display the average potential function evaluated at the the optimal policy, and that evaluated at the optimal policy for the shortest-path problem. The time-scale used on the x-axis is (τ k). The RTRL algorithm was run in this time-scale, so that its iterations take place at the times τ k , for k ≥ 0.

Analysis of results.

We see that the average potential function evaluated at the policy computed with the stochastic algorithm diminishes towards the value of the optimal policy, which shows the algorithm functions. Obviously, the values of L and τ k+1 -τ k are quite large, which qualifies somehow the assertion this algorithm works online. However, as we said before, convergence coming from ergodicity is slow, so that needing computational time to carry on simulations is somewhat unavoidable. Working towards making the algorithm fit for use on larger-scale tasks would constitute a direction of future work. Trélat, Emmanuel (2005). Contrôle optimal, théorie & applications. Vuibert.

A Proofs for the network model, Section 1

A.1 Existence of the stationary distribution, Section 1.4

Notations 54 (Vector space and its dual associated to the network). We identify R S and R |S| by associating every state s to the unit basis vector e s at s.

We write R S * the space of linear forms over R S . This way, the space of probability distributions P (S) over S is identified to the set of non-negative linear forms µ on R S (µ (e s) ≥ 0, for any basis vector e s) such that s∈S µ (e s) = 1. For every s ∈ S we write, depending on the contest, µ (s) or µ (e s).

In addition, we write e ∈ R |S| the vector with every coordinate equal to 1.

Notations 55 (Duality on R |S|). We designate adjonction with a star: for every endomorphism m defined on R |S| , we write m * its adjoint, defined on R |S| * . They satisfy, for every vector V ∈ R |S| and every linear form µ ∈ R |S| * :

µ (m (V)) = m * (µ) (V) .
Definition 56 (Endomorphism associated to the flow transfer operator). For every policy π, we write m the stochastic endomorphism of R |S| associated to T (•, π), and M its matrix in the working basis. We let the dependence on π remain implicit. For every states s, i belonging to S, viewing e i as a function on S with unit value at i,

m (e i) = - → K π * e i , m * (δ i) = ← - K π * δ i = T (δ i , π) ,
and

M i, s = T (δ i , π) s = ← - K π * δ i (s) ,
where δ i is the unit mass at state i15 .

Now, for every policy π, for every measure µ seen as a linear form on R |S| ,

T (µ, π) = m * (µ)
and, for every policy π, for every measure µ ∈ P (S) seen as a lign vector16 ,

T (µ, π) = µ M = M * µ * .
In the probabilistic representation, T is the transition operator of the Markov chain introduced in Definition 36, so that M is the transition matrix of this operator: we have, for every states s and i,

M i s = P (X 1 = s| X 0 = i) .
The following lemma, standard in linear algebra and Perron-Frobenius style studies, as well as Markov chain theory, characterises the behaviour of m and its iterates. The crucial property is the separation between the eigenvalue 1 and the other eigenvalues, which stems from Assumption 2.

Lemma 57 (Spectral analysis of m). Under Assumption 2, and for every strict policy π, m satisfies the following properties.

1. The largest, in modulus, eigenvalue of m (or m *) is 1. Every other eigenvalue of m (or m *) has modulus strictly less than 1.

2. The eigenspace of m (respectively m *) associated to the eigenvalue 1 is of dimension one. We write it E 1 (respectively E * 1).

3. e belongs to E 1 . For some linear form µ π on R |S| , for which we may assume µ π (e) = 1, we have

R |S| = R e ⊕ ker (µ π) ,
and ker (µ π) is stable by m.

The projection on E 1 in this decomposition is p E 1 : V → µ π (V) e.
4. µ π belongs to E * 1 . As such, all its components are positive17 . The space of linear forms on R |S| decomposes as

R |S| * = R µ π ⊕ ker (µ → µ (e)) ,
and ker (µ → µ (e)) is stable by m * .

The projection on E * 1 in this decomposition is then p E * 1 : µ → µ (e) µ π = µ π s∈S µ (s).

Defining the iterates m

t+1 = m t • m and m * t+1 = m * t • m * , we have m t → m ∞ = p E 1 , et m * t → m * ∞ = p E *
1 , as t tends to infinity (the spaces of operators on R |S| and on its dual are finite-dimensional, therefore convergence takes place for every norm).

6. Write 0 ≤ ρ 2 < 1 the modulus of the second largest (in modulus) eigenvalue of m. Write 0 ≤ d ≤ |S| the maximum dimension of a caracteristic space of m. Write • op operator norms for endomorphisms of R |S| and of its dual. Then, as t tends to infinity,

m t -p E 1 op = O |S| t d ρ t 2 and m * t -p E * 1 op = O |S| t d ρ t 2 ,
with the constants in the big O term bounded independently of |S|.

7. M t → M ∞ , as t → ∞
, where M ∞ is the matrix where every lign equals µ π . Moreover, the rate of convergence is the same at that for m t .

8. The map which, to every strict policy π, associates µ π , is continuous.

Once we have proven that M 2 has only positive coefficients, the proof is standard, (see for instance [START_REF] Minc | Nonnegative Matrices[END_REF]. As a result, we only prove that M 2 has only positive coefficients, and the statement about the control of the speed of convergence towards stationarity. The continuity of µ π with respect to the policy is a consequence of Lemma 23, which shows it is in fact smooth.

All the coefficients of M 2 are positive. In other words, M is a primitive matrix.

We carry on the proof using the probabilistic representation of the diffusion process studied in Section 3.

Starting from any state i, we may reach any other state s in 2 iterations with positive probability. Assumption 2 was designed to ensure this. We must consider three cases.

1. i and s are non-target states. Then, the first Bernoulli may fail, and μ may send X again to i, and the second Bernoulli may also fail, but μ send X to s.

As a result,

P (X 2 = s| X 0 = i) ≥ P B 0 i, A 0 (i) = 0, ξ 0 i, A 0 (i) , 0 = i, B 0 i, A 1 (i) = 0, ξ 1 i, A 1 (i) , 0 = s X 0 = i = a∈A i π i (a) (1 -γ i, a) μ (i) a∈A i π i (a) (1 -γ i, a) μ (s) .
Now, μ (i) and μ (s) are positive, since i and s are not target states. Moreover, all the γ i, a 's are strictly less than one, so that for all a, 1 -γ i, a > 0. Now, π i (•) is a strict probability distribution. As a consequence, for one action a, π i (a) > 0, which finally ensures P (X 2 = s| X 0 = i) > 0.

2. i is a target state, and s is a non-target state. Then, μ (s) > 0, so X may go from i to s with μ, and stay there at the second iteration, using a Bernoulli failure in s.

3. i and s are target states. Then, Assumption 2 ensures we may find a state i such that i is a non-target state and, for some action a with γ i , a > 0, p i , a (s) > 0. As a result, we may first go from i to i , with positive probability, then go from i to s, using a Bernoulli success. The latter is possible because a is such that γ i , a > 0 and π is strict so that, thanks to Definition 4, π i (a) > 0.

Speed of convergence to stationarity. We prove the part related to the speed of convergence. Let λ be any complex eigenvalue of m. Let n λ be the index of nilpotency of m -λ Id on the caracteristic space of m associated to λ. Since the caracteristic space is stable under m, on this space, for all t ≥ n λ , m t equals

(λ Id +m -λ Id) t = t k=1 C t k λ t-k (m -λ Id) k = n λ k=1 C t k λ t-k (m -λ Id) k .
For every k ≤ n λ , for every t ≥ 2 n λ , we have k ≤ t/2, so that C t k ≤ C t n λ . Moreover,

C t n λ = t! n λ ! (t -n λ)! = t (t -1) . . . (t -n λ + 1) n λ ! ≤ t n λ n λ ! .
As a consequence,

λ Id +m -λ Id t op ≤ n λ k=1 C t k λ t-k m -λ Id k op ≤ n λ k=1 t n λ n λ ! λ t-k (1 + |λ|) k ≤ t n λ n λ ! λ t-n λ n λ k=1 (1 + |λ|) k ≤ t n λ n λ ! λ t-n λ (1 + |λ|) n λ -1 |λ| ≤ t n λ n λ ! λ t-n λ -1 (1 + |λ|) n λ ≤ t n λ n λ ! ρ t-n λ -1 2 (1 + ρ 2) n λ .
As a result, summing over the caracteristic spaces, and using the fact operator norms of projectors are less than 1 we obtain, for t ≥ max λ =1 2 n λ18 ,

m t -p E 1 op ≤ λ =1 t n λ n λ ! ρ t-n λ -1 2 (1 + ρ 2) n λ = ρ t 2 λ =1 t n λ n λ ! (1 + ρ 2) n λ ρ n λ +1 2 .
Now, every n λ is less than |S|, since the dimension of every caracteristic space of m is bounded by |S|. Let then d = max λ =1 n λ . Now, for all t ≥ 1, we have t n λ -d ≤ 1, so that

λ =1 t n λ -d n λ ! (1 + ρ 2) n λ ρ n λ +1 2 ≤ |S| sup x≥0 1 x! (1 + ρ 2) x ρ x+1 2 ,
where the term with the supremum is bounded on R + , so that

m t -p E 1 op = O |S| t d ρ t
2 , as t tends to infinity, which concludes the proof.

We conclude by clarifying the structure of the divergence operator introduced in Definition 9.

Corollary 58 (Endomorphism associated to the divergence). Let π be a policy. For every flow µ over the network, we have

div π (µ) = m * (µ) -µ = (m * -Id) (µ) .
Assume moreover π is strict. We have the following decomposition: Proof. The first relation is a consequence of the definition of the divergence and of m * , which is introduced in Definition 56. The decomposition of the space is a consequence of the fact 1 is an eigenvalue of m * , with the associated eigenspace being of dimension one.

The relation before last is then a consequence of Lemma 57, and the last relation is a consequence of the same lemma and of the definition of T P (S), introduced just before the definition of the divergence, and discussed at the beginning of Section 2.1.

A.2 Controlling the second largest eigenvalue

For every deterministic policy π, write m * π the adjoint of the endomorphism associated to T (•, π) as defined in Definition 56.

Write moreover γ π the diagonal (thus, self-adjoint) operator defined by, for every basis Dirac distribution at e i , δ i ∈ R S * , γ π (δ i) = γ i, π(i) δ i , where π (i) is the action selected by π (in the sense that all mass of π is concentrated on it).

Lemma 59 (Representation of the endomorphism associated to the flow transfer operator). Let us write Id the identity over the space of linear forms on R S .

Every policy π defines a probability distribution on the space of deterministic policies over A, which we write P π .

For every policy π, for every linear form µ over R S , we have

m * (µ) = π deterministic policies P π (π) (m * π • γ π (µ) + ((Id -γ π) (µ)) (e) μ) .
Proof. Let π be a deterministic policy over A. Write, for every state i ∈ S, a i the actions elected by π. We define

P π (π) = i∈S π i (a i) .
Now, P π is indeed a probability over the deterministic policies, and the representation of m * is just a way of rewriting Equation (1).

This representation allows us to represent m * as the expectation of the operator µ → m * π • γ π (µ) + ((Id -γ π) (µ)) (e) μ sampled according to P π , though we do not investigate it further.

Lemma 60 (Controlling the second largest eigenvalue for constant transmittance factors). Assume the transmittance coefficients all equal somme 0 ≤ γ < 1. Then, for every strict policy π, the modulus of the second largest eigenvalue, ρ 2 , satisfies ρ 2 ≤ γ.

Proof. First, since the transmittance coefficients are constant we know that, for every deterministic policy π, we have

γ π = γ Id .
Thanks to Lemma 57, we know that 1 is an eigenvalue of multiplicity one of m. Let then λ = 1 be an eigenvalue of m. Thanks to the same lemma, we know that |λ| < 1. Let ν be an eigenvector of m * associated to λ * , where λ * is the complex conjugate of λ. We have m * (ν) = λ * ν, Now, thanks again to Lemma 57, we know that ν is in the kernel of µ → µ (e). As a result, thanks to Lemma 59, we have

m * (ν) = π deterministic policies P π (π) (γ m * π (ν) + (1 -γ) ν (e) ν) = π deterministic policies P π (π) γ m * π (ν)
As a result, we have

|λ| ν = π deterministic policies P π (π) γ m * π (ν) ≤ π deterministic policies P π (π) γ m * π (ν) ≤ π deterministic policies P π (π) γ m * π ∞ ν ≤ π deterministic policies P π (π) γ ν ≤ γ ν , since m * π ∞ ≤ 1 as m π is a stochastic endomorphism.
As a result, we have |λ| ≤ γ, which concludes our proof.

In the general transmittance coefficient case, we cannot apply this proof technique, since the kernel of µ → µ (e) is no longer stable by the endomorphisms Id -γ π. It was the case here since they were homotheties.

A.3 Proofs for the integration by parts formula, Section 1.5

We first establish the formula in the stationary case, as computations are more straightforward, and as a result the argument of the proof is clearer.

Proof of Lemma 19, stationary equation. For every state s, we have

V π (s) - a∈As γ s, a π s (a) i p s, a (i) V π (i) = a∈As π s (a) C s (a) .
Multiplying the two sides of the equation by µ π (s), then summing over s, the lefthand side becomes:

s µ π (s) V π (s) - s µ π (s) a∈As γ s, a π s (a) i p s, a (i) V π (i).

Let us rewrite it as

i µ π (i) V π (i) - i V π (i) s µ π (s) a∈As γ s, a p s, a (i) π s (a) = i V π (i)   µ π (i) - s µ π (s) a∈As γ s, a p s, a (i) π s (a)   , so that we obtain i V π (i) μ (i) µ π , 1 -γ = s µ π (s) a∈As π s (a) C s (a) .
We then establish the formula for all time t. Proof of Lemma 19, general time t. Let t ≥ 0. For all state s, we have

V t+1 (s) - a∈As γ s, a π s (a) i p s, a (i) V t (i) = a∈As π s (a) C s (a) ,
which we rewrite as

V t+1 (s) -V t (s) + V t (s) - a∈As γ s, a π s (a) i p s, a (i) V t (i) = a∈As π s (a) C s (a) .
Multiplying the two sides of the equation by µ t (s), then summing over s, the lefthand side becomes the sum of the term s∈S µ t (s) (V t+1 (s) -V t (s)) plus

s µ t (s) V t (s) - s µ t (s) a∈As γ s, a π s (a) i p s, a (i) V t (i).
We rewrite this last expression as

i µ t (i) V t (i) - i V t (i) s µ t (s) a∈As γ s, a p s, a (i) π s (a) = i V t (i)   µ t (i) - s µ t (s) a∈As γ s, a p s, a (i) π s (a)   , which in turns equals = i V t (i)   µ t (i) - s µ t (s) a∈As (γ s, a p s, a (i) + (1 -γ s, a) μ (i)) π s (a)   + i V t (i) s µ t (s) a∈As (1 -γ s, a) μ (i) π s (a) ,
so that, gathering all terms, we obtain

s∈S µ t (s) (V t+1 (s) -V t (s)) + i V t (i) div (µ t) (i) + i V t (i) μ (i) µ t , 1 -γ = s µ t (s) a∈As π s (a) C s (a) .
This concludes the proof of the lemma.

We now prove the additional relation we announced below the statement of Lemma 19.

Corollary 61 (Re-writing the integration by parts formula). The integration by parts formula may rewrite, for all time t, recalling the notation ∆ introduced in Definition 10,

∆ s V t (s) µ t (s) = - i V t (i) μ (i) µ t , 1 -γ + s µ t (s) a∈As π s (a) C s (a) + O (∆ V t ∆ µ t) . Proof. We know that ∆ s V t (s) µ t (s) = s∈S µ t (s) (V t+1 (s) -V t (s)) + i V t (i) div (µ t) (i) + s∈S (µ t (s) -µ t+1 (s)) (V t+1 (s) -V t (s)) . Let us write s∈S µ t (s) (V t+1 (s) -V t (s)) = s∈S µ t+1 (s) (V t+1 (s) -V t (s)) + s∈S (µ t (s) -µ t+1 (s)) (V t+1 (s) -V t (s)) .
Then, thanks to Lemma 18, for all state s, we have

V t (s) div (µ t) (s) = V t (s) ∆ µ t (s) = V t (s) (µ t+1 (s) -µ t (s)) .
We conclude by noting that

∆ (V t µ t) = V t+1 µ t+1 -V t µ t = (V t+1 -V t) µ t+1 + V t (µ t+1 -µ t)
so that, for all state s, we have

∆ (V t µ t) (s) = µ t+1 (s) (V t+1 (s) -V t (s)) + V t (s) div (µ t) (s) .
Gathering all this, we obtain the announced result.

A.4 Chosing the problem to solve

We motivate here Definition 20. As a result of Lemma 19, two optimisation problem arise, which solutions may differ. We discuss here the forms of their solutions. Thanks to Lemma 19, we first know that, for every strict policy π,

s µ π (s) a∈As π s (a) C s (a) = s V π (s) μ (s) µ π , 1 -γ .
Optimising the function on the right-hand side means trying to find the minimum of the sum of the unitary costs (the potentials), weighted by the ingoing flow through the corresponding state (μ (s) µ π , 1 -γ). As a result, depending on the network at hand, the minimum may be any of the two following forms. Either the costs are small, and the flow through the states are "important", or the costs are maybe bigger, but the flow through the states are small. However, when trying for instance to solve a shortest path in a graph problem, we are not interested in the second solution (huge costs, small flow): indeed, we want to find the policy so that the unitary cost in each state are the smallest possible. We therefore need to optimise

s µ π (s) µ π , 1 -γ a∈As π s (a) C s (a) = s V π (s) μ (s) .
In our study, we work with this second option.

A.5 Proof of independence of the optimal policy with respect to the restart distribution, Lemma 22

We first need to prove the following lemma, which depends on the "policy improvement theorem" (Sutton and Barto 2018), although we use it in a more general version than is proved there (which considers deterministic policies).

Lemma 62 (Improving policies). Let π 1 be a strict policy such that, for some state s 1 , we have V π 1 (s 1) > inf π strict V π (s 1). Then, we may find a non-target state s 2 ∈ S, and a strict policy π 2 such that we have

V π 2 (s 2) < V π 1 (s 2)
and, for every

s = s 2 , V π 2 (s) ≤ V π 1 (s) .
Note that s 1 cannot be a target state since the potential of every target state vanishes, no matter the policy.

Proof. We know that, for every state s, we have

V π 1 (s) = a∈As π 1 s (a) C s (a) + γ s, a i p s, a (i) V π 1 (i) = a∈As π 1 s (a) Q π 1 (s, a)
where, as is common in reinforcement learning, we write

Q π (s, a) = C s (a) + γ s, a i p s, a (i) V π (i)
for every strict policy π, every s ∈ S, and every a ∈ A s . Now, there exists some state s 2 such that

inf p strict, p∈P(As 2) a∈As 2 p (a) Q π 1 (s 2 , a) < a∈As 2 π 1 s 2 (a) Q π 1 (s 2 , a) .
Indeed, were it not the case then, by recurrence, we see that V π 1 (s 1) would be optimal, which we assumed wrong. Necessarily, s 2 is not a target state because, for every target state s target , for every action a ∈ A starget , we have Q π (s target , a) = 0. Let us then chose p 2 ∈ P (A s 2), p 2 strict such that

a∈As 2 p (a) Q π 1 (s 2 , a) < a∈As 2 π 1 s 2 (a) Q π 1 (s 2 , a) .
We now define the strict policy π 2 as follows.

π 2 s 1 = p 2 π 2 s = π 1 s , s = s 2 .
Now, for all state s,

a∈As π 2 s (a) Q π 1 (s, a) ≤ a∈As π 1 s (a) Q π 1 (s, a) .
Indeed, the equality is an equality for all state s = s 2 , and the inequality is strict in s 2 , by construction. As a result, thanks to the policy improvement theorem, for every state s, we have

V π 2 (s) ≤ V π 1 (s) , while V π 2 (s 1) < V π 1 (s 1) .
Proof of Lemma 22. Let π * be an optimal policy. Let us assume there is a policy π 1 and a state s 1 such that V π 1 (s 1) < V π * (s 1). Then, thanks to Lemma 62, we may find a state non-target state s 2 , and a strict policy π 2 , such that V π 2 (s 2) < V π * (s 2) and, for every s = s, we have V π 2 (s) ≤ V π * (s). As a result, since s 2 is a non-target state, thanks to Assumption 2, we know that μ (s 2) > 0, so that we have

s V π 2 (s) μ (s) < s V π * (s) μ (s) ,
which is a contradiction. Therefore, for every state s, we have

V π * (s) = inf π strict V π (s) ,
which proves the first statement of the lemma. The second statement is then an immediate consequence of the first one.

of π , as m * (π) is an endomorphism defined over a finite-dimensional space, and depends linearly on π . As a result, p E * 1 (π) is a smooth function of π . To conclude, let us fix some arbitrary measure µ ∈ P (S) ⊂ R |S| * . Then, according to Lemma 57, for every strict policy π, we have

µ π = p E * 1 (π) (µ)
. As a result, π → µ π is smooth on the set of strict policies.

Proof of Lemma 24. First, for any s, π → µ π (s) is a map from Π to R. Its derivative is a linear form on T Π. As a result, the differential of π → µ π may be viewed as a member of S × T Π.

On the other hand, for any s 0 ∈ S, for any a 0 ∈ A s 0 , let v (s 0 , a 0) be the vector of R A with only non-zero coordinate at (s 0 , a 0). Let π belong to the interior of Π.

We then consider the map t → µ π+t v (s 0 , a 0) (it is a function which maps 0 to π, and which tangent vector at 0 is v (s 0 , a 0)). Then, its differential at t = 0, which is the partial derivative of π → µ π at π, in the direction (s 0 , a 0), is a tangent vector to P (S). As a result, the differential of π → µ π may be viewed as a member of s 0 ∈S a 0 ∈As 0 T P (S).

B.2 Proof of the "policy gradient theorem", Corollary 27

Proof of Corollary 27. We prove that, for every strict policy π, we have the duality equation

µ π , 1 -γ s∈S μ (s) ∂ V π ∂π (s) = s∈S µ π (s) a∈As ∂ Π s, a ∂π (π) Q π (s, a) .
The "policy gradient theorem" then comes from the relation

∂ ∂π π s∈S μ (s) V π (s) = s∈S μ (s) ∂ V π ∂π (s) .
Let s ∈ S. Thanks to Lemma 13, we know that, for every state s,

V π (s) = a∈As π s (a) C s (a) + γ s, a i p s, a (i) V π (i) .
Differentiating with respect to π, we obtain

∂ V π ∂π (s) = a∈As ∂ ∂π π s (a) C s (a) + γ s, a i p s, a (i) V π (i) + a∈As π s (a) γ s, a i∈S p s, a (i) ∂ V π ∂π (i) , that is ∂ V π ∂π (s) - a∈As π s (a) γ s, a i∈S p s, a (i) ∂ V π ∂π (i) = a∈As ∂ ∂π π s (a) Q π (s, a) .
Multiplying the two sides of the equation by µ π (s), then summing over s, the lefthand side becomes:

s µ π (s) ∂ V π ∂π (s) - s µ π (s) a∈As γ s, a π s (a) i p s, a (i) ∂ V π ∂π (i).
Let us rewrite it as

i µ π (i) ∂ V π ∂π (i) - i ∂ V π ∂π (i) s µ π (s) a∈As γ s, a p s, a (i) π s (a) = i ∂ V π ∂π (i)   µ π (i) - s µ π (s) a∈As γ s, a p s, a (i) π s (a)   , so that we obtain i ∂ V π ∂π (i) μ (i) µ π , 1 -γ = s∈S µ π (s) a∈As ∂ ∂π π s (a) Q π (s, a) .

B.3 Proofs for the control of errors while using the RTRL algorithm

We first need to prove the following technical lemma, which gives a suitable representation of the Jacobian computation operator update equation. This representation makes explicit the contribution of the endomorphism m (in the form of its matrix M), introduced in Definition 56 and studied in Lemma 57.

Lemma 63 (Expression of the Jacobian computation operator). Let π be a strict policy. For all s 0 ∈ S, for all s ∈ S, define the real number19

c s 0 (s) = a∈As 0 ∂ Π s 0 , a ∂π (π) (s 0 , a 0) (γ s 0 , a p s 0 , a (s) + (1 -γ s 0 , a) μ (s)) .
For all s 0 , we have c s 0 (•) ∈ T P (S): s∈S c s 0 (s) = 0. Moreover, c s 0 (s) is bounded independently of |S| for every state s (but the bound depends on |A s |).

Let µ ∈ P (S), and J ∈ L (T Π, T P (S)). Let K = J (J, µ, π). Then, for all s 0 ∈ S and a 0 ∈ A s 0 ,

K (s 0 , a 0) = J (s 0 , a 0) M + µ (s 0) s∈S δ s c s 0 (s) ,
where δ s designates the unit distribution (Dirac) at s and the notation K (s 0 , a 0) was introduced in Notations 25. Proof. Let s 0 ∈ S, and a 0 ∈ A s 0 . For every action a ∈ A s 0 , p s 0 , a (•) is a probability distribution, and so is μ. As a result,

s∈S c s 0 (s) = a∈As 0 ∂ Π s 0 , a ∂π (π) (s 0 , a 0) =   a∈As 0 ∂ Π s 0 , a ∂π (π)   (s 0 , a 0) =   ∂ ∂π a∈As 0 Π s 0 , a   (s 0 , a 0) (π) .
Now, for every policy π, we have a∈As 0 Π s 0 , a (π) = a∈As 0 π s 0 (a) = 1, so that the function a∈As 0 Π s 0 , a is constant and its differential vanishes. The last formula is just a rewriting of the equation defining the Jacobian computation operator in Definition 28.

Proof of Lemma 30. Let s 0 ∈ S, and a 0 ∈ A s 0 . Then, thanks to Lemma 63, for all t ≥ 0, J

(s 0 , a 0) t+1 = J (s 0 , a 0) t M + µ (s 0) s∈S δ s c s 0 (s) .
Thanks to Lemma 15, for all t ≥ 0,

M t = M ∞ + O |S| t d ρ t 2 . As a result, for all T ≥ 0, J (s 0 , a 0) T = J (s 0 , a 0) 0 M T + µ (s 0) t≤T s∈S δ s M T -t c s 0 (s) = J (s 0 , a 0) 0 M ∞ + J (s 0 , a 0) 0 O |S| T d ρ T 2 + µ (s 0) t≤T s∈S δ s M ∞ c s 0 (s) + µ (s 0) t≤T s∈S δ s O |S| (T -t) d ρ T -t 2 c s 0 (s) . Now, J (s 0 , a 0) 0 M ∞ = µ π s∈s J (s 0 , a 0) 0
(s) = 0, since J (s 0 , a 0) ∈ T P (S), while δ s M ∞ = µ π . As a consequence, for all T ≥ 0,

J (s 0 , a 0) T = J (s 0 , a 0) 0 O |S| T d ρ T 2 + µ (s 0) t≤T s∈S µ π c s 0 (s) + µ (s 0) t≤T s∈S δ s O |S| (T -t) d ρ T -t 2 c s 0 (s) = J (s 0 , a 0) 0 O |S| T d ρ T 2 + µ (s 0) µ π t≤T s∈S c s 0 (s) + µ (s 0) s∈S c s 0 (s) t≤T δ s O |S| (T -t) d ρ T -t 2 = J (s 0 , a 0) 0 O |S| T d ρ T 2 + µ (s 0) s∈S c s 0 (s) t≤T δ s O |S| t d ρ t 2 .
Indeed, thanks to Lemma 63, the second term of the right-hand side of the second equality vanishes.

Now, the first term on the right-hand side converges to 0, as ρ 2 < 1, while the second term converges, as a finite sum of convergent series, and

J (s 0 , a 0) ∞ = µ (s 0) s∈S c s 0 (s) t≥0 δ s O |S| t d ρ t 2 .
This concludes the first part of the lemma, since there are only a finite number of couples s 0 , a 0 . J ∞ is then a fixed point of J (•, µ, π). Moreover, for any t ≥ 0,

J (s 0 , a 0) t+1 -J (s 0 , a 0) ∞ = J (s 0 , a 0) t -J (s 0 , a 0) ∞ M, so that J (s 0 , a 0) t -J (s 0 , a 0) ∞ = J (s 0 , a 0) 0 -J (s 0 , a 0) ∞ M t = J (s 0 , a 0) 0 -J (s 0 , a 0) ∞ M ∞ + J (s 0 , a 0) 0 -J (s 0 , a 0) ∞ O |S| t d ρ t 2 = 0 + J (s 0 , a 0) 0 -J (s 0 , a 0) ∞ O |S| t d ρ t 2 , since J (s 0 , a 0) 0 and J (s 0 , a 0) ∞
belong to T P (S). This concludes the proof.

Proof of Lemma 31. Proceeding as in the proof of Lemma 30, for any T ≥ 0,

J (s 0 , a 0) T -J (s 0 , a 0) π = J (s 0 , a 0) 0 -J (s 0 , a 0) π M T + t≤T (µ t (s 0) -µ π (s 0)) s∈S δ s M T -t c s 0 (s) = J (s 0 , a 0) 0 -J (s 0 , a 0) π O |S| T d ρ T 2 + s∈S c s 0 (s) t≤T (µ t (s 0) -µ π (s 0)) O |S| (T -t) d ρ T -t 2 . Now, µ t -µ π = O |S| t d ρ t 2 µ 0 -µ π , so that, for any T ≥ 0 20 , t≤T (µ t (s 0) -µ π (s 0)) O |S| (T -t) d ρ T -t 2 = O |S| 2 T 2 d+1 ρ T 2 µ 0 -µ π , and J (s 0 , a 0) T -J (s 0 , a 0) π ≤ J (s 0 , a 0) 0 -J (s 0 , a 0) π O |S| T d ρ T 2 + s∈S |c s 0 (s)| O |S| 2 T 2 d+1 ρ T 2 µ 0 -µ π .
As a consequence, for any t ≥ 0,

J t = J π + J 0 -J π O |S| t d ρ t 2 + µ 0 -µ π O |S| 3 t 2 d+1 ρ t 2 .
Proof of Lemma 32. The bounds on µ t -µ π and J t -J π from Lemmata 15 and 31 are upper-bounded by

t 2 d+1 ρ t 2 O max |S| J 0 -J π , |S| 3 µ 0 -µ π .
Let M be some number bounding the constants in the big O terms. It is sufficient to find t (ε) such that, for all t ≥ t (ε),

t 2 d+1 ρ t 2 ≤ ε M max |S| J 0 -J π , |S| 3 µ 0 -µ π -1
, that is, since ρ 2 < 1, so that log (ρ 2) < 0, -log (ρ 2) 2 d+1 t 2 d+1 ρ t 2 ≤ -log (ρ 2) 2 d+1 ε M max |S| J 0 -J π , |S| 3 µ 0 -µ π -1

, or still

f (-log (ρ 2) t) ≤ -log (ρ 2) 2 d+1 ε M max |S| J 0 -J π , |S| 3 µ 0 -µ π -1
, with f (x) = x 2 d+1 e -x , for x ≥ 0. Let us write n = 2 d + 1. Now, for a ≥ 0,

f (x) = a ⇔ x exp - x n = a 1 n ⇔ x n exp - x n = a 1 n n .
The last equation has two roots. Let us write x 2 the function which, to every number 0 ≤ y ≤ e -1 , associates the bigger root of the equation

x e -x = y. Now, for every such y, log y -1 y ≥ y, so that x 2 (y) ≥ log y -1 . us write a = -log (ρ 2) 2 d+1 ε M max (J 0 -J π , µ 0 -µ π |S|) -1 . Then, for the bound we look for to be satisfied, it is sufficient that

-log (ρ 2) t ≥ x 2 a 1 n n ≥ log n a 1 n that is, it is sufficient that t ≥ -1 log (ρ 2) log      2 d + 1 -log (ρ 2) M ε max |S| J 0 -J π , |S| 3 µ 0 -µ π -1 1 2 d+1      .
We call t (ε) the right-hand side, which concludes the proof.

Remark further that, for τ ≥ 0,

{τ + 1 ≤ T ∧ (t + 1)} = τ + 1 ≤ 1 + T X 1 1+• ∧ (t + 1) = τ ≤ T X 1 1+• ∧ t .
Now, we use the Markov property to obtain that the expectation above equals

E 1 {T > 0} u t, X 1 1 X 1 0 = s = E 1 B 0 X 1 0 , A 0 X 1 0 = 1 u t, X 1 1 X 1 0 = s = a∈As π s (a) γ s, a i∈S p s, a (i) u (t, i) .
Solution to the homogeneous equation. Define, for t ≥ 0 and s ∈ S,

u (t, s) = E C X 1 t A t X 1 t 1 {t ≤ T } X 1 0 = s .
Then,

u (0, s) = E C X 1 0 A 0 X 1 0 1 {0 ≤ T } X 1 0 = s = E C s A 0 (s) ,
so that u satisfies the initial condition with the function C as initial condition Let now t ≥ 0. Then,

u (t + 1, s) = E C X 1 t+1 A t+1 X 1 t+1 1 {t + 1 ≤ T } X 1 0 = s = E C X 1 t+1 A t+1 X 1 t+1 1 {T = 0, t + 1 ≤ T } X 1 0 = s + E C X 1 t+1 A t+1 X 1 t+1 1 {T > 0, t + 1 ≤ T } X 1 0 = s = E C X 1 t+1 A t+1 X 1 t+1
1 {T > 0, t + 1 ≤ T } X 1 0 = s since, on {T = 0}, 1 {t + 1 ≤ T } = 0. As a consequence, as before, thanks to the Markov property,

u (t + 1, s) = E C X 1 t+1 A t+1 X 1 t+1 1 T > 0, t + 1 ≤ 1 + T X 1 1+• X 1 0 = s = E 1 {T > 0} u t, X 1 1 X 1 0 = s = E 1 B 0 X 1 0 , A 0 X 1 0 = 1 u t, X 1 1 X 1 0 = s = a∈As π s (a) γ s, a i∈S p s, a (i) u (t, i) ,
which concludes the proof.

Lemma 65 (Lemma 42, convergence to the stationary solution). Write g the function defined by, for all s ∈ S,

g (s) = E   τ ≥0 1 {τ ≤ T } C X 1 τ A τ X 1 τ X 1 0 = s   .
Then, it is well-defined and, for all s ∈ S, we have u (t, s) → g (s), as t tends to infinity. As a result, V π = g (•).

Proof. Let us prove the first statement. We start by controlling the first term of Equation (10). For all t ≥ 0, Thanks to Lemma 41, the right-hand side is integrable. Moreover, thanks to the same lemma, T is finite with probability one. As a result, with probability one, 1 {τ ≤ T ∧ t} converges pointwise to 1 {τ ≤ T }, as t tends to infinity.

On the other hand, for all t ≥ 0, The first inequality shows the left-hand side converges pointwise to 0, as t tends to infinity, and the second shows it is dominated (since A is finite). We conclude the proof of the first statement of the Lemma thanks to dominated convergence. Now, thanks to Lemma 64 we know that, for all t ≥ 0, V t = u (t, •). Moreover, thanks to Lemma 13, we know that V t → V π , as t tends to infinity. Eventually, thanks to the first part of the proof above, we know that u (t, •) → g, as t tends to infinity. As a result, we have V π = g.

C I X 1 t -C X 1 t A t X 1 t 1 {t ≤ T } ≤ 2 sup

C.2 Proof of Lemma 43

Proof of Lemma 43. Let us write, for every state s,

f (s) = E   C X 1 T A T X 1 T 1 -γ X 1 T , A T (X 1 T) X 1 0 = s   .
Let us prove V π and f are the same. We do it by showing they satisfy the same equation (remember that, thanks to Lemma 13, we know that the equation satisfied by V π uniquely determines it). Let us fix s ∈ S. Then,

f (s) = E   C X 1 T A T X 1 T 1 -γ X 1 T , A T (X 1 T) X 1 0 = s   = E   1 {T = 0} C X 1 0 A 0 X 1 0 1 -γ X 1 0 , A 0 (X 1 0) X 1 0 = s   + E   1 {T > 0} C X 1 T A T X 1 T 1 -γ X 1 T , A T (X 1 T) X 1 0 = s   . Now, on {T > 0} 22 , T X 1 = inf t ≥ 1 B t X 1 t , A t X 1 t = 0 = 1 + inf t ≥ 0 B t+1 X 1 t+1 , A t+1 X 1 t+1 = 0 = 1 + T X 1 1+• ,
22 See the note in the proof of Lemma 64.

as the B t 's are independent, and identically distributed. Let us write, for t ≥ 0,

ρ (t) = C X 1 t A t X 1 t 1 -γ X 1 t , A t (X 1 t)
.

As a result,

E   1 {T > 0} C X 1 T A T X 1 T 1 -γ X 1 T , A T (X 1 T) X 1 0 = s   = E [1 {T > 0} ρ (T)| X 1 0 = s = E 1 {T > 0} ρ T X 1 1+• X 1 0 = s = E 1 {T > 0} E ρ T X 1 1+• F 1 X 1 0 = s
Now, thanks to the Markov property, conditionally to F 1 , the process X 1 1+t t≥0

has the same law as the process X 1 t t≥0 started at X 1 1 , so that we have

E ρ T X 1 1+• F 1 = f X 1 1 .
As a consequence, Moreover,

E   1 {T > 0} C X 1 T A T X 1 T 1 -γ X 1 T , A T (X 1 T) X 1 0 = s   = E 1 {T > 0} f X 1 1 X 1 0 = s = E 1 B 0 X 1 0 , A 0 X 1 0 = 1 f X 1 1 X 1 0 = s
E   1 {T = 0} C X 1 0 A 0 X 1 0 1 -γ X 1 0 , A 0 (X 1 0) X 1 0 = s   = E   1 B 0 X 1 0 , A 0 X 1 0 = 0 C X 1 0 A 0 X 1 0 1 -γ X 1 0 , A 0 (X 1 0) X 1 0 = s   = E   1 -γ X 1 0 , A 0 (X 1 0) C X 1 0 A 0 X 1 0 1 -γ X 1 0 , A 0 (X 1 0) X 1 0 = s   = E C X 1 0 A 0 X 1 0 X 1 0 = s =

C.3 Proof of Lemma 47

Proof. The first statement stems from the fact we may chose, for all t ≥ 0, B t (s, a) = β t , where the β t 's are independent Bernoulli variables of parameter γ.

Let us check that the distribution of X 1 T equals that of X ∞ , that is equals the stationary distribution µ π . Let s ∈ S.

C.4 Proof of the ergodic theorem for the restarted process, Lemma 48

Proof of Lemma 48. Define T 0 = -1 and, for k ≥ 0,

T k+1 = inf t > T k B t X t , A t (X t) = 0 .
Decomposition of the trajectories. For all t ≥ 0,

1 t τ ≤t C Xτ (A τ (X τ)) = 1 t k≤Nt t∧T k+1 τ =T k +1 C Xτ (A τ (X τ)) = N t t 1 N t k≤Nt t∧T k+1 τ =T k +1 C Xτ (A τ (X τ)) .
The T k 's are finite, and tend to infinity. We prove by recursion that, for k ≥ 0, T k is finite with probability one. Write N ∞ the limit, when t tends to infinity, of N t . We know that, for all k ≥ 0,

{N ∞ ≥ k} = T k < ∞ .
Now, let k ≥ 0 be an integer. Then,

P (N ∞ ≥ k + 1) = P T k+1 < ∞ = P T k < ∞, T k+1 -T k < ∞ = P T k+1 -T k < ∞ T k < ∞ P T k < ∞ .
Now, for k ≥ 1 (as µ 0 may differ from μ), thanks to the strong Markov property,

P T k+1 -T k < ∞ T k < ∞ = P T X 1 < ∞ .
As a result, for k ≥ 1,

P (N ∞ ≥ k + 1) = P T X 1 < ∞ P T k < ∞ .
As a result, for all k ≥ 1,

P (N ∞ ≥ k) = P T X 1 < ∞ k-1 P T < ∞ ,
where T = inf t ≥ 0 B t X t , A t (X t) = 0 (remember X 0 ∼ µ 0). However, thanks to Lemma 41, T X 1 is finite with probability one and, with the same arguments, T as well so that, for all k ≥ 0,

P (N ∞ ≥ k) = 1,
and N ∞ is therefore infinite with probability one. With probability one, the T k 's are therefore all finite, and tend to infinity, as k tends to infinity.

The processes in-between the T k 's are i.i.d. Moreover, for all k ≥ 1 (for k = 0, µ 0 may not be μ), the process X T k +1+t 1 1 + t ≤ T k+1 t≥0 is distributed as X 1 t 1 t ≤ T X 1 t≥0 , and is independent of F T k . As a result, thanks to Lemma 42, for all k ≥ 1,

E   T k+1 τ =T k +1 C Xτ (A τ (X τ))   = T k+1 τ =T k +1 1 τ ≤ T k+1 C Xτ (A τ (X τ)) = E   τ ≥0 1 τ + 1 ≤ T k+1 -T k C X T k +1+τ A T k +1+τ X T k +1+τ   = E V π X 1 0 ∼ μ .
Moreover, we know that, with probability one, N ∞ = ∞ so that, with probability one, N t tends to infinity, as t tends to infinity. As a consequence23 ,

1 N t k≤Nt T k+1 τ =T k +1 C Xτ (A τ (X τ)) → E V π X 1 0 ∼ μ ,
as t tends to infinity.

Control of N t . For all t ≥ 0,

N t t = 1 t τ ≤t 1 {B τ (X τ , A τ (X τ)) = 0} → E [1 {B (X ∞ , A (X ∞))} = 0] = E 1 -γ X∞, A(X∞) ,
as t tends to infinity since, thanks to Corollary 37, the process (X t) is ergodic.

Residual term. For all t ≥ 0, let us write

Y t = T N t +1 τ =t C Xτ (A τ (X τ)) .
Since A is finite, the cost function is bounded on it, by some number M . As a result, for all t ≥ 0,

Y t ≤ T N t +1 τ =t C Xτ (A τ (X τ)) ≤ M T Nt+1 -T Nt , so that E [Y t] ≤ M E T Nt+1 -T Nt = M E T X 1 < ∞.
Let then ε > 0. Then,

P (Y t /t ≥ ε) ≤ P M T Nt+1 -T Nt t -1 ≥ ε = P M T X 1 t -1 ≥ ε .
As a result, for all t ≥ 0,

τ ≤t P (Y τ /τ ≥ ε) ≤ τ ≤t P M T X 1 τ -1 ≥ ε ≤ τ ≥0 P M T X 1 τ -1 ≥ ε
which is finite since, thanks to Lemma 41, T X 1 is integrable. Therefore, the series of general term P (Y τ /τ ≥ ε) converges and, thanks to Borell-Cantelli's lemma, with probability one, Y t /t is less than ε for t large enough. As a result, with probability one, Y t /t tends towards 0, as t tends to infinity.

Conclusion.

By ergodicity of the process (X t), we know that

1 t τ ≤t C Xτ (A τ (X τ)) → E [C X∞ (A (X ∞))] ,
as t tends to infinity. Now, for all t ≥ 0,

1 t τ ≤t C Xτ (A τ (X τ)) = N t t 1 N t k≤Nt T k+1 τ =T k +1 C Xτ (A τ (X τ))+ 1 t T N t +1 τ =t C Xτ (A τ (X τ))
. Now, we know the limit of the left-hand side, we know that of N t /t, we know the limit of the first term of the right-hand side, and we know that of the last term of the right-hand side, which is Y t /t. We have thus established the announced result.

 Figure 2: Average potential function, and mean and median errors with respect to the lengths for the shortest-paths, for policies computed by RTRL on a 45 × 45 network problem

 Error w.r.t. the shortest paths lengths, for a 30x30 maze Rtrl mean error Rtrl 9th decile of the errors

Figure 3 :

 3 Figure 3: Average potential function, and mean and median errors with respect to the lengths for the shortest-paths, for policies computed by RTRL on a 20 × 20 network problem

 shortest paths, A.P.

Figure 4 :

 4 Figure 4: Average potential function for policies computed by the stochastic algorithm and RTRL on a 20 × 20 network problem

R

 |S| * = ker (m * -Id) ⊕ Im (m * -Id) . Eventually, still assuming π is strict, we have ker (m * -Id) = R µ π and Im (m * -Id) = ker (µ → µ (e)) = T P (S).

 C s (a) 1 {τ ≤ T ∧ t} ≤ sup s∈S, a∈As C s (a) 1 {τ ≤ T } .

=

 a∈Aetat π s (a) γ s, a E f ξ 0 (s, a, 1) = a∈Aetat π s (a) γ s, a i∈S p s, a (i) f (i) .

 a∈As π s (a) C s (a) .Gathering, we obtainf (s) = a∈As π s (a) C s (a) + a∈As π s (a) γ s, a i∈S p s, a (i) f (i),which concludes the proof.

 a) p i, a (s) .As a result,P X 1 T = s = P (T = 0) P X 1 0 = s + γ i∈S P X 1 T = i a∈A i π i (a) p i, a (s) = (1 -γ) μ (s) + γ i∈S P X 1 T = i a∈A i π i (a) p i, a (s) . Now, µ π , 1 -γ = (1 -γ) µ π , 1 = 1 -γ, which concludes the proof.

). "Variable Resolution Discretization in Optimal Control". In: Machine Learning Journal 49, pp. 291-323. Norris, James (1998). Markov Chains. Cambridge University Press. Ollivier, Yann, Guillaume Charpiat, and Corentin Tallec (2016). "Training recurrent networks online without backtracking". In: preprint. Pearlmutter, B.A. (Sept. 1995). "Gradient calculations for dynamic recurrent neural networks: a survey". In: IEEE Transactions on Neural Networks 6 (5), pp. 1212-1228. doi: 10.1109/72.410363. Steinhardt, Jacob and Percy Liang (July 2015). "Learning Fast-Mixing Models for Structured Prediction". In: Proceedings of the 32nd International Conference on Machine Learning. Ed. by Francis Bach and David Blei. Vol. 37. Proceedings of Machine Learning Research. Lille, France: PMLR, pp. 1063-1072. url: http: //proceedings.mlr.press/v37/steinhardtb15.html. Sutton, Richard S. and Andrew G. Barto (2018). Reinforcement Learning. An Introduction. 2nd ed. MIT Press. Tallec, Corentin and Yann Ollivier (2018). "Unbiased Online Recurrent Optimization". In: International Conference on Learning Representations.

We do so by setting to zero the parameters of the Bernoulli variables, thus introducing no technical distinction in the way we treat target states and non-target states.

In reinforcement learning settings, two definitions for the action space coexist. Either in every state s, every action a ∈ A is possible, or in each state s, available actions are the as ∈ As. Here, we adopt the second convention.

Again, two conventions coexist: working with the costs, the total of which should be minimised, or the rewards, the total of which should be maximised.

The problem remains well-defined in that case, as will appear in the rest of the text.

They are called "random" because, in the probabilistic representation, the agent which follows the policy selects actions at random according to the policy, as Definition 36 makes clear.

Both ρ2 and d depend on π, but we let the dependence implicit so as to avoid burdensome notations.

It may seem surprising that the two stationary equations, which involve a gradient, and a divergence, operators, uniquely define a function (respectively, a measure), on S, as solutions of such equations are usually defined up to constants. The uniqueness of a solution to the gradient equation is due to the fact every transmittance coefficient is strictly less than one, while uniqueness for the divergence equation comes from the fact probability measures all sum to 1, which determines the constant.

In dimension one, the formula readsu v = [u v] -u v , u = j, v = V , u = div (j), -v = E,and the integral over the boundary corresponds to the term [u v].

Since we know µπ has full support thanks to Lemma 15, and that strict policies have full support by definition, the only case when the dissipated mass term µπ, 1 -γ would vanish would be when all transmittance coefficients vanish as well. However, this would have no interest, since it would mean all states are target states, so that there is no network problem to solve.

Actually, the derivatives we compute are the differentials of the average potential function, which are linear forms on T Π, and not gradients. To obtain gradients, one needs to define a metric on the tangent space to Π. In what follows, we always implicitely assume that the euclidean metric has been chosen, and do not try to ponder the choice of a metric. Formally, we may also assume that the policy update operator admits a linear form as argument, rather than a gradient. This way, technicalities considering the choice of the metric are deffered to the choice of Φ.

What is computed may be a linear form on T Π, according to the discussion above.

Actually, we performed the computations and updates in the following order: Vt, πt, Jt and µt, but we believe this does not make any significative change. On the other hand, the presentation of the algorithm is clearer as it stands, and more importantly several equalities below require the order which is presented.

We could also model the target state in the following way: its transmittance coefficient is that of every other state, and its transition function ps final , a final (•) equals μ. However, we would then need to amend the potentials computation formula of Definition 11, so that it is only valid for s = s final .

In other words, δi is the unit basis vector of the space of linear forms on R S at i, or the dual basis vector associated to ei.

µ * is then a column vector.

For all s ∈ S, we have µπ (es) > 0.

If ρ2 = 0, then m = pE 1 and therefore, for all t ≥ 0, mt -pE 1 = 0. In that case, the bound below should be read as 0, but we let it stand as it is so as to simplify notations.

The subscript in the equation below designates the coordinate (s0, a0) of the vector∂ Πs 0 , a ∂π (π) ∈ T Π.

We use the fact t T -t 2 is biggest in t = T /2, between 0 and T .

The term for k = 0 goes to 0, as it is divided by Nt, which tends to infinity, with probability one.

B Proofs for the RTRL algorithm, Section 2 B.1 Differentiability of the potentials and the flows associated to a policy

Proof of Lemma 23. We first prove the differentiability of the potentials associated to a policy, then turn to the flow.

Differentiability of the potentials. The map π → V π is a real function defined on a differentiable manifold.

Recall that E π was introduced in Notations 12. Thanks to Lemma 13 we know that, for every policy π, ∇ π is invertible, and that we have

Now, π → ∇ π is smooth on the set of strict policies (as ∇ π is an operator between two finite-dimensional spaces, which depends linearly on π), so that π → ∇ -1 π is smooth as well, and π → E π is also smooth on this set. As a result, π → V π is smooth on the set of strict policies.

Differentiability of the flows. Thanks to Lemma 57 we know that, for every strict policy, µ π is positive or, in other words, µ π belongs to the interior of P (S). As a result, the map π → µ π maps a differentiable manifold to a differentiable manifold.

Extending slightly notations in Lemma 57 let us write, for every strict policy π, m * (π) the endomorphism associated to π as in Definition 56, and p E * 1 (π) the projection on the eigenspace of m * (π) associated to the eigenvalue 1. We now show this projection depends smoothly on π.

Let us fix a strict policy π. We proceed as in [START_REF] Kato | Perturbation Theory for Linear Operators[END_REF], II. §1.4), but for the fact π now stands in an affine manifold, while the x parameter in the reference is complex. Let us write C a circle in the complex plane so that 1 is the only eigenvalue of m * (π) in the closed disk D it encloses. We know we may find one such C because, thanks to Lemma 57, we know every other eigenvalue of m * (π) has modulus strictly less than 1. Since the roots of a polynomial depend continuously on the polynomial, we may find a neighbourhood of the characteristic polynomial of m * (π) such that, in that neighbourhood, every polynomial has one, and only one, root in D. Since m * (π) depends continuously on π, we may find a neighbourhood N π of π, included in the set of strict policies, such that, for every policy π ∈ N π , the endomorphism m * (π) has one, and only one, eigenvalue in D, which is necessarily 1, thanks to Lemma 57. Let us then write, for every ζ ∈ C, and

the resolvant of m * (π). As in [START_REF] Kato | Perturbation Theory for Linear Operators[END_REF], at the expense of reducing N π , we may assume that, for every policy π ∈ N π , this resolvant is well-defined on C. Now, as in [START_REF] Kato | Perturbation Theory for Linear Operators[END_REF], we know that, for every π ∈ N π ,

where the "π" in the coefficient before the integral is the number π ≈ 3.14. This is the only occurence in this text where the symbol does not stand for a policy. On the other hand, we know that the right-hand side of Equation (9) is a smooth function

C Proofs for the probabilistic representation C.1 Proofs for the Feynman-Kac representation, Section 3.2

We prove Lemma 42 in two parts: Lemma 64 establishes the Feynman-Kac formula, while Lemma 65 proves convergence to stationarity.

Lemma 64 (Lemma 42, solution at time t). For all t ≥ 0, for all s ∈ S,

(10) where the sum in the right-hand side must be interpreted as

Proof. As Equation (2) is linear in u, its general solution is the sum of a solution to the homogeneous equation, and a particular solution. Let us first compute a particular solution.

Particular solution. For t ≥ 0 and s ∈ S, define

Let t ≥ 0. Then,

The first term equals a∈As π s (a) C s (a) . Now, the second term equals

X 1 0 = s since, for every τ ≥ 0, 1 {τ + 1 ≤ 0} = 0. As a result, as in the proof of Lemma 43 which is done in Section C.2 below, on {T > 0}, we may write 21

T X 1 = 1 + T X 1 1+• .

21 Technically, in Definition 39, the families of random variables B t t≥0 and A t t≥0 are used, while for T X 1 1+• we should use the families B t+1 t≥0 and A t+1 t≥0 , but this does not change anything for the properties of the random time.