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Based on the operator formalism that arises from the underlying SU(2) group structure, a for-
mula is derived that provides a description of the generalized Hermite-Laguerre Gauss modes in
terms of a Jones vector, traditionally used to describe polarization. This identity highlights the
relation between these generalized Gaussian beams, the elliptical ray families, and the Majorana
constellations used to represent structured-Gaussian beams. Moreover, it provides a computational
advantage over the standard formula in terms of Wigner d functions.

Hermite-Gauss (HG) and Laguerre-Gauss (LG) modes
are among the best-known solutions for free propagating
paraxial fields [1]. They correspond to separable Gaus-
sian solutions in Cartesian and polar coordinates, respec-
tively, and constitute complete bases. These beams arise
naturally as eigenmodes for optical cavities and gradient-
index waveguides [1], and have been used extensively to
study particle trapping, paraxial propagation, and data
transmission [2-4]. Particularly, LG modes have been a
workhorse for investigations of fields possessing orbital
angular momentum and their applications [3, 5].

HG and LG beams are said to be self-similar because
as they propagate their intensity profile is preserved up to
a scaling factor. Moreover, any superposition of HG and
LG modes that accumulate the same Gouy phase upon
propagation produces also a self-similar beam [6, 7]. The
amount of Gouy phase gained by HG and LG modes de-
pends linearly on their total order N which is determined
from the usual Cartesian indices of HG modes or the ra-
dial and azimuthal indices of LG modes. Therefore, the
subset of LG (or HG) modes with the same total order N
can be used as an orthogonal basis for expressing more
general self-similar structured-Gaussian (SG) beams of
order N [6, 7].

One particularly interesting subfamily of SG beams is
that of the generalized Hermite-Laguerre-Gauss (HLG)
modes [8-10] which interpolate between HG and LG
modes. HLG modes can be obtained experimentally
from HG or LG modes via astigmatic transformations
implemented with cylindrical lenses [8, 11]. These modes
can be represented as points on the surface of a modal
Poincaré sphere (MPS), indicating a mathematical anal-
ogy between the modal structure of these scalar beams
and paraxial polarization [12-15], as shown in Fig. 1.

The aim of this letter is to further strengthen the math-
ematical analogy between HLG modes and paraxial po-
larization by showing that the former is also intrinsically
linked to a complex 2D “Jones” vector. This endeavor
is warranted by the fact that it was through the math-
ematical analogy between the polarization Jones vectors
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FIG. 1. (Left) Poincaré sphere representing the polarization
state of a paraxial field. (Right) Modal Poincaré sphere for
the lower order (N = 1) HLG modes.

and the first-order SG modes that the Poincaré sphere
(PS) was first adapted to represent the modal structure
of paraxial beams [12, 13]. Several PS representations
for higher-order beams have been proposed [6, 7, 14—
17] that highlight the mathematical similarity between
modal structure and polarization. However, this con-
nection is not reflected by the standard formula of HLG
modes in terms of Wigner d functions [see Eq. (3)]. We
show in what follows, based on the ray and operator for-
malisms, that a more intuitive and compact expression
exists for HLG scalar beams which clearly highlights the
analogy with polarization through the use of Jones vec-
tors.

The first connection between HLG modes and po-
larization was made in [12] within the context of the
Pancharatnam-Berry phase arising from a cyclic transfor-
mation [18-20]. Yet, it took some years for the geometric
PS construction, where the presence of a geometric phase
becomes evident, to be adapted for the description of the
first-order (V = 1) HLG modes [13]. Figure 1 shows the
PS for polarization as determined by the Jones vector,
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FIG. 2. Modal Poincaré sphere for (left) N = 4, £ = 4 and
(right) £ = 2. Also shown are the intensity distributions with
the phase coded in hue for several HLG beams with their
corresponding modal spot.

where, in the context of polarization, e+ = (x +iy)/2'/?
represent circularly polarized light. Throughout this
work, 0 < # < m and 0 < ¢ < 27 denote the polar
and azimuthal angles, respectively, for all the PS treated.
For shorthand, the unit vector u = (uj,u2,u3) =
(cos ¢ sin @, sin ¢psin B, cos f) is used to denote points on
the surface of a sphere. Note that the normalized 2D
complex Jones vector v and the real 3D unit vector u
both encode points on the surface of the MPS through
their dependence on the angles 6 and ¢. The first-order
HLG modes can be described by a similar expression,

0 .
GGy 1(u;r) = cos <2) e"%LGm(r)
(0N e
+ sin (2> e2LGy 1(r), (2)

where the LG beams play the role of circular polariza-
tion thus leading to the modal PS (MPS) shown in Fig. 1.
(The index notation for LG beams is explained below.) In
these two cases any point on the PS can be expressed as
a simple linear combination of the two states represented
by the poles. The particular choice of (polarization and
modal) states used in Egs. (1) and (2) is, to some ex-
tent, arbitrary. Any pair of antipodal points could have
been used in their stead since it is the special orthogonal-
ity relation between them that is key and not the states
themselves. As we will see this observation remains valid
for higher-order modes and permeates into our main re-
sult [see Eq. (16]. For this reason, we introduce a special
notation for the antipodal point —u through the Jones
vector v(0,¢) = v(r — 6, —09).

The geometric representation provided by the PS can
be extended to higher-orders modes [14, 15], where the
two poles correspond to LG modes of opposite vorticity,
the equator corresponds to rotated HG modes and all
other points correspond to HLG modes connected via
astigmatic transformations. This construction is sup-
ported by the formula giving the HLG modes in terms of

LG modes [7, 17, 21-23],

GGy e(u;r) = (LGN (r),  (3)

where dfn,’m(ﬂ) is the Wigner d function and the trans-
verse field profile for the LG mode at its waist plane is
given by
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An extra phase factor was introduced in the definition of
the LG beams to guarantee that they satisfy the Condon-
Shortley convention [7, 17, 24, 25]. Note that here we
label these modes by the total order /N and the azimuthal
index ¢, with ¢ ranging from —N to N in steps of two.
These are related to the usual radial p and azimuthal ¢
indices used to denote LG beams via N = 2p+|¢|. They
can also be related to the Cartesian indices m and n
along x and vy, respectively, used for HG beams through
N=m+nand {=m —n.

That is, for given N, ¢, HLG modes are still uniquely
determined by the coordinates 8 and ¢ over the MPS. In
particular, HG modes are given by

LGNA[(I‘) =

(m/2)LGy ¢ (1), (5)

which include Condon-Shortley phases. Thus, HLG
modes interpolate between HG and LG modes with
the same N and ¢ through astigmatic transformations
[11, 22], and a different MPS is needed for each pair of
indices N and ¢, as shown in Fig. 2 for N = 4 with { =4
and ¢ = 2. The point u that represents a mode is hence-
forth referred to as the modal spot (MS). This geometric
representation, however, is limited to the description of
HLG modes. Note also that for N > 1 the HLG modes
do not correspond to a simple linear combination of the
two modes represented by the poles, but to a linear com-
bination of all HG (or LG) modes with the same total
order N.

Another analogy with polarization arises in the context
of semiclassical estimates for SG beams [6, 17, 25]. Be-
cause they are self-similar, the two-parameter family of
rays used to describe SG beams is given by an ensemble
of ruled hyperboloids whose cross section at any plane
of constant z is an ellipse. At the waist plane, it turns
out that a convenient parametrization of the transverse
position Q = (Q,, Q) and direction P = (P,, P,) of the



FIG. 3. (From left to right) Intensity distribution, elliptic-ray
families, and Poincaré path (PP) for the HLG beam of order
N =6 and £ = 4 with § = 7/6 and ¢ = 7/2. The color of the
ellipses of rays corresponds to that of the PP.

rays within each hyperboloid is through a Jones vector
via

q+ip = VN + 1v(h, ¢)e 7, (6)

where Q = wq and P = 2p/kw. As 7 varies, both
Q and P trace an ellipse which, in analogy with po-
larization, can be represented by a point on a ray PS
(RPS) [6, 20, 25]. The ensemble of elliptic ray families
(i. e. ruled hyperboloids) describing a SG beam corre-
sponds to a Poincaré path (PP) on the RPS. For HLG
beams the PP corresponds to a circle centered at the MS
and whose radius depends on ¢ (with higher |¢| corre-
sponding to smaller radii). Figure 3 shows the PP, the
rays and the corresponding intensity profile at the waist
for a HLG mode. This construction enables the repre-
sentation of more general SG beams. Moreover, it allows
SG beams with the same total N to coexist in the same
PS, thus solving the limitations of the MPS.

Dressing the rays with appropriate Gaussian contribu-
tions leads to a semiclassical estimate that is exact for
HLG modes [6, 25]. After integrating in 7, this estimate
takes the form of a continuous superposition of extremal
(¢ = N) HLG beams which can be identified as the co-
herent states in the reduced space of SG beams with total
order N [7]. In [6] these were expressed as a complex-
valued HG beam of the form

GGy (vir) =(v- V)V 2Un (vir)Uo(¥ir),  (7)

where

1 2 2v-
Uj(vir) = | —=—1 ¢ =7 Hj V2vr , (8)
wy/m 2772 4! WV -V

Notice that we used the identity v - v = sinf. The ex-
pression in Eq. (7) was later formally proven to be the
extremal (¢ = N) HLG beam [25]. This complex-valued
HG expression was independently derived in [26] and re-
ferred to as a vortex HG beam, but the connection to
the Jones vector was not made. The expression given by
Egs. (7) and (8) is much simpler since it is composed of
a single term, whereas the standard one given in Eq. (3)
has N + 1 terms. More importantly, Eq. (7) provides a

connection to the ray description through the Jones vec-
tor which is made explicit in the arguments of the HLG
by using v to denote the location of the corresponding
HLG beam on the surface of the MPS, instead of u. The
goal of this work is to find similar expressions for all other
HLG modes.

HG and LG beams can also be described through
an operator formalism analogous to that of the two-
dimensional isotropic oscillator [7, 14, 15, 17, 21, 25, 27,
28]. It was actually for this system that the coherent
states in Egs. (7) and (8) were first derived [29]. Using
Schwinger’s oscillator model [24], HG and LG modes can
be described as eigenfunctions of the operators [7, 17, 28]

L1, . w8 &

T1—ﬁ($ _y)_8<8m2_8g/2 ) (9a)
~ 1 w? 02
= wr T 4 dxdy’ (9b)
~ i 0 0
T3 = 75 <x6y — ax) y (9C)

which satisfy the commutation relation for quantum an-
gular momentum,

[T27Tj} =0, [,TivTj} = IZ fijka, (10)
k
with €;5, being the Levi-Civita tensor.

The standard convention is to take fg and its eigen-
functions (the LG modes) as a reference, but this choice
is arbitrary. The most general situation is to consider
rotated versions of the operators 7:

Ti(u) = cos 0 cos ¢T} + cosOsin ¢Th — sin 0T, (11a)
Ty(u) = — sin ¢Ty + cos ¢T, (11b)
fg,(u) = sin 6 cos ¢T} + sin Osin ¢Ty + cos 05,  (11c)

These operators satisfy the same commutation relation
as their unrotated versions. Moreover, the eigenvalue
equation

~ 1
T3(u)GGy (u;r) = 3 GGn e(u;r) (12)

is satisfied [17]. If the HLG beam satisfying Eq. (12)
is taken as a reference then annihilation and creation
operators can be defined as

Ty (u) =T (u) £ iTs(u), (13)
which satisfy
Ty (W) GGy g(u;r)

_ %\/(N FON E012) GGy aa(uw;r), (14)

where the Condon-Shortley convention was assumed.



Starting from the extremal HLG mode, GGy, y, one
can then find all other modes by successive application of
the appropriate annihilation operator. Particularly, us-
ing the expressions given in Egs. (7) and (8), and several
mathematical identities involving the Hermite polynomi-
als, it can be shown that

T_(u)Uy, (vir) U, (V1)
= —iv/m(n+ D)Uy—1 (v;r) Upyr (V1)
—cotOv/m(m — V)Up—2 (v;r) Uy, (V51),  (15)

from which it follows that

=, [ NxeN N ,
GGyy(viT) =) (—i)7z 1 ( 2 ) ( 2 ) cos’ 0
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x sin> ~J 6UN2+2 ;(vir) Un—e_; (v;r)

(16)

This equation is the main result of this work. It is worth
pointing out that Eq. (16) can be anticipated from the
work in [30] which relates two-dimensional extensions of
Hermite and Laguerre polynomials. The first thing to no-
tice is that this expression has only (N —¢)/2+ 1 terms,
which is considerably fewer than the N + 1 terms used
in the standard expression in Eq. (3). The maximum
number of terms required in Eq. (16) is | N/2 + 1], since
for / < 0 the same expression can be evaluated at the
antipodal point, —u. Thus, this formula provides a com-
putational advantage. More importantly, the reason for
this compactness is that the expression is written in terms
of the Jones vectors of the modal spot and its antipode.
Furthermore, it can be shown through the use of recur-
rence relations for Hermite polynomials that the function
U, in Eq. (8) satisfies

Vi+1lUjp(vir) = %Uj(v; r)— \/jUj_l(v;r(),
17)

from which the recursion formulas given in [8, 11, 31] can
be rewritten in terms of Jones vectors as

2v-r GGy (v;1) =N +0+2 GGN41,e41(V5T)
+sinfv N + ¢ GGN_l)g_l(V; I')

+ cos 0m GGN_1,£+1 (V§ r)a
(18a)

—i2v-r GGN75(V; I‘) =vN —/{+2 GGN+1,1{_1(V; I‘)
+cosVN + £ GGy_1,-1(Vv;T)

— sin@v N —/¢ GGN_17K+1<V; I').
(18b)

It is worth pointing out that the right-hand side of these
equations is written purely in terms of v.

FIG. 4.

(First row) Intensity distribution with the phase
coded in hue, and (second row) Majorana constellation, with
the size indicating the number of stars, and the PP and (third
row) the @ function for the HLG beams of order N = 5 along
0 =m/4 and ¢ = 7/2 with (from left to right) £ = 5,3, 1.

Another interesting feature emerges form the expres-
sion in Eq. (16): as ¢ decreases, the order of the polyno-
mial contributions at the modal spot u decreases while
those at the antipodal point increase. This behavior is
reminiscent of that of the corresponding Majorana con-
stellations for HLG beams [7, 32-35]. As was shown in
[7] the proper way to extend the MPS to higher-order
modes is through the Majorana representation, originally
proposed for spin systems, where a general SG beam is
represented by N points (or stars) on the surface of the
modal Majorana sphere. For the particular case of the
HLG modes, the Majorana constellation is composed of
(N —£)/2 stars at the modal spot and (N + ¢)/2 at the
antipodal point (note that there are more stars at the
antipodal point than at the modal spot). This is shown
in Fig. 4 for several HLG modes. With each application
of the annihilation operator ¢ decreases by two (remem-
ber that ¢ changes in steps of two) and a star moves from
the antipodal point to the modal spot. This behavior is
reflected in Eq. (16) where the maximum order of the
polynomials exactly corresponds to the number of stars
in the constellation.

The Majorana representation is related to the RPS
through the Q (or Husimi) function [6, 7, 36]. Each rep-
resentation uses different features of the Q function to
describe a SG beam: the stars correspond to its zeros and
the PP corresponds approximately to the ridge outlined
by the regions of maximum intensity. This can be seen
for the particular case of the HLG beams in Fig. 4 where



the Q function is shown along with the corresponding MC
and PP. Note that, even though both of these represen-
tations are significantly more general than the standard
MPS, the Majorana representation is the most general
since it can be used to describe any SG beam without
requiring a well-defined PP (see for example the beams
introduced in [7]).

To summarize, the expression for the HLG beams
in Eq. (7) clearly highlights the mathematical analogy
between these modes and polarization through the use of
Jones vectors. This form also provides direct connections
with more general geometrical representations of SG
beams over a Poincaré sphere: the ray-based PP and the
Majorana constellation, which provide complementary
pictures by describing different features of the Q function
(its maxima and zeros, respectively). The expression
derived for HLG modes is not only more connected
to intuition but also more compact, thus providing a
computational advantage by reducing the terms to less
than half of those used in the standard formula in terms
of the Wigner d function. The results presented here
reveal further structure of the MPS for structured light
by finding connections through the underlying SU(2)
structure.
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