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Garamon: a Geometric Algebra Library Gen-
erator

Stéphane Breuils, Vincent Nozick and Laurent Fuchs

Abstract. This paper presents both a recursive scheme to perform Geo-
metric Algebra operations over a prefix tree, and Garamon, a C++ library
generator implementing these recursive operations. While for low di-
mension vector spaces, precomputing all the Geometric Algebra prod-
ucts is an efficient strategy, it fails for higher dimensions where the oper-
ation should be computed at run time. This paper describes how a prefix
tree can be a support for a recursive formulation of Geometric Algebra
operations. This recursive approach presents a much better complexity
than the usual run time methods. This paper also details how a prefix tree
can represent efficiently the dual of a multivector. These results constitute
the foundations for Garamon, a C++ library generator synthesizing effi-
cient C++ / Python libraries implementing Geometric Algebra in both
low and higher dimensions, with any arbitrary metric. Garamon takes
advantage of the prefix tree formulation to implement Geometric Alge-
bra operations on high dimensions hardly accessible with state-of-the-art
software implementations. Garamon is designed to produce easy to in-
stall, easy to use, effective and numerically stable libraries. The design of
the libraries is based on a data structure using precomputed functions for
low dimensions and a smooth transition to the new recursive products
for higher dimensions.

Mathematics Subject Classification (2010). Primary 99Z99; Secondary
00A00.

Keywords. Geometric Algebra, Clifford Algebra, Prefix tree.

1. Introduction

Geometric Algebra is a powerful tool to create and manipulate geometric
objects. Its theory is more and more investigated in various research fields
like physics, mathematics or computer sciences. Since Geometric Algebra
presents a strong potential for applied sciences, a significant effort on how it
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can be implemented on a computer has also been conducted. These imple-
mentations can take the form of libraries, library generators, code genera-
tors, packages included into larger systems or specialized programs, each of
them dedicated for a specific use. Information about those different systems
can be found in some books [9, 22, 18] or in papers dealing with Geometric
Algebra implementations [12, 1, 4, 16].

This paper presents Garamon (Geometric Algebra Recursive and Adaptive
Monster), a library generator written in C++ programming language and
producing specialized Geometric Algebra (GA) libraries also in C++, with
a binding in Python. It can be compared to generators producing C++ pro-
gramming code like Gaigen [14], Gaalop [6], GMac [13, 12] and libraries
written in C++ programming language like Gaalet [23], Versor [7] and Glu-
Cat [19].

These software implementations differ mainly in the way they represent
multivectors and in their optimizing level of the algebra operations. Com-
pared to the linear algebra framework, the fundamental entities of Geomet-
ric Algebra, the multivectors, are of a higher dimension and thus require
larger data structures. Actually, even if multivectors could be very large (2d

coordinates if the base vector space of the algebra is of dimension d) they
are in practice often very sparse. So, to be efficient, a Geometric Algebra
implementation may aim at both representing a geometric object with as
little information as possible and designing the algebra operators from al-
gorithms that use efficiently this information. In that perspective, different
strategies have been conducted. Gaigen [14] generates optimized libraries
defined from an algebra specification. Gaalop [6] and Gmac [13, 12] produce
optimized code fragments from a description of an algorithm in a domain
specific language. Then, the generated code can be integrated into the target
program. Gaalet [23] and Versor [7] are using C++ metaprogramming tech-
niques like expression templates to define types representing expressions to
be computed at compile time. Thus, expressions are computed only when
needed to produce an efficient code. GluCat is following another way using
real matrix representation for Clifford algebra [20] and a dedicated version
of fast Fourier transform to improve Clifford product. GluCat was bench-
marked and found its performance to be similar to CLU [15].

All these approaches present some very interesting properties, however some
improvements can be achieved to make them easier to use, to have bet-
ter memory requirements or to range over wider dimension spaces. These
points are the initial motivation to create Garamon.
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2. Garamon overview and motivations
We propose a new library called Garamon. It is a C++ template library gen-
erator dedicated to Geometric Algebra. The generated Geometric Algebra
libraries are designed to be user friendly and efficient both in term of com-
putation speed as well as memory consumption. The full project is available
online∗.

The generated libraries are built from a short configuration file describing
the targeted algebra. This configuration file specifies the algebra signature,
the name of the basis vectors and some optimization options. This file is
restricted to the minimum information such it can be filled very easily.

2.1. Efficient
The generated GA libraries handles both “low dimensional” (base vector
space of dimension roughly up to 10) and “high dimensional”, with a hard-
coded limit to dimension 31. The “low dimensional” operations are pre-
computed, whereas the “high dimensional” computations run on a new re-
cursive scheme based on a prefix tree multivector representation. This pre-
fix tree representation presents some very efficient runtime optimizations in
term of time complexity, as well as the property to encode easily the dual of
the considered multivector. The transition from “low dimensional” to “high
dimensional” is smooth, such that “high dimensional” GA libraries may still
include some pre-computed instructions for some products. Note there exist
some applications for such high dimensional spaces. First, [5] is an example
of such high dimensional framework. One can also imagine an extension
of [5] to deal with cubic surfaces and quartic surfaces.

2.2. User friendly
The generated libraries are dedicated to being very easy to install and to use.
They are multi-platform, run and compile with only one dependency, i.e. the
header only library eigen [17] for hidden vector and matrix manipulations.
Any generated library contains its own dedicated installation file (cmake),
as well as a dedicated sample code. The generated libraries handle any ar-
bitrary Geometric Algebra signature, such that the user do not have to care
about basis change. The embedded basis change takes a special care about
numerical stability. Moreover, since all the generated libraries are identified
by a namespace, multiple Geometric Algebra libraries can be used together.

3. Notations
Following the state-of-the-art usages of [9] and [22], upper-case bold let-
ters denote blades (blade A) whose grade is higher than 1. Multivectors
and k-vectors are denoted with upper-case non-bold letters (multivector A).

∗git clone https://git.renater.fr/anonscm/git/garamon/garamon.git
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Lower-case bold letters refer to vectors and lower-case non-bold to multi-
vector coordinates. Lower-case and Frakture letters denote multivector ex-
pressed over a tree structure. For example, a represents a multivector over
a tree structure, this notion is presented in the Section 8.1. The k-grade part
of a multivector A is denoted by 〈A〉k. Finally, the vector space dimension is
denoted by 2d, where d is the number of basis blades ei of grade 1.

4. Structure of the paper
This paper is organized as follows. Section 5 introduces the data structure
used in Garamon to store the multivector components. Section 6 details how
GA operations can be pre-computed in advance for low dimension vector
spaces and why this approach does not hold for higher dimensions. In these
high dimensions, GA products should be computed at run time, and using
trees as a support of GA computation leads to better performance. Section 7
introduces how a prefix tree can be designed to represent GA multivectors
and their dual. Section 8 introduces tree traversal methods to access effi-
ciently to the different components of a multivector. Then, Section 9 defines
a mapping between the prefix tree approach and the binary tree method de-
fined in [3]. This mapping is used in Section 10 to prove the correctness of
recursive formulas of basic vector space operations over a prefix tree, and
in Section 11 to define and prove the correctness of recursive formulation of
GA products over prefix trees. Section 12 extends these recursive products
to dual operations. Section 13 presents a new numerical scheme to enhance
the numerical stability of metric dependent products with non-orthogonal
metrics. Section 14 presents the technical characteristics of Garamon and
Section 15 details our experimental results.

5. Multivector Data Structure
5.1. Multivectors and arrays
For a d dimensional vector space, the potential amount of information that
could be stored to represent fundamental elements of linear algebra (vec-
tors and matrices) drastically differs from the information represented in GA
(multivectors). For linear algebra, it is of order O(d2) whereas it is of order
O(2d) for GA, often with very sparse data. This difference usually influences
their respective implementation. Hence, linear algebra implementations are
frequently expressing and storing all the data composing a vector or a ma-
trix (except if they are known to be sparse) whereas GA implementations are
mostly trying to only store non-zero elements. One way to implement this
constraint is to use a linked list of non-zero elements as in many Geometric
Algebra implementations [14, 6, 23, 7].

In this paper, we follow a different approach by storing multivector ele-
ments by grade. This concept is motivated by the observation that for many
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GA, geometric objects are blades, i.e. multivectors of a single grade. As an
example, Figure 1 shows that for Conformal Geometric Algebra (CGA), all
geometric objects are blades and only versors may be non-blades multivec-
tors.

A = •• • • • •• • • • • • • • ••• • • • • • • • ••• • • • ••
grade 0 1 2 3 4 5

vector: ◦ • • • ◦ point: • • • • •
plane: • • • • ◦ sphere: • • • • •

line: • • • • • • ◦ ◦ ◦◦ circle: • • • • • • • • ••
flat point: ◦ ◦ ◦ • ◦ ◦ ◦ • •• point pair: • • • • • • • • ••

translator: •◦ ◦ ◦ ◦ ◦ ◦ ◦ • ••
rotor: •◦ ◦ ◦ ◦ • • • ◦ ◦◦

scalor: •◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦◦
reflector: • • • • ◦

FIGURE 1. This represents how objects of Conformal Geo-
metric Algebra of R3 tend to be restricted to a single grade.

More specifically, we consider a multivector as a set of arrays, all dedicated
to a specific grade. This set contains only arrays related to grades explicitly
expressed by the represented multivector, but still, an array may contain
some zero values, as depicted in Figure 2. This choice is motivated by the

0 3 0 0

0 0 2 0 0 0

1

e1 e2 e3 e4

e12 e13 e14 e23 e24 e34

e123 e124 e134 e234

e1234

FIGURE 2. Data structure, example with x = 3e2 + 2e14.

fact that most Geometric Algebra entities consist in homogeneous multi-
vectors, i.e. multivectors with elements all having the same grade. In this
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situation, the array dedicated to the specific grade of an arbitrary object is
likely to be full and thus much more effective than a linked list.

In practice, storing this Geometric Algebra elements as per grade arrays
is also motivated by some code optimization using SIMD registers to per-
form up to eight operations simultaneously on the data. These optimizations
are straightforward for vector addition, multiplication with a constant, etc.
In that case, even storing some zero often does not affect the computation
speed.

Within this framework, a full multivector of dimension 24 (with 224 ele-
ments) with coefficients stored with float32 weights ∼100 MB, and dimen-
sion 32 leads to a ∼3 GB full multivector.

Thus, dimension 24 looks like an upper bound for this framework in term
of memory usage. Therefore, a uint32 binary representation of each basis
vector defining a basis blade is still acceptable and leads to a hardcoded
upper bound of dimension 31. In this binary representation , a 1-bit at a
position i indicates the presence of the basis vector ei in the basis blade.
For example, in a 4-dimensional vector space, the basis blade B = e1 ∧ e3 ∧
e4 will be represented by the binary number 1101. Note that this way of
indexing basis blades is widely used in GA community, see [22, 15, 12].

5.2. More about zeros
As mentioned in section 5.1, GA implementations aim to avoid to store zero
data. In practice, GA implementations of products also tend to avoid ma-
nipulation of zeros. To be more precise and clearly define the kind of op-
timisation targeted in this paper, we define four types of zeros that can be
encountered in GA operations. Let us consider the following example:

C = A ∧ B

with
A = 0 0 3 2 0 0 0 0

1 e1 e2 e3 e12 e13 e23 e123

B = 0 0 0 0 4 2 1 0
1 e1 e2 e3 e12 e13 e23 e123

C = 0 0 0 0 0 0 0 2
1 e1 e2 e3 e12 e13 e23 e123

The naive double loop over the elements of A and B used to compute the
outer product would encounter different types of zeros. Considering that
GA objects usually have limited different grade elements, these zeroes can
be listed as:

1. structural zero: when an operation leads to zero due to the nature of
the product (i.e. 3e2︸︷︷︸

A

∧ 4e12︸︷︷︸
B

).
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2. object zero: when A and B are homogeneous GA objects, computing
products with elements of grade not related to the object is useless (i.e.
3e2︸︷︷︸

A

∧ 0e1︸︷︷︸
B

).

3. data zero: when not all the components of grade k are used to express
a GA object of grade k (i.e. 0e1︸︷︷︸

A

∧ 1e23︸︷︷︸
B

).

4. computational zero: when an element should theoretically be zero but
is numerically non-zero due to numerical errors.

A data storage based on a list will naturally avoid “object zeros” and “data
zeros” when a per grade array storage may compute useless “data zeros”.
In any cases, “computational zeros” are very difficult to avoid. Indeed, a
program will hardly identify if a value x = 10−9 is an expectable value in
the considered problem or a numerical error (like in x= 0.1f− 0.1L' 10−9

in C/C++ language).

In the list above, the most interesting useless product is the “structural ze-
ros” that seems unavoidable. This point is discussed latter on Section 8 and
shows how some recursive expressions of the outer products over a prefix
tree can intrinsically avoid these useless operations.

6. Products in low dimensional vector spaces
6.1. Per grade products
Considering the per grade data structure defined in section 5.1, a very effi-
cient way to process any product is to pre-compute it. Since the outer, inner
and geometric products are distributive over the addition, each “per grade
product” can be extracted and computed independently. Let 〈X〉k be the
part of the multivector X of grade k, and DX = {〈X〉i 6= 0}i∈[0,d] be the set
of all k-vector 〈X〉k of any grade present in X, where d is the dimension of
the vector space. Then, most of the products � between the multivectors A
and B can be computed by the double loop algorithm as presented in Algo-
rithm 1 (geometric product is a special case). In practice, these two loops are
likely to contain only one call, in the case where A and B are homogeneous
multivectors.

In low dimensional spaces, each product product_ka_kb, i.e. a function im-
plementing the considered product between a ka-vector and a kb-vector, can
be pre-computed, according to the specified GA signature. In this situation,
the production of a GA library mostly consists in automatically generating
such pre-computed functions. The main specificity of Garamon here is the
memory management and some operations, like multivector addition, or
multiplication by a scalar, that are performed using parallel computing with
SIMD instructions.
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Algorithm 1: Per grade loop
input : multivectors A and and B,

a product � distributive over the addition
1 w output: multivector: C = A� B
2 foreach k-vector 〈A〉ka ∈ DA do
3 foreach k-vector 〈B〉kb

∈ DB do
4 kc = find_grade(�,ka,kb)
5 〈C〉kc = product_ka_kb(�, A, B)

6 return C

6.2. Dual computation
For any full-rank GA signature, the dual multivector computation can be
optimized in advance. By definition, the dual of a multivector is given by:

A∗ = A · I−1 =
A·̃I
I · Ĩ

(6.1)

This expression requires the computation of two inner products, a reverse
and a scalar division, that can be pre-computed. Due to the symmetry prop-
erty of the Pascal’s triangle, a k-vector A and its dual A∗ both have the same
number of elements. In the array based data structure of section 5.1, comput-
ing the dual of a k-vector thus just consists in changing the “grade label” of
the corresponding array from k to d− k (for a vector space of dimension d),
permuting some array elements and eventually multiplying them by some
constant according to the metric of the algebra. Extending this method to a
multivector means to apply it to all non-null blades of the multivector. Con-
cerning the implementation, the dual is merely computed by pre-computing
both an array that stores the required permutation for each array and a vec-
tor that stores the coefficients to apply to each resulting array. Some of these
operations are well suited to SIMD optimization.

6.3. Precomputation, the limits
Every library implementing GA operators and data faces the exponential
growth of the subspace dimensions of the graded algebra structure. In prac-
tice, this constraint means that the number of pre-computed operations and
the number of instructions they contain will grow exponentially with re-
spect to the underlying vector space dimension.

For this reason, the upper bound limit for Gaigen [14] is set to dimension 12.
Higher dimensions would produce a source code with unreasonable size.
For Versor [7], this limit varies according to the required operations and
may range from dimension 6 using massive computations to dimension 10
for very simple operations. The limitation here is related to the required
RAM memory during compilation and compilation time. Finally, the upper
bound dimension for the table based plugin of Gaalop [6] is dimension 10.
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This limitation is due to the use of tables to compute GA products. Figure 1
clearly highlights the exponential behaviour of the memory consumption.
The required memory in dimension 10 is around 710 MB, higher dimension
would result in a program that exceeds the 1GB limit of the JVM (Java Vir-
tual Machine) required to execute the program.

TABLE 1. Memory consumption of Gaalop, including tables.

Dimension 5 6 7 8 9 10 11
Memory occupation (MB) 1.1 3.7 13 40 142 710 -

Table 2 summarises the vector space upper bound limit for some well-known
libraries. It should be noticed that using a GA library with dimension near
to the limit can be troublesome, and the “comfortable use” limit is slightly
below.

TABLE 2. Usual dimension upper limit.

max dimension reason
Gaigen [14] ∼ 12 code size
Versor [7] ∼ 7 compilation memory and time

7. Geometric Algebra and prefix tree
As presented in section 6.3 as well as in [4], GA products pre-computation
is a good strategy for low dimensional spaces, however this approach fails
for higher dimensional spaces, due to memory overload or to complexity
issue. Indeed, in such situation, GA products should be computed at run
time and may suffer from non-optimized algorithmic structure. Breuils et
al. [3] detailed how a binary tree can represent efficiently multivector com-
ponents and leads to an effective recursive formulation of the products used
in GA for high dimensions. In the following sections, we introduce a vari-
ation of this formulation, using a prefix tree that presents some interesting
properties leading to very efficient optimization in recursive GA products.
Moreover, this prefix tree formulation also includes a natural dual multivec-
tor representation well suited to an efficient dual computation algorithm,
particularly useful for high dimensions.

7.1. Multivectors and prefix trees
This section presents the prefix tree structure of the basis blades of a Geo-
metric Algebra. Each basis blade is associated to a node of a prefix tree and
the nodes of depth k in the prefix tree correspond to the basis blades of grade
k. Thus, the scalar basis blade, denoted by 1, is associated to the root node,
the vector basis blades are associated to the children of the root node, the
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bivector basis blades are associated to the children of those nodes, and so
on, as illustrated on Figure 3. By construction of the prefix tree, the index
of a basis blade associated to a node is prefixed by the indexes of the basis
blades associated with the parent nodes.

1

e1 e2 e3

e12 e13 e23

e123

FIGURE 3. Prefix tree structure of the basis blades for a Geo-
metric Algebra whose underlying vector space is of dimen-
sion 3.

As in several GA implementations [13, 6, 14], the indexes of the basis blades
are represented with a binary label, as illustrated in Figure 4. This binary
label is very useful to optimize paths in the prefix tree. More details about
these optimizations are given in section 8.3. The binary label of a node is
recursively computed using the binary label of its parent node. A node with
binary label u has its first child binary label computed by:

child_label(u,msb) = u+ msb (7.1)

where + is the binary addition and msb is the binary label of the basis vector
"added" to the basis blade by the outer product. So, msb contains only a
single bit set to 1. Note that this bit set to 1 in msb cannot be a bit already
set to 1 in u, otherwise the parent node and its child would have the same
grade.

The contribution of msb is the most significant bit of child_label(label,msb),
i.e. the first bit to 1 encountered while reading the binary label from the left,
which corresponds to the position of the 1-bit of msb.

Moreover, the labels of the siblings of a child (with a direct common parent)
can be easily computed by means of left-shifting (i.e. multiplying by two) of
msb. This is illustrated in Figure 5.

It can be noted that this tree representation is not well suited for an efficient
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000(1)

001(e1) 010(e2) 100(e3)

011(e12) 101(e13) 110(e23)

111(e123)

FIGURE 4. Binary labelling of the prefix tree nodes in the
case of Geometric Algebra whose underlying vector space
is of dimension 3.

u

u+ msb · · ·u+ 2msb u+ 2d−1

FIGURE 5. Binary labelling of the siblings of a child node.

data storage due to the difficulty to cut useless parts of the tree. Therefore,
Garamon uses only the data structure defined in section 5.1 and includes
a mapping from the tree representation to the data structure of section 5.1.
This mapping consists in two pre-computed look-up tables. The first one
extracts the grade of a node according to its binary label and the second
defines its position, again according to this binary label.

Finally, it is noteworthy that, due to their structure and the way they are con-
structed, the prefix trees presented in this section are also binomial trees [25].
The use of "prefix tree" denomination is used here to stress the link between
nodes labelling and nodes grade.

7.2. Dual and prefix tree
In the prefix tree structure of the basis blades, the basis blades of grade k
are associated to the nodes of depth k. So, the pseudo-scalar is associated
to the deepest node of the prefix tree. Looking at the tree "upside-down",
the node corresponding to the pseudo-scalar corresponds to the root of the
tree and can be associated to the dual of the pseudo-scalar. In the same way,
the nodes just over the pseudo-scalar correspond to the dual basis blades of
the vector basis blades if their sign is correctly set. We can go further and
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reach the scalar basis blade which is now associated to the deepest node of
the "upside-down" tree and hence corresponds to the dual of the pseudo-
scalar (eventually up to a sign change). In short, obtaining the dual basis
blades just consists in reading "upside-down" the prefix tree structure of the
basis blades, eventually with some sign changes and some metric coefficient
update, as shown in Figure 6. With this model, the dual basis blades also
have a prefix tree structure. Moreover, the binary labels of the dual prefix
tree can be computed by subtracting the binary label msb of the dual child
to the binary label of the dual parent node. Hence we have a dual version of
Equation (7.1):

dual_child_label(u,msb) = u− msb (7.2)

where u is the binary label of the dual parent node. Note that the binary la-
bel of the dual prefix tree root is now the binary label (1<< d)− 1 where
<< is the left shift operator shifting on the left the digits of a label. To take
into account sign and coefficient changes, both the sign and the metric coef-
ficients can be stored in a single array of size 2d where d is the dimension of
the underlying vector space of the algebra.

1 /−e∗123

e1 /−e∗23 e2/e∗13 e3/−e∗12

e12/e∗3 e13/−e∗2 e23/e∗1

e123/1∗

FIGURE 6. Primal form of a tree data structure of an Eu-
clidean 3 dimensional vector space, and its dual counterpart
in red

The dual and primal prefix tree representations are the support of an effi-
cient recursive expression of GA products, coupled with the per grade data
structure of section 5.1. As for the primal prefix tree, the dual prefix tree is
just a support for the recursive products, the data are staying stored into the
“per grade” data structure of section 5.1. The main goal of this dual prefix
tree is to compute some product between dual multivectors without com-
puting the costly multivector dualization.
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8. Prefix tree traversal algorithms

Given a geometric algebra, the prefix tree structure of its basis blades de-
fined in Section 7 can be used to represent its multivectors and to efficiently
compute some products. The idea is to associate the multivector coefficients
to the nodes of the prefix tree. Then, the different products of the algebra are
defined recursively over the prefix tree representation. The basis blades of
the geometric algebra also have a binary tree structure and some recursive
products over binary trees, defined by Fuchs and Théry [16] and developed
by Breuils et al. [3]. These products (outer product, inner products, contrac-
tions, ...) are computed in O(3d) time complexity, where d is the dimension
of the underlying vector space of the algebra. More precisely, in the worst
case, the number of elementary products performed by the recursive prod-
uct is:

d

∑
i=1

3i =
3
2
(
3d − 1

)
(8.1)

This result does not hold for the geometric product computed with a O(4d)
complexity.

In [3], Breuils et al. already showed that the recursive approach achieves
better time complexity than the state-of-the-art methods which are inO(d×
4d). This section both defines how multivectors are represented by prefix
trees and how traversal of a prefix tree can be optimized with respect to the
grade of the considered multivector.

8.1. Multivector basis vectors and prefix tree
ism. Namely, we want to express the operations of the algebra using this
prefix tree representation. This requires expressing two multivectors with
the prefix tree representation. Just like [4] expressed a multivector as a bi-
nary tree with recursive formalism, we seek for an expression of the Geo-
metric Algebra with prefix tree. We consider a multivector A in Gp,q where
p+ q = d, we note a component of A at index u in the prefix tree formulation
as au. The children of au in the prefix tree formulation are shown in Figure 7.
Let us first introduce how to express a multivector over a prefix tree. Given
a multivector of a specific geometric algebra whose underlying vector space
is of dimension d, we note au the node labelled by u in a prefix tree. Like
in Figure 5, the children of au in the prefix tree can be found as depicted in
Figure 7.

For the following parts, we define a notation to manipulate prefix trees. A
prefix tree with root au and children au, au+2msb, . . ., au+2d−1 is noted by:(

au, (au+msb,au+2msb, · · · ,au+2d−1
))

(8.2)
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au

au+msb au+2msb · · · au+2d−1

av

av+msb av+2msb · · · av+2d−1

am

· · ·

FIGURE 7. Multivector prefix tree representation and link
from a node to its children.

A prefix tree defining a multivector au must be interpreted as an algebra
element. This is achieved by the following interpretation.

Definition 8.1. Interpretation
Let au be a node of the prefix tree and ei, i ∈ 1, · · · ,d, be the basis vector
associated with msb. The link between a node au and its direct children can
be interpreted as Geometric Algebra operations, as follows:

au + ei ∧ au+msb + ei+1 ∧ au+2msb + · · ·+ ed ∧ au+2d−1 (8.3)

Repeating recursively this interpretation for all nodes of the prefix tree fully
describes the corresponding multivector and clearly associates a basis blade
to each node. As an example, a multivector of an algebra Gp,q with d = p +
q = 3, at first recursion depth, is noted by:(

a000, (a001,a010,a100
))

(8.4)

The development after d = 3 recursive steps yields:(
a000,

(
a001,

(
a011,

(
a111

)
,a101

)
,
(
a010,

(
a110

))
,a100

))
(8.5)

Using the interpretation of the tree given in Equation (8.3) results in:

a000 + e1 ∧
(
a001 + e2 ∧

(
a011 + e3 ∧ (a111)

)
+ e3 ∧ a101

)
+e2 ∧

(
a010 + e3 ∧ a110

)
+ e3 ∧ a100

= a000 + a001e1 + a011e1 ∧ e2 + a111e1 ∧ e2 ∧ e3 + a101e1 ∧ e3 + a010e2
+a110e2 ∧ e3 + a100e3

(8.6)
This corresponds to a general multivector in a 3-dimensional vector space.
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8.2. Prefix tree traversal algorithm
This section explains the depth-first traversal of a prefix tree knowing the
maximum grade of the multivector it represents. Let us start with a non-
optimized approach presented in Algorithm 2.

Algorithm 2: Recursive deep-first traversal of a multivector A
whose maximal grade is ka

1 Function traverse
Input: A: the multivector to be traversed,

ka: the grade of the multivector.
labela: the recursive position on each tree.

2 if grade(labela) == ka then // end of recursion
3 return
4 else // recursive calls
5 msba = labelToMsb(labela)

6 foreach msb< 2d do
7 label= labela + msb

8 traverse(A,ka,labela + msb)

In this algorithm, labelToMsb(label) computes msb, the most significant
bit from the considered label, i.e. the first 1 encountered in the binary word
label when reading from left to right.

All nodes corresponding to a basis blade whose grade is smaller or equal
than the grade of the multivector are traversed, when not all those basis
blades are actually used in the multivector. This traversal leads to a lot of
useless recursive calls. To avoid them, we propose an improvement of this
algorithm consisting in ignoring each branch that never reaches the grade
of the considered multivector. This method uses msb.

8.3. Bounds for node labels
The most significant bit, msb, is a valuable information leading to an effective
optimization in the tree traversal. The key idea of this optimization is based
on the following proposition.

Proposition 8.2. Given a node of the prefix tree with label label, there exists at
least one path from the considered node to a node whose grade is k if the following
condition, computed in constant time, is satisfied:

label+ msb(2k−grade(label) − 1) < 2d (8.7)

where msb(2k−grade(label) − 1) is the most significant bit of 2k−grade(label) − 1,
grade(label) is the number of 1-bit in label (i.e. Hamming weight) and d is the
dimension of the underlying vector space of the algebra.
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Proof. Here, the key point is to prove that the number of recursive calls from
a given node to a node of grade k can be lower bounded and that the com-
putation of this lower bound can be performed in constant time.

By definition, at each recursive depth, the grade is incremented. Further-
more, if label+ msb corresponds to the first child of the current node. After
two recursive calls, the label of the new node is lower bounded by (left-most
child):

label+ msb+ 2msb, (8.8)

the grade is increased and is now grade(label) + 2. The index of the last
traversed vector is simply 2msb. After three recursive calls, this label is lower
bounded by

label+ msb+ 2msb+ 4msb (8.9)

and the grade is grade(label) + 3. The index of the last traversed vector is
4msb. The general law that we establish for the lower bound of the label of
the children after n recursive calls is:

label+
n−1

∑
i=0

2imsb (8.10)

This can be also rewritten as:

label+ msb
n−1

∑
i=0

2i, with n ∈ [1,d]. (8.11)

And the general law for the grade is grade(label) + n. For the index of the
last traversed vector the general law is 2n−1msb. Let us prove it by induction.
The base case holds since after one recursive call the child of the node has
label:

label+ msb= label+ msb
0

∑
i=0

2i (8.12)

This corresponds to the first child thus to a lower bound. The grade of the
label is grade(label) + 1 and the index of the last traversed vector is msb,
as seen in the definition.

Let us assume that the Formula (8.11) holds for a number of recursive calls
noted m. Thus, the label of the children of the current node is lower bounded
by:

label+ msb
m−1

∑
i=0

2i (8.13)

By definition of the child of a node, the last traversed vector is 2mmsb. Thus,
the left-most child of the node after m recursive traversals is defined as:

label+ msb
m−1

∑
i=0

2i + 2mmsb (8.14)
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This can be rewritten as:

label+ msb

(m+1)−1

∑
i=0

2i (8.15)

As the grade after m recursive calls is grade(label) + m and we computed
the child of this label thus the grade was incremented, and the grade of the
leading node is grade(label) + m + 1.

Thus, the Formula 8.11 holds for m + 1 recursive calls. Finally, by induction,
this formula holds for any number of recursive calls.

Furthermore, the term ∑
(m+1)−1
i=0 2i is known to be a geometric series whose

first term is 1 and its common ratio is 2. The general formula of such geo-
metric series is given as:

(m+1)−1

∑
i=0

2i =
1− 2m

1− 2
= 2m − 1 (8.16)

Finally, the Formula 8.11 can be rewritten as:

label+ msb(2m − 1) (8.17)

Note that this expression can be computed in a constant timeO(1). Further-
more, we know the upper bound of the labels when the underlying vector
space of the algebra is of dimension d. This is the label 11 · · ·1 associated to
the pseudo-scalar. Thus, when the underlying vector space of the algebra is
of dimension d, all labels are upper bounded by the label label_max:

label_max= 2d (8.18)

This means that if the lower bound label+ msb(2n − 1) exceeds label_max,
then this is not a label for the basis blades of the algebra, meaning that we
have a constant time function to know whether after n recursive calls, there
exists a child of the current node in the prefix tree representing a multivec-
tor. Moreover, it requires exactly k − grade(label) recursive calls to reach
a node corresponding to a multivector of grade k. This latter result along
with the upper bound of Formula (8.18) and the lower bound Formula (8.17)
yields to the targeted following inequality:

label+ msb(2k−grade(label) − 1) < 2d (8.19)

�

Formula (8.19) is a way to know whether there exists a reachable child of a
node label with grade k.

This leads to its associated function gradeKReachable(k,label,msb), defined
in Algorithm 3.

With Algorithm 3, some branches of the trees can be left unvisited, according
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Algorithm 3: check whether it exists one child of the node label

whose grade is k.

1 Function gradeKReachable
Input: label: the recursive position

msb: a label of the last traversed vector
k: the considered grade.

2 labelChildK← label+ msb(2k−grade(label) − 1)
3 return labelChildK< 2d

to a formula that can be computed in constant time. Indeed, the computa-
tion of 2k−grade(label) − 1 only requires bit shifting (constant time), one inte-
ger multiplication and three additions. And when the dimension increases,
this number of operations remains the same thus the algorithm is constant
time. Finally, this decision only depends on grades and label, and does not
require any memory allocation, thus is also constant in terms of memory
complexity.

8.4. Optimized prefix tree traversal algorithm
The previous algorithm is the base to define an improved version of the
recursive traversal defined in Algorithm 2. The resulting pseudo-code is
shown in Algorithm 4. The useless visits are avoided with the grade test

Algorithm 4: Recursive traversing of a multivector A whose maxi-
mal grade is ka

1 Function traverse
Input: A: the multivector to be traversed,

ka: the grade of the multivector.
labela: the recursive position on each tree.

2 if grade(labela) == ka then // end of recursion
3 return
4 else // recursive calls
5 msba = labelToMsb(labela)
6 foreach msb such that gradeKReachable(ka,msb)== true

do
7 label= labela + msb

8 traverse(A,ka,labela + msb)

in Algorithm 4, line 6. Equipped with this new algorithm, it is now possible
to traverse the trees as shown in black on Figure 8. This algorithm can result
in high improvement of runtime performance. Indeed, the number of use-
less recursive calls grows exponentially as the dimension grows. Figure 8



Garamon: a Geometric Algebra Library Generator 19

depicts these kind of situations where some nodes (in green) are not vis-
ited since their corresponding grade is higher than the targeted grade. Some
others are (in blue) are avoided with the test loop in line 6.
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(D)

FIGURE 8. Tree structure for some resulting multivectors of grade 4 (A),
grade 3 (B), grade 2 (C), grade 1 (D) in a 4-dimensional vector space. Use-
less branches are depicted in green dashed arrows above the targeted mul-
tivector and in blue below. The targeted nodes are surrounded by a black
rectangle.
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This section defined the prefix tree both in terms of structure and traversal
algorithms. The next sections define the link between the prefix tree and the
binary tree, and the recursive products with their corresponding pseudo-
code.

9. Mapping between prefix tree and binary tree
The definition of each recursive product requires a proof of correctness. The
proof can be given using Definition 8.1 for some recursive definitions. How-
ever, the proof using this definition becomes too cumbersome and error-
prone for some recursive products. An easier alternative is to define a map-
ping between the prefix tree and the binary tree to establish an equivalence
between them. The proof of the correctness of the recursive algorithms over
the binary tree given in [3] will imply the correctness of the corresponding
algorithms over the prefix tree. This section defines this mapping.

Definition 8.1 and formula 8.2 are the support to define a mapping between
the prefix tree and the binary tree frameworks defined bellow.

Definition 9.1. Mapping prefix tree and binary tree
Let ψ be the mapping associating a prefix tree multivector(

au, (au+msb,au+2msb, · · · ,au+2d−1
))

(9.1)

to its counterpart in the binary tree framework [3]:(
au+msb,

(
au+2msb,

(
· · · (au+2d−1 ,au)

)))
b

(9.2)

Proposition 9.2.
The interpretation of the binary tree given in Equation 9.2 results in interpretation
of Equation 8.3.

Proof. Let us consider the pair:(
au+msb,a

)
b

(9.3)

where
a=

(
au+2msb,

(
· · · (au+2d−1 ,au) · · ·

))
b

(9.4)

Assumption of Definition 8.1 denotes that the basis vector associated with
msb is ei, with i ∈ 1, · · · ,d. The interpretation of Section 3 of [16] means that
the pair composed of au+msb as a left sub-tree can be written as:

ei ∧ au+msb + a (9.5)

By reiterating the same computation for the nested pairs in a yields:

ei ∧ au+msb + ei+1 ∧ au+2msb + · · ·+ ed ∧ au+2d−1 + au (9.6)

This corresponds to Equation 8.3. �
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10. Vector space operations
10.1. Addition and scalar multiplication
In order to define the recursive Geometric Algebra products over the pre-
fix tree structure, we must define and prove the correctness of the vector
space operations, namely addition and scalar multiplication. We start with
the definition of the recursive formula of the addition between two prefix
tree multivector.

Proposition 10.1. Let us consider two multivectors A and B whose recursive con-
struction are respectively:(

au, (au+msb,au+2msb, · · · ,au+2d−1
))

, (10.1)

and (
bu, (bu+msb,bu+2msb, · · · ,bu+2d−1

))
. (10.2)

The recursive construction of the addition C = A + B can be computed as:(
cu, (cu+msb,cu+2msb, · · · ,cu+2d−1

))
=

(
au, (au+msb,au+2msb, · · · ,au+2d−1

))
+
(
bu, (bu+msb,bu+2msb, · · · ,bu+2d−1

))
=

(
au + bu, (au+msb + bu+msb,au+2msb + bu+2msb, · · · ,au+2d−1 + bu+2d−1

))
(10.3)

Proof. We use the interpretation of the prefix tree defined in Equation 8.3.
The operation to be performed is:

au + ei ∧ au+msb + ei+1 ∧ au+2msb + · · ·+ ed ∧ au+2d−1 + bu + ei ∧ bu+msb
+ ei+1 ∧ bu+2msb + · · ·+ ed ∧ bu+2d−1

(10.4)
The distributive property of the outer product yields:

au + bu + ei ∧ (au+msb + bu+msb) + ei+1 ∧ (au+2msb + bu+2msb) + · · ·
+ ed ∧ (au+2d−1 + ei ∧ bu+msb + ei+1 ∧ bu+2msb + · · ·+ ed ∧ bu+2d−1

(10.5)
Finally, by identification, the above formula is the interpretation of the prefix
tree multivector:(

au + bu, (au+msb + bu+msb,au+2msb + bu+2msb, · · · ,au+2d−1 + bu+2d−1
))
(10.6)

�

Proposition 10.2. The recursive construction of the multiplication of one multi-
vector A by a scalar λ ∈R can be computed as C = λA:(

cu, (cu+msb,cu+2msb, · · · ,cu+2d−1
))

= λ
(
au, (au+msb,au+2msb, · · · ,au+2d−1

))
=

(
λau, (λau+msb,λau+2msb, · · · ,λau+2d−1

)) (10.7)
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Proof. Once more, we use the interpretation of the prefix tree defined in
Equation 8.3. The operation to be performed is:

λ
(
au + ei ∧ au+msb + ei+1 ∧ au+2msb + · · ·+ ed ∧ au+2d−1

)
(10.8)

The distributive property of both the scalar multiplication and the outer
product yields:

λau + ei ∧ λau+msb + ei+1 ∧ λau+2msb + · · ·+ ed ∧ λau+2d−1 (10.9)

Thus, by identification, this results in:(
λau, (λau+msb,λau+2msb, · · · ,λau+2d−1

))
(10.10)

�

10.2. Anti-commutativity recursive operator
In order to efficiently compute permutation required for some Geometric
Algebra operators, we define the anti-commutativity operator denoted as
an overline (e.g. multivector A). This operator is recursively defined over
the prefix tree. It is complicated to prove the correctness of the proposed
recursive algorithms using the interpretation of the prefix tree. An easier
alternative is to use the mapping between the prefix tree and the binary
tree to establish an equivalence between them. The proof of the correctness
of the recursive algorithms over the binary tree given in [3] will imply the
correctness of the corresponding algorithms over the prefix tree.

Proposition 10.3. Given a multivector A whose recursive construction is:(
au, (au+msb,au+2msb, · · · ,au+2d−1

))
, (10.11)

the recursive construction of the anticommutativity of this multivector C = A can
be computed as: (

cu, (cu+msb,cu+2msb, · · · ,cu+2d−1
))

=
(
au, (au+msb,au+2msb, · · · ,au+2d−1

))
=

(
au, (−au+msb,−au+2msb, · · · ,−au+2d−1

)) (10.12)

Proof. The method followed here consists in proving that the commutative
diagram of the anti-commutative operator shown below holds.

(
cu, (cu+msb, · · · ,cu+2d−1

)) (
cu+msb,

(
cu+2msb,

(
· · · (cu+2d−1 ,cu)

)))
b

(
cu, (cu+msb, · · · ,cu+2d−1

)) (
cu+msb,

(
cu+2msb,

(
· · · (cu+2d−1 ,cu)

)))
b

ψ

· ·

ψ

(10.13)
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On the one hand, mapping the prefix tree c of Equation (10.12) in the binary
tree using ψ of Equation (9.2) results in:(

cu+msb,
(
cu+2msb,

(
· · · (cu+2d−1 ,cu)

)))
b

=

(
− au+msb,

(
− au+2msb,

(
· · · (−au+2d−1 ,au

)))
b

(10.14)

On the other hand, the recursive formula of the anti-commutativity defined
in [16] as: (

cu+msb,cu
)
=
(
− au+msb,au

)
b

(10.15)

After developing this formula at one recursion depth, this formula becomes:(
cu+msb,

(
cu+2msb,cu

))
b

=

(
− au+msb,−

(
au+2msb,au

))
b

(10.16)

After further developing this formula, we find:(
cu+msb,

(
cu+2msb,

(
· · · (cu+2d−1 ,cu)

)))
b

=

(
− au+msb,

(
− au+2msb,

(
· · · − au+2d−1 ,au)

)))
b

(10.17)

Equations (10.17) and (10.14) are equivalent, thus the commutative diagram
holds. �

11. Products in high dimensional vector space

11.1. Recursive Outer product

This section presents the recursive formulation of the outer product over
a prefix tree. Let us consider the product C = A ∧ B, where the maximum
grades of A, B,C are respectively ka,kb,kc.

Proposition 11.1. Given two multivectors A and B whose recursive constructions
are respectively: (

au, (au+msb,au+2msb, · · · ,au+2d−1
))

, (11.1)

and (
bu, (bu+msb,bu+2msb, · · · ,bu+2d−1

))
. (11.2)
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the recursive construction of the outer product C = A ∧ B can be computed as:

(
cu, (cu+msb,cu+2msb, · · · ,cu+2d−1

))
=

(
au, (au+msb,au+2msb, · · · ,au+2d−1

))
∧
(
bu, (bu+msb,bu+2msb, · · · ,bu+2d−1

))
=

(
au ∧ bu, ( au+msb ∧ bu + au ∧ bu+msb,

au+2msb ∧ bu + au ∧ bu+2msb,
...

au+2d−1 ∧ bu + au ∧ bu+2d−1
))

(11.3)

Proof. Again, we aim at proving that commutative diagram of the outer
product holds. On the one hand, mapping the prefix tree c of Equation (11.3)
in the binary tree using ψ of Equation (9.2) results in:

(
cu+msb,

(
cu+2msb,

(
· · · (cuu+2d−1 ,cu)

)))
b

=

(
au+msb ∧ bu + au ∧ bu+msb,

(
au+2msb ∧ bu + au ∧ bu+2msb,

(
· · ·

(au+2d−1 ∧ bu + au ∧ bu+2d−1 ,au ∧ bu)
)))

b
(11.4)

On the other hand, the recursive formula of the outer product between two
multivectors in the binary tree framework is the pair:

(
cu+msb,cu

)
b
=

(
au+msb ∧ bu + au ∧ bu+msb,au ∧ bu

)
b

(11.5)

After developing this formula at one recursion depth, this formula becomes:

(
cu+msb,

(
cu+2msb,cu

))
b

=

(
au+msb ∧ bu + au ∧ bu+msb,

(
au+2msb ∧ bu + au ∧ bu+2msb,au ∧ bu

))
b

(11.6)
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Then the formula takes the following form:(
cu+msb,

(
cu+2msb,

(
· · · (cuu+2d−1 ,cu)

)))
b

=

(
au+msb ∧ bu + au ∧ bu+msb,

(
au+2msb ∧ bu + au ∧ bu+2msb,

(
· · ·

(au+2d−1 ∧ bu + au ∧ bu+2d−1 ,au ∧ bu)
)))

b
(11.7)

Equations (11.7) and (11.4) are equivalent, thus the commutative diagram
holds. �

This recursive formula is the base to develop the pseudo-code of the
outer product. As a reminder, the recursive formula is defined as:(

cu, (cu+msb,cu+2msb, · · · ,cu+2d−1
))

=
(
au ∧ bu, ( au+msb ∧ bu + au ∧ bu+msb,

au+2msb ∧ bu + au ∧ bu+2msb,
...

au+2d−1 ∧ bu + au ∧ bu+2d−1
))

(11.8)

We highlight the main parts of the recursive formula and their equivalent in
the pseudo-code shown in Algorithm 5.

11.2. Complexity
This paragraph investigates the complexity of the outer product. At each
depth of the tree, the number of recursive calls is multiplied by 2. Further-
more, to a considered depth corresponds the same grade and thus the same
number of recursive calls. Finally, the number of nodes of the same grade k
is given by (d

k) and in the worst case the depth may vary from 0 to d. Thus,
the number of recursive calls is upper bounded by:

d

∑
i=0

(
d
k

)
2i (11.9)

From the binomial theorem this formula can be rewritten as:
d

∑
i=0

(
d
k

)
2i = 3d (11.10)

Thus, the number of recursive calls is upper bounded by 3d which is lower
than the number of recursive calls obtained with the two previous methods
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Algorithm 5: Recursive outer product C = A ∧ B

1 Function outer
Input: A, B: two multivectors,

C: resulting multivector,
ka, kb and kc: the respective grade of each multivector.
labela,labelb,labelc: recursive position on each tree.
sign: recursive sign index.
complement: recursive value ( ±1).

2 if grade(labelc) == kc then // end of recursion
3 C[labelc]+ = sign× A[labela]× B[labelb]
4 else // recursive calls
5 msba = labelToMsb(labela)
6 msbb = labelToMsb(labelb)
7 msbc = labelToMsb(labelc)
8 foreach msb such that

gradeKReachable(kc,msb,labelc)== true do
9 label= labelc + msb

10 if gradeKReachable(ka,msb,labela) then
11 outer(A, B,C,ka,kb,kc,labela +

msb,labelb,label,sign× complement,complement)

12 if gradeKReachable(kb,msb,labelb) then
13 outer(A, B,C,ka,kb,kc,labela,labelb +

msb,label,sign,−complement)

presented up to now in:
d

∑
i=1

3i =
3
2
(
3d − 1

)
(11.11)

11.3. GA products using metric
11.3.1. Left, right contractions and inner product. Section 11.1 defines the
recursive outer product over a prefix tree. This section details various prod-
ucts and algorithms that depend on the metric. In this context, we assume
that a diagonal metric diagMetric is stored as a vector whose size is the di-
mension d. This vector is such that:

diagMetric(0)= e1 · e1
diagMetric(1)= e2 · e2

...
diagMetric(d− 1)= ed · ed

(11.12)

Using a metric in the recursive functions results in an additional parameter,
namely metric, corresponding to the elements of diagMetric. The definition
of the left contraction is shown in Algorithm 6.
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Algorithm 6: Recursive left contraction product C = AcB
1 Function leftcont

Input: A, B: two multivectors.
C: resulting multivector.
ka, kb and kc: respective grade of each multivector.
labela,labelb,labelc: recursive position on each tree.
sign: a recursive sign index.

2 complement: recursive value (±1).
3 metric: coefficients related to the metric.
4 if grade(labelb) == kb then // end of recursion
5 C[labelc]+ = metric× sign× A[labela]× B[labelb]
6 else // recursive calls
7 msba = labelToMsb(labela)
8 msbb = labelToMsb(labelb)
9 msbc = labelToMsb(labelc)

10 foreach msb such that
gradeKReachable(kb,msb,labelb)== true do

11 label= labelb + msb

12 if gradeKReachable(ka, msb, labela) then
13 leftcont(A, B, C, ka, kb, kc, labela + msb, label,

labelc, sign× complement, −complement,
metric× diagMetric(grade(labelb)))

14 if gradeKReachable(kc,msb,labelc) then
15 leftcont(A, B,C,ka,kb,kc,labela,label,labelc +

msb,sign,−complement,metric))

The right contraction is simply a variation of the left contraction. The result-
ing pseudo-code is detailed in Algorithm 7.

11.3.2. Recursive geometric product. The last product to define is a major
one, namely the geometric product.

Proposition 11.2. Given two multivectors A and B whose recursive constructions
are respectively: (

au, (au+msb,au+2msb, · · · ,au+2d−1
))

, (11.13)

and (
bu, (bu+msb,bu+2msb, · · · ,bu+2d−1

))
, (11.14)
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Algorithm 7: Recursive right contraction product C = AbB
1 Function rightcont

Input: A, B: two multivectors.
C: resulting multivector.
ka, kb and kc: respective grade of each multivector.
labela,labelb,labelc: recursive position on each tree.
sign: recursive sign index.

2 complement: recursive value (±1).
3 metric: coefficients related to the metric.
4 if grade(labelb) == kb then // end of recursion
5 C[labelc]+ = metric× sign× A[labela]× B[labelb]
6 else // recursive calls
7 msba = labelToMsb(labela)
8 msbb = labelToMsb(labelb)
9 msbc = labelToMsb(labelc)

10 foreach msb such that
gradeKReachable(ka,msb,labela)== true do

11 label= labela + msb

12 if gradeKReachable(kb,msb,labelb) then
13 rightcont(A, B, C, ka, kb,kc, label, labelb + msb,

labelc, sign× complement, −complement,
metric× diagMetric(grade(labelb)))

14 if gradeKReachable(kc,msb,labelc) then
15 rightcont(A, B,C,ka,kb,kc,label,labelb,labelc +

msb,sign,−complement,metric))

the recursive construction of the geometric product C = A ∗ B can be computed as:(
cu, (cu+msb,cu+2msb, · · · ,cu+2d−1

))
=

(
au, (au+msb,au+2msb, · · · ,au+2d−1

))
∗
(
bu, (bu+msb,bu+2msb, · · · ,bu+2d−1

))
=

(
au ∗ bu + diagMetric(msb)au+msb ∗ bu+msb

+diagMetric(2msb)au+2msb ∗ bu+2msb

...

+diagMetric(2d−1)au+2d−1 ∗ bu+2d−1 ,

(au+msb ∗ bu + au ∗ bu+msb,au+2msb ∗ bu + au ∗ bu+2msb, · · · ,

au+2d−1 ∗ bu + au ∗ bu+2d−1
))

(11.15)
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Proof. This proof follows a similar outline as with the recursive outer prod-
uct. First, the mapping the prefix tree c of Equation (11.15) in the binary tree
using ψ of Equation (9.2) results in:

(
cu+msb,

(
cu+2msb,

(
· · · (cuu+2d−1 ,cu)

)))
b

=

(
au+msb ∗ bu + au ∗ bu+msb,

(
au+2msb ∗ bu + au ∗ bu+2msb,

(
· · ·

(au+2d−1 ∗ bu + au ∗ bu+2d−1 ,au ∗ bu + diagMetric(msb)au+msb ∗ bu+msb

+diagMetric(2msb)au+2msb ∗ bu+2msb

...

+diagMetric(2d−1)au+2d−1 ∗ bu+2d−1)
)))

b
(11.16)

On the other hand, the recursive formula of the geometric product between
two multivectors in the binary tree framework can be the pair:

(
cu+msb,cu

)
b

=

(
au+msb ∗ bu + au ∗ bu+msb,au ∗ bu + diagMetric(msb)au + msb ∗ bu+msb

)
b

(11.17)
After developing this formula at one recursion depth and having in mind
the recursive structure of the binary tree, the above formula becomes:

(
cu+msb,

(
cu+2msb,cu

))
b

=

(
au+msb ∗ bu + au ∗ bu+msb,

(
au+2msb ∗ bu + au ∗ bu+2msb,au ∗ bu

+diagMetric(msb)au + msb ∗ bu+msb

+diagMetric(2msb)au + 2msb ∗ bu+2msb

))
b

(11.18)
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Thus,(
cu+msb,

(
cu+2msb,

(
· · · (cuu+2d−1 ,cu)

)))
b

=

(
au+msb ∗ bu + au ∗ bu+msb,

(
au+2msb ∗ bu + au ∗ bu+2msb,

(
· · ·

(au+2d−1 ∗ bu + au ∗ bu+2d−1 ,au ∗ bu + diagMetric(msb)au+msb ∗ bu+msb

+diagMetric(2msb)au+2msb ∗ bu+2msb

...

+diagMetric(2d−1)au+2d−1 ∗ bu+2d)
)))

b
(11.19)

Equations (11.19) and (11.16) are equivalent, thus the commutative diagram
holds for the geometric product. �

Algorithm: This recursive formula is the base to develop the pseudo-code
of the geometric product. As a reminder, the recursive formula is defined as:(

cu, (cu+msb,cu+2msb, · · · ,cu+2d−1
))

=
(
au ∗ bu + diagMetric(msb)au+msb ∗ bu+msb

+diagMetric(2msb)au+2msb ∗ bu+2msb
+ · · ·
+diagMetric(2d−1)au+2d−1 ∗ bu+2d−1 , (au+msb ∗ bu + au ∗ bu+msb,

au+2msb ∗ bu + au ∗ bu+2msb, · · ·,au+2d−1 ∗ bu + au ∗ bu+2d−1
))

(11.20)
We highlight the main parts of the recursive formula and their equivalent in
the pseudo-code presented in Algorithm 8.

11.4. Complexity

Concerning the left and right contractions, the number of recursive calls is
the same as the recursive outer product. Hence, these two recursive products
require 3d recursive calls in the worst case. Again, this is a lower complexity
than state of the art methods. As for the geometric product, we note that the
computation of the sign is performed by a constant time operation. By an
operation similar to the computation of the complexity of the outer prod-
uct, we prove that the number of recursive calls of the geometric product
is 4d. We can note that this approach performs better than the binary tree
approach whose number of recursive calls was 4

3 (4
d − 1).
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Algorithm 8: Recursive geometric product C = AB

1 Function geometric
Input: A, B: two multivectors.

C: resulting multivector.
ka, kb and kc: respective grade of each multivector.
labela,labelb,labelc: recursive position on each tree.
sign: a recursive sign index.
complement: recursive value (±1).
metric: coefficients related to the metric.
depth: current depth in the prefix tree.

2 if grade(labelb) == kb and grade(labela) == ka then
3 C[labelc]+ = metric× sign× A[labela]× B[labelb]

// end of recursion
4 else
5 msba = labelToMsb(labela)
6 msbb = labelToMsb(labelb)
7 msbc = labelToMsb(labelc)

8 for i in 2depth,2depth+1, · · · ,2d−1 do
9 if gradeKReachable(kb,i,labelb) then

10 if gradeKReachable(ka,i,labela) then
11 geometric

(
A, B,C,ka,kb,kc,labela + i,labelb +

i,labelc,sign×
complement,−complement,metric×
diagMetric(i),depth+ 1)

)
12 if gradeKReachable(ka,i,labela) then
13 geometric

(
A, B,C,ka,kb,kc,label,labelb,labelc +

msb,sign×
complement,complement,metric,depth+ 1)

)
14 if gradeKReachable(kb,i,labelb) then
15 geometric

(
A, B,C,ka,kb,kc,labela,labelb +

i,labelc + i,sign,−complement,metric),depth+
1
)

12. Products with dual multivectors
A recursive product where one or both of the operands are dual multivectors
can be optimized by an extension of Algorithm 5 adapted to the dual tree
defined in Section 7.2. In a certain sense, it is like if the recursive product
algorithm is dualized instead of the multivectors. In this situation, potential
costly dualizations can be avoided.

In practice, we already have a recursive method to compute the inner
product as well as a method to traverse the dual prefix tree of the resulting
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multivector C using the structure dualCoefficients. The resulting pseudo-code
is shown in Algorithm 9 when the grade of A is lower than the grade of B.
When the grade of B is higher than the grade of A then the algorithm is very
similar (extracted from the right contraction algorithm).

Algorithm 9: Recursive outer product between a primal multivector
and the dual of another multivector: C = A ∧ B∗

1 Function outerPrimalDual
Input: A, B: two multivectors.

C: resulting multivector.
ka, kb and kc: respective grade of each multivector.
labela,labelb,labelc: recursive position on each tree.
sign: a recursive sign index.

2 complement: recursive value (±1).
3 metric: coefficients related to the metric.
4 if grade(labelb) == kb then // end of recursion
5 dualCoefficients(labelc)× C[labelc]+ =

dualCoefficients× sign× A[labela]× B[labelb]
6 else // recursive calls
7 msba = labelToMsb(labela)
8 msbb = labelToMsb(labelb)
9 msbc = labelToMsb(labelc)

10 foreach msb such that
gradeKReachable(kb,msb,labelb)== true do

11 label= labelb + msb

12 if gradeKReachable(ka,msb,labela) then
13 outerPrimalDual(A,B, C, ka, kb, kc, labela + msb,

label, labelc, sign× complement, −complement,
metric× diagMetric(grade(labelb)))

14 if gradeKReachable(kc,msb,labelc) then
15 outerPrimalDual(A, B,C,ka,kb,kc,labela,label,labelc−

msb,sign,−complement,metric)

13. Non orthogonal metric
13.1. Automatic basis change and numerical clean up
For ergonomic purposes, any optional basis changes required by an arbi-
trary metric are automatically handled by the generated library. This basis
change is included in the precomputed functions during the precomputa-
tion process and is explicitly computed for the recursive products before
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and after the recursive calls. The library generator first checks if the metric
is a valid symmetric matrix. If the matrix is identity, all the generated prod-
ucts are left unchanged. If the matrix is a diagonal matrix (but not identity),
the metric coefficients are inserted in the products. In any other cases, we
follow [12] and proceed to a basis change, however we also add some nu-
merical robustness pre-processing. As an example, let us consider the Con-
formal Geometric Algebra of R2 with metric M and its eigen decomposi-
tion M = PDP−1:

M =


0 0 0 −1
0 1 0 0
0 0 1 0
−1 0 0 0


=


0.707 0.707 0 0

0 0 0 1
0 0 1 0

−0.707 0.707 0 0




1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1




0.707 0 0 −0.707
0.707 0 0 0.707

0 0 1 0
0 1 0 0


For such very common metrics, an eigen decomposition leads to square
roots in the eigen vector components. For a better numerical robustness, we
automatically upscale the matrix P such that it is composed of integers and
downscale accordingly its inverse P−1:

M =


0 0 0 −1
0 1 0 0
0 0 1 0
−1 0 0 0


=


1 1 0 0
0 0 0 1
0 0 1 0
−1 1 0 0




1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1




0.5 0 0 −0.5
0.5 0 0 0.5
0 0 1 0
0 1 0 0


Then, all the components of the resulting matrices are subject to a numerical
clean up, by adjusting each value to the nearest integer, inverse power of
two or decimal. Thus, this clean up removes the numerical errors generated
by the eigen decomposition and is validated if the resulting decomposition
still results in the original metric. In all the GA we encountered, this process
removes all the numerical approximations.

13.2. Computing transformation matrices
The final stage consists in generating both transformation and inverse trans-
formation matrices for any grade of the algebra. In practice, these transfor-
mation matrices are very sparse and are stored in the efficient eigen sparse
matrices [17]. The algorithm followed to achieve this is explained in the fol-
lowing section.

13.2.1. Algorithm. We explain the computation of the transformation ma-
trix Pk that maps any k-basis vector in the non-orthogonal basis to the k-basis
vector in the orthogonal basis. First, let us consider the orthogonal basis as
(e1, · · · ,ed)

> and the non-orthogonal basis as (n1, · · · ,nd)
>. We assume that

P(i) denotes the ith line of P and pij represents the element of the ith line
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and jth column of P. The transformation matrix P maps these basis vectors
as follows:

e1
e2
...

ed

 =


p11 p12 · · · p1d
p21 p22 · · · p2d

...
...

. . .
...

pd1 pd2 · · · pdd




n1
n2
...

nd

 =


P(1)
P(2)

...
P(d)




n1
n2
...

nd

 (13.1)

Thus, by definition:

ei = P(i)


n1
n2
...

nd

∀i ∈ [1,d] , (13.2)

For a k-basis blade defined as:

epqr···u = ep ∧ eq ∧ er ∧ · · · ∧ eu (13.3)

Using formula 13.2, this yields:

epqr···u = P(p)


n1
n2
...

nd

 ∧ P(q)


n1
n2
...

nd

 ∧ P(r)


n1
n2
...

nd

 ∧ · · · ∧ P(u)


n1
n2
...

nd

 (13.4)

Hence, the main point of determining the transformation matrices lies in
computing the outer product between lines of the vector transformation ma-
trix. The resulting pseudo-code is shown in Algorithm 10.

Algorithm 10: Compute the k-vector transformation matrix from the
vector transformation matrix P
1 Function computeKvectorTransformationMatrix

Input: P: the vector transformation matrix,
d: vector space dimension,
k: the grade of the transformation matrix to be computed.

2 foreach epqr···u, idx in k-basis blades do // idx:index of the blade
in the k basis blades

3 〈P〉k(idx)← vector whose dimension is (d
k)

4 mv← P(p)(n1,n2, · · · ,nd)
>

5 foreach ev in eqr···u do

6 mv← mv ∧
(

P(v)(n1,n2, · · · ,nd)
>
)

7 〈P〉k(idx)← mv

8 return 〈P〉k
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13.2.2. Data structure to use. As stated in the last section, the obtained
transformation matrices are sparse. An example of the transformation ma-
trix 〈P〉3 of 3-basis blades is shown below:

〈P〉3 =



0 0 0 0 −1 0 0 −1 0 0
0 0 0 0 0 −1 0 0 −1 0
0 0 −2 0 0 0 0 0 0 0
0 0 0 1 0 0 1 0 0 0
−2 0 0 0 0 0 0 0 0 0
0 −2 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 −1 0 0
0 0 0 0 0 1 0 0 −1 0
0 0 0 −1 0 0 1 0 0 0


(13.5)

We remark that for over a total of 10× 10 = 100 elements, only 16 elements

are non-null, giving to this matrix a sparsity score of
84
100

= 0.84. This score
tends to be stable for extension of conformal Geometric Algebra in higher
dimension. That is why, we use sparse matrix data structure of Eigen.

Note also that the inverse transformation matrices can be computed
using the same process as with the transformation matrices. The only differ-
ence will be in the vector transformation matrix used as input. In this case,
we will use the inverse of the vector transformation matrix. All the remain-
ing algorithm remains the same.

Finally, in the case of non-full-rank metrics, the process remains un-
changed, however the dual functions are not generated.

14. Resulting library generator: Garamon
The resulting implementation is a C++ template library generator dedicated
to Geometric Algebra. The generator itself runs in C++ and generate opti-
mized C++ code. These generated GA libraries are dedicated to being user-
friendly and efficient both in term of computation speed and memory con-
sumption.

14.1. Define an algebra
Each C++ library is generated for a specific GA, according to a dedicated
configuration file. The required information concerns mainly the name of
the algebra, its dimension, the name of the vectors and the metric (sym-
metric matrix). All other parameters can be set to their default values. An
example is depicted in Figure 9.

14.2. Hybridization
For high dimension GA, the generated libraries include a soft transition
between precomputed products and recursive products. The criteria for a
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# Modeling 3D Geometry in the Clifford Algebra R(4,4),
# Juan Du, Ron Goldman and Stephen Mann, 2017

<namespace>
p3ga2
</namespace>

<metric>
0 0 0 0 0.5 0 0 0
0 0 0 0 0 0.5 0 0
0 0 0 0 0 0 0.5 0
0 0 0 0 0 0 0 0.5
0.5 0 0 0 0 0 0 0
0 0.5 0 0 0 0 0 0
0 0 0.5 0 0 0 0 0
0 0 0 0.5 0 0 0 0
</metric>

<basis vector name>
0 1 2 3 d0 d1 d2 d3
</basis vector name>

...

FIGURE 9. Example of a configuration file (its main part).
The considered algebra is R4,4 used in [10]

product to be implemented either with precomputed functions or recur-
sively is defined by a user defined threshold on the size of the two k-vectors
involved in the product. With this approach, a GA library over a 10 di-
mension vector space can entirely be implemented in precomputed func-
tions and a GA library over a 15 dimension vector space will have at least
the products of vectors implemented with precomputed functions. Within
this framework, the hybridization is completely transparent to the user. Fig-
ure 10 shows the resulting source code memory consumption with and with-
out the hybridization. Figure 11 depicts the binary memory consumption
with the hybridization. Up to dimension 10, the growth is exponential. Then,
for dimension 11 and 12, some products are computed at run time and not
precomputed anymore. Since the removed products are the most memory
consuming, this hybridization has a big impact on the overall memory con-
sumption. The same phenomenon appears from dimension 13. For higher
dimension, at least the product between vectors will remain precomputed,
leading to a linear growth of the memory.

14.3. Generated code

A generated library consists in few source code files, its own dedicated in-
stallation file (cmake), as well as a dedicated sample code to help the user
to start using the library. It also includes a dedicated cheetsheat listing all
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FIGURE 10. Memory requirement for the generated source
code with and without hybridization.

FIGURE 11. Memory requirement for the generated binary
with hybridization.

the available operations. All the source files are well commented and docu-
mented with Doxygen [24].
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The Listing 1 shows an example of some operations in CGA using Garamon.

LISTING 1. Example of code with Conformal Geometric Al-
gebra of R3.

#include <iostream>
#include <c3ga/Mvec.hpp>

void plop(){

c3ga::Mvec<double> mv1;
mv1[c3ga::scalar] = 1.0;
mv1[c3ga::E0] = 42.0;
std::cout << "mv1 : " << mv1 << std::endl;

c3ga::Mvec<double> mv2;
mv2[c3ga::E0] = 1.0;
mv2[c3ga::E1] = 2.0;
mv2 += c3ga::I<double>() + 2*c3ga::e01<double>();

// some products
std::cout << "outer: " <<(mv1 ^ mv2)<< std::endl;
std::cout << "inner: " <<(mv1 | mv2)<< std::endl;
std::cout << "geo : " <<(mv1 * mv2)<< std::endl;
std::cout << "left cont : "<<(mv1 < mv2)<< std::endl;
std::cout << "right cont : "<<(mv1 > mv2)<< std::endl;

// some tools
std::cout << "grade : " << mv1.grade() << std::endl;
std::cout << "norm : " << mv1.norm() << std::endl;
mv1.clear();

}

Since all the generated libraries are identified by a namespace, multiple GA
libraries can be used together as shown in Listing 2.

LISTING 2. Example of code using simultaneously the
space time algebra of R3 and an Eclidean GA of R3.

#include <st3ga/Mvec.hpp>
#include <e3ga/Mvec.hpp>

void plop(){
st3ga::Mvec<double> mv1 = ...;
e3ga::Mvec<double> mv2 = ...;

}

15. Experimental results
We conducted some tests on high quality consumer grade hardware over
several platforms (Ubuntu-16.04, MacOs-10.12 and Windows-10), with gcc-
5.4, clang-9.0 and MinGW-7.2 and Visual Studio compilers. The compilers
just need to be compatible with C++14. These tests mainly concern the speed
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of the products, the size of the binary file, the size of the stored data and
the dimension range. To get a better understanding of the results, we com-
pared Garamon with some of the most efficient existing GA libraries in C++,
namely Gaalop [6], Gaigen [14] and Versor [7].

15.1. High dimensions
In this section, the term dimension d refers to the dimension of the vector
space used to build a GA composed of 2d elements. As stated in [14], the
maximum dimension supported by Gaigen is dimension 12. The tests we
conducted on Versor showed that a single vector product could run in an
Euclidean GA at most in dimension 10, due to compilation memory over-
loads. This maximum dimension falls to dimension 7 when the program
tested involves various grades of k-vectors and various associated products.

Garamon is designed to be compatible with high dimension algebras.
Due to some technical choices, Garamon has a hardcoded limit of dimen-
sion 31. However, in practice, while generating a library based on an Eu-
clidean algebra of dimension 20 takes few seconds, generating a library
based on a conformal vector space (including basis changes) of the same
dimension 20 may requires hours. Then, the compilation may also be long,
but should be done only once since our compilation process includes a full
precompiled version for float and double.

For practical applications, we conducted some tests on both Double
Projective Geometric Algebra of R4,4 [10] and Triple Conformal Geometric
Algebra of R9,3 [11]. For higher dimensional algebra, we tested Garamon on
the Quadric Conformal Geometric Algebra [5] built over a 15-dimensional
vector space for real-time applications. There would be some interests to
also conduct these tests on high dimension Euclidean GA dedicated to GIS
sytems [26].

15.2. Speed computation
The speed computation tests were conducted on basic operations like outer
products C = A ∧ B, inner products C = A|B, or some combinations D =
(A ∧ B)|C. For more complex operations, we expect Gaalop [6] to provide
some efficient code reduction such it becomes the best solution every time.

For Gaalop, we followed its standard usage and generated a set of func-
tions with general signature like “void myProduct(A,B,C)”, that are clearly
efficient since no memory allocation nor memory copy are required. How-
ever, these functions are far from easy to use when combining several prod-
ucts. For the other tested libraries, we used the already defined functions,
such as c= a∧ b. In most of the implementations, these operations require
a memory allocation to locally store the result, and a copy to the final vari-
able.

For each tested library, the speed performance can vary according to
the platform, the compiler and the algebra dimension. However, the trend
of these benchmarks tends to show that Gaalop and Versor are almost every
time the fastest. Garamon presents the same performances as Gaigen, and
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surprisingly performs sometimes better than Gaalop on products such as
D = (A ∧ B) · C.

The code profiling shows that a large part of the product in Garamon
is actually used for the memory allocation. This situation is especially true
when the result of a product has several grades, like is some geometric prod-
ucts where the memory allocation is performed for all independent grades
and not once, like in Gaigen. The memory handling of Garamon, however,
presents some good property when manipulating a large amount of data, as
described in the section 15.3.

15.3. Memory consumption
The data memory consumption tests were conducted by generating both
many random vectors and bivectors. Let d be the dimension of the vector
space supporting the algebra, Table 3 and 4 show that the per-grade arrays
has a memory storage roughly linear in d when the full multivector has a
memory complexity of O(2d).

TABLE 3. Memory requirement (in MB) to store 50000 ran-
dom vectors.

dimension 5 6 7 8 10 15
Gaigen [14] 12.8 25.6 51.2 102.4 409.6 −

Versor [7] 4.6 5.0 5.5 6.3 − −
Garamon 2.1 2.5 2.9 3.4 4.3 6.4

TABLE 4. Memory requirement (in MB) to store 50000 ran-
dom bivectors.

dimension 5 6 7 8 10 15
Gaigen [14] 12.8 25.6 51.20 102.4 409.6 −

Versor [7] 7.9 11.8 16.6 22.1 − −
Garamon 5.3 7.9 11.2 15.3 24.7 57.6

16. Conclusion
This paper presents Garamon, a Geometric Algebra library generator syn-
thesizing C++ libraries implementing Geometric Algebra of low and high
dimensions for any arbitrary metrics. The objective of Garamon is to be as
user friendly as possible, without too much computation speed repercus-
sions, and to have a good behaviour in term of memory consumption. The
libraries are generated from a simple specification file. The “per grade” data
structure used in Garamon is an efficient compromise between data storage,
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computation efficiency and user friendliness. According to the base vector
space dimension, the generated specialized libraries are implemented either
with full precomputed operations or also based on a new recursive scheme
following a prefix tree multivector representation for higher dimensions.
An “upside down” reading of the prefix tree leads to recursive products
of the dual multivector without any explicit dualization. Finally, Garamon
can handle any arbitrary algebra signatures with a numerically robust basis
change implementation. We consider Garamon as an efficient tool to easily
test and investigate GA algorithms. Then, the final version of the method
can be optimized only once with Gaalop.

Further work is in process to deal with even higher dimension, namely
for vector space dimensions of up to 30 for handling cubic and quartic sur-
faces, for example. This would require a framework whose vector space
dimension is higher than 20. To achieve this, we would develop new al-
gorithms to compute only required products at runtime. To achieve this,
cache-oblivious [8] of Geometric Algebra operators will be developed. These
algorithms will be based on the prefix tree approach. In order to compute as
low products as possible we would also base our approach on stochastic
acceptance [21] of the products of Geometric Algebra with respects to the
products computed by the user. Another interesting ongoing work consists
in making Garamon capable of handling non-constant metrics. Applications
of such works are wide and could consist in finding a way to compute the
electric and magnetic part of the Riemann tensor as outlined in [2].
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