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Abstract

Compact and high speed electromechanical systems lead to higher and higher
levels of multiaxial mechanical stress, that may strongly change the magnetic be-
havior of materials, making the development of highly accurate magnetic models
a very important task. Among all available magnetoelastic models, multiscale
approaches seem to be the most promising.The coupling effect is introduced at
the single crystal scale, mainly attributed to the evolution of magnetic domain
structures under magneto-mechanical loading. All these models use however a
formulation of free energy where the energetic term describing magneto-elastic
coupling is linearly stress dependent, that hardly allow (using artificial mech-
anisms) providing non-monotonic stress effect on the magnetic behavior. The
proposition detailed in this paper is to consider a second order stress term in the
free energy expression, allowing a linear dependance of magnetostriction tensor
with stress to be defined and providing the non-monotonous stress effect. This
introduction leads to a more complex description of magnetoelastic effect that
needs the identification of a large number of complementary material constants.
In this paper, developments are made in the frame of cubic symmetry for first
order magneto-elastic term (joining the classical description) and considering an
isotropic second order stress effect for the sick of simplicity. This simplification
leads to only two additive physical constants to be identified. An identifica-
tion procedure is proposed and applied to model the magnetoelastic behavior a
non-oriented (NO) 3wt%silicon-iron electrical steel.

Keywords: magneto-elasticity, morphic effect, magnetostriction, multiscale
modeling, iron-silicon alloys

1. Introduction

The search for weight optimization of electromechanical systems leads to
build more compact and high speed systems (see [1] and reviews [2, 3, 4]).
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These systems generate high levels of multiaxial mechanical stress [5], that
strongly change the magnetic behavior of materials as uniaxial stress can do
[6, 7]. The prediction of multiaxial stress effect encountered requires the use of
multiaxial model where an accurate relation between stress and magnetic quan-
tities (magnetic permeability and losses) is looked for. Few models are available.
Macroscopic phenomenological approaches (see for instance [8, 9, 10, 11, 12, 13])
do not provide a sufficient description of such complex phenomena. Equivalent
stress approaches where a full stress tensor is represented by a scalar value
are interesting but usually use some restrictive hypotheses (isotropy, plane
stress) [14, 15, 16]. Multiscale approaches where the coupling effect is in-
troduced at the single crystal scale constitute an promising alternative way
[17, 18, 19, 20, 21, 22, 23] despite longer calculation times (that remains much
lower than for micromagnetics). They seem relevant to establish macroscopic
constitutive laws, able to be introduced in finite element calculations [24], since
magneto-elastic coupling effects are mainly attributed to the evolution of mag-
netic domain structures under magneto-mechanical loading. Some of these mod-
els have been extended to predict hysteresis [21, 23].

Experiences show on the other hand that mechanical stress sometimes has a
non-monotonic effect on magnetic behavior [10, 23, 25], leading to an increase
followed by a decrease of magnetization at increasing stress level. This concerns,
for example, iron-silicon alloys constitutive of most of high and medium-range
electrical machines and sometimes subjected to high operating stresses [5]. The
non-monotonic effect may concern different iron-based ferromagnetic materials
when they are subjected to plastic deformation and suffer the effect of high
intensity multiaxial internal stresses [26]. Unlike the well-known Villari rever-
sal, it may appear at the lowest magnetic field levels (e.g. sudden decrease of
initial susceptibility with increasing stress). To address this non-monotony, a
concept of demagnetizing-stress field has been introduced by several authors
(see [10, 23], and more recently in [25] for macroscopic attempts). Introduction
in a multiscale model has been proposed but the variations of magnetization
curves are usually not in good accordance with experimental results on the one
hand. This theory does not explain the associated apparent change of magne-
tostriction sign with stress on the other hand [23, 27]. To the best knowledge
of author, micromagnetic models including magneto-elastic effects do not allow
this phenomenon to be depicted either.

Indeed, all these models, from micro to macroscale, use a formulation of free
energy where the energetic term describing magneto-elastic coupling is linearly
stress dependent (using a uniaxial, plane stress or multiaxial stress description),
in an isotropic or cubic frame. The proposition detailed in this paper is to con-
sider a second order stress term in the free energy expression able to address
the non-monotonic effect. Second order stress has initially been discussed in
[28, 29] as a so-called morphic effect. This term allows a linear dependence of
magnetostriction tensor with stress to be defined. The stiffness tensor becomes
magnetic dependent as a secondary consequence leading to a part (usually ne-
glected) of the so-called ∆E effect [30, 31]. By introducing a new term in the
Helmholtz free energy, a new expression of magnetoelastic energy is obtained



and can be introduced in a multiscale modeling. This introduction leads to a
more complete (but more complex) description of magnetoelastic effects in iron
based material allowing to describe the non-monotonic change of permeability
with stress and the change of magnetostriction sign.

In this paper, developments are made in the frame of cubic symmetry for first
order magneto-elastic term (joining the classical description) and considering an
isotropic second order stress effect. This simplification leads to a reduced num-
ber of additive physical constants to be identified. An identification procedure
is proposed using a semi-analytical modeling of the magneto-elastic behavior.
Finally, only two new constants are introduced allowing to extend the applica-
bility of multiscale magneto-mechanical modeling of this class of materials to a
wider stress range. The complete procedure is applied to a non-oriented (NO)
3wt.%silicon-iron electrical steel.

The first part of the paper presents an experimental work where the non-
monotonic variation of magnetic behavior with stress is illustrated. The multi-
scale modeling and associated thermodynamic background are presented in the
second part, where the second-order stress term is defined and introduced in
the Gibbs free energy expression. The last part details the identification pro-
cedure of second order terms reduced to two parameters and illustrates some
comparisons between modeling and experiments, showing the relevancy of this
new approach.

2. Influence of stress on magnetic and magnetostrictive behavior of
a classical iron-silicon electrical steel

2.1. Experimental procedure and material

The benchmark for magneto-mechanical measurements under uniaxial stress
is based on a non-standard experimental frame. It is constituted of two face-to-
face positioned ferrimagnetic U-yokes (figure 1). Samples usually consist of 200
to 250mm long and about 12.5mm wide strips whose thickness can vary from
0.2 mm to few millimeters. Samples are instrumented with longitudinal and
transverse strain gauges stuck on both sides in order to perform magnetostric-
tion strain measurement (measurements got on both sides are averaged). A half
Wheatstone bridge configuration with temperature compensation and low-pass
second order butterworth filtering allows the strain gauges signals to be ap-
propriately stored [32]. Digitizing is ensured by a synchronized NI-DAQ 16bit
card. A primary winding is placed on the specimen. We restrict experiments to
reversible behavior with usual methods: anhysteretic magnetization and mag-
netostriction curves are built point by point by applying a sinusoidal magnetic
field (sinusoidal current in practice) superimposed to a bias field defining the an-
hysteretic point, and of exponentially decreasing amplitude. The measurement
system is current controlled by a Kepco supply driven by a NI controller and
home-made Labview software [33]. B-coil and H-coil ensure the measurement
of magnetic parameters. The set-up is especially designed to get magneto-
mechanical reference results at very constant stress. The loading system is



ensured by heavy weights connected to the sample by cables and articulated
jaws stuck to the sample. This technique strongly reduces vibrations usually
encountered in electro-hydraulic machines. The maximal load is 50 Kg leading
to a maximal stress of about 100 MPa (depending on the section).

A commercial NO 3 wt.%silicon-iron (0.5mm thick) lamination from Arcelor-
Mittal was used for the experimental campaign. It is well known that NO FeSi
exhibits a crystallographic texture ({111} < 2̄11 > type crystallographic tex-
ture along the rolling direction (RD)) leading to an orthotropic magnetic and
magnetostrictive behavior already discussed in [32, 34, 35]. Anisotropic phe-
nomena, even reachable by experiments and modeling will not be discussed
herein. Results reported in this paper concern strips cut by electro erosion in
the lamination along the transverse direction (TD) where the most significant
magnetostriction strains amplitude are obtained.

2.2. Experimental results

Figure 2 shows the influence of the magnetic loading H on the magnetization
M at different stress levels σ between 0 and 78 MPa (some interesting stress lev-
els are highlighted, others are not labeled). Two representations are proposed:
figure 2a illustrates the magnetization curves obtained at constant stress; figure
2b shows the evolution of the magnetization as a function of stress for different
magnetic field amplitudes. These figures are complemented by figure 3a which
shows the evolution of the derivative of the magnetization with respect to the
stress, and by figure 3b which shows the evolution of the initial susceptibility
(anhysteretic) with stress. This set of results illustrates well the purpose of
the paper: below 15 to 20MPa, a mechanical stress leads to an increase in the
magnetization from the lowest magnetic fields up to about 2000 A/m. Higher
magnetic field levels cause the well-known mechanism of magnetization rotation
and associated reverse sensitivity of magnetization to stress. This is the Villari
effect resulting in a crossing of the high-field magnetization curves (illustrated
in figure 2b for H=10000 A/m). This Villari effect (so-called Villari reversal)
is well documented especially for pure iron and various steels [6, 7, 8, 36, 37].
Its modeling is generally possible when crystalline anisotropy and magnetiza-
tion rotation are taken into account [38, 39, 37, 26]. For stresses greater than
20 MPa, the sensitivity of the magnetization to stress is negative whatever the
magnetic field level, including zero magnetic field as shown in figure 3b. These
results are perfectly in agreement with the experimental results reported in some
recent communications [12, 25, 27].

The figure 4 shows the concomitant evolution of the longitudinal magne-
tostriction deformation (// ~H - figure 4a) and transverval magnetostriction de-

formation (⊥ ~H - figure 4b) as a function of the magnetization. These results
are consistent with former results available in literature. Several concordances
can be observed with the magnetic behavior. Thus, for a stress less than 15-20
MPa, the longitudinal deformation increases with magnetization up to levels
corresponding to the Villari reversal (in agreement with the crossing of the
high-field magnetization curves). At higher stress, the sample shrinks in the



direction of the applied magnetic field. This contraction increases as the stress
increases but tends to reach a kind of saturation level. It is observed, however,
that at high magnetization the rotation mechanism and the associated varia-
tion in deformation seem preserved, which would mean that this mechanism is
decorrelated from the mechanical stresses. In general, the transverse deforma-
tion is of opposite sign to the longitudinal deformation. Its variations are also
always opposite to those observed in the longitudinal direction. The lack of
information across the thickness does not allow us to conclude with regard to
the volume conservation during the magnetization, even if this assumption is
usually retained [6, 7, 40].



These measurements perfectly illustrate the non-monotonic effect of the
stresses on the magnetic behavior. This behavior is clearly correlated with the
observed magnetostriction variations. Numerical simulations have confirmed
that magnetic forces can not be incriminated. This result is indirectly confirmed
by similar magnetic and magnetostrictive measurements performed on an iron-
cobalt alloy and obtained using the same set-up, where no non-monotonic effect
has been observed [41, 16]. The correlation between magnetostriction variation
and magnetization variation seems, on the contrary, to indicate that the mecha-
nism can only be modeled through a suitable constitutive law. In this case, the
use of a demagnetizing stress field can only bring about a partial correction of
the magnetization levels but can not in any case produce a significant effect on
the magnetostriction behavior on the one hand and be extended to a multiaxial
mechanical loading on the other hand. Introduction of a higher order stress
term in the constitutive law is key.

3. Multiscale modeling

A multiscale model of a representative volume element (RVE) of such materi-
als is presented in this section including the second order stress effect, remaining
in the framework of continuum mechanics. In the following, g denotes a grain.
It is supposed to be composed of several phases φ (typically ferrite, austenite,
martensite,...), that may be separated in different variants (see [42, 43] for more
details) but remain at constant volume fraction in the modeling proposed1. α
denotes a magnetic domain family inside the ferromagnetic phase considered and
represents the lower scale. The scale organization is illustrated in figure 5, from
the RVE to the domain scale, and corresponds to scales where some physical
fields can be considered as homogeneous leading to some simplifications in the
energy description (recalling the assumptions of former phase model from Néel
[45]). An implicit method is employed to homogenize the magnetic, mechanical
and magnetostrictive behavior [22, 46]. A first step consists to build an energy
function at the domain scale where anisotropic crystallographic phenomena are
significant and some fields can be simplified. Indeed the selection of a domain
family by energy minimization complemented by the magnetization rotation are
considered as the two phenomenons that precondition the macroscopic behavior.

3.1. Governing equations and Gibbs free energy at the domain scale

The first and second law of thermodynamics are considered in the frame of
small mechanical perturbations and in the absence of internal heat generation
(e.g. Eddy currents are not considered). The first principle given at the local
scale (J/m3) express that the total energy density composed of kinetic energy
density and internal energy density can only change by the action of external

1the modeling applies to single or multiphased materials where one phase at minimum is
ferro(ferri)magnetic but remains at constant volume fraction. Extension to phase change is
possible and applies for magnetic shape memory alloys for example [44].



work and heat exchange. uα denotes the internal energy density at the domain
scale. At constant velocity, kinetic energy is constant. There is a direct re-
lationship between the variation of internal energy density and power sources
following:

u̇α = σα : ε̇α + µ0
~̇Mα. ~Hα − div(~qα) (1)

σα and ε̇α are the local stress and strain rate tensors (bold format refers
to second order tensor) whose double contraction forms the mechanical power

density. ~Mα and ~Hα refer to the local magnetization and magnetic field vectors
(the superscript arrow refers to first order tensor = vector). The magnetization
rate times magnetic field multiplied by the vacuum permeability µ0 define the
magnetic power2. ~qα is the heat flux vector.

The second law of thermodynamics states that:

Tαṡα ≥ −div(~qα) +
1

Tα
~qα.
−−→
gradTα (2)

with Tα the local temperature and sα the entropy density. Introducing the
Helmholtz free energy density,

ψα = uα − Tαsα (3)

the so-called Clausius-Duhem inequality is obtained and decomposed in in-
trinsic (4) and extrinsic (5) parts following:

σα : ε̇α + µ0
~̇Mα. ~Hα − (sαṪα + ψ̇α) ≥ 0 (4)

− 1

Tα
~qα.
−−→
gradTα ≥ 0 (5)

The second expression is unused since thermal effects are not considered
(isothermal problem). The Helmholtz free energy is a function of deformation,

magnetization and temperature as control variables ψα = ψα(εα, ~Mα, Tα). The
associated power is consequently:

ψ̇α =
∂ψα
∂εα

: ε̇α +
∂ψα

∂ ~Mα

. ~̇Mα +
∂ψα
∂Tα

Ṫα (6)

The reversible framework states that the first intrinsic part of Clausius-
Duhem inequality is null, leading to the so-called thermodynamic consistency
equations (7).

2The magnetic power is usually defined as a scalar product of magnetic induction rate with

magnetic field: ~̇Bα. ~Hα. It can be simplified using the decomposition ~Bα = µ0( ~Hα+ ~Mα) and
considering that the contribution of the magnetic field to the total power is negligible because
it is present even in the absence of magnetization (see [47, 48]).



σα =
∂ψα
∂εα

; ~Hα =
∂ψα

µ0∂ ~Mα

; sα = −∂ψα
∂Tα

(7)

Therefore, the Helmholtz free energy variation (for a time step dt) is con-
trolled by magnetization and total deformation variations at constant temper-
ature:

dψα = σα : dεα + µ0
~Hα.d ~Mα (8)

The magnetic free enthalpy (Legendre transformation of magnetic quantity)

κα = ψα − µ0
~Hα. ~Mα allows the energy variation to be defined as function of

magnetic field variation instead of induction variation. The Gibbs free energy (or
free enthalpy) (Legendre transformation of mechanical quantity) gα = κα−σα :
εα allows finally the energy variation to be defined as function of stress variation
instead of deformation variation. Variation of Gibbs free energy is given by:

dgα = −εα : dσα − µ0
~Mα.d ~Hα (9)

Strain and magnetic induction finally derive from the Gibbs free energy
function following:

εα = − ∂gα
dσα

; ~Mα = − ∂gα

µ0∂ ~Hα

(10)

Small perturbation hypothesis allows the total deformation to be considered
as a sum of elastic εeα and magnetostriction εµα strains leading to:

εα = εeα + εµα = C−1α : σα + εµα (11)

Cα is the fourth order local stiffness tensor. εµα may depend at this step
from magnetic field and stress at the local scale so that the derivation of the
mechanical part of the Gibbs free energy uses and integration step of the mag-
netostriction strain over the stress path:

gmechα = −1

2
σα : C−1α : σα −

∫ σα

0

εµα : dσα (12)

For the derivation of the magnetic part of the Gibbs free energy, the Helmholtz
magnetic free energy ψmagnα is first defined as a Taylor expansion of magneti-
zation (sixth order expansion), taking into account the fact that the magnetic
behavior is an odd function of magnetization. Second-rank Kα, fourth-rank
Kα and sixth-rank Kα tensors are used to define the magneto-crystalline part
of Helmholtz free energy. Their expressions are strongly correlated to material
symmetries [28, 49]. The coupling between neighboring atoms leads to a con-
stant magnetization direction over a wide volume (i.e. magnetic domains). Any
angular deviation (especially inside domain walls) leads to an energy increase,
known as the exchange energy, whose expression involves the magnetization
gradient ∇ ~Mα and an exchange constant A in the framework of continuum



mechanics [50]. The expression of Gibbs magnetic free energy (after Legendre
transformation) is finally given by:

gmagα =
A

M2
α

∇ ~Mα : ∇ ~Mα+ ~Mα.Kα. ~Mα+ ~Mα⊗ ~Mα : Kα : ~Mα⊗ ~Mα+ ~Mα.( ~Mα⊗ ~Mα : Kα : ~Mα⊗ ~Mα). ~Mα−µ0
~Hα. ~Mα

(13)
The sum of gmechα and gmagα gives the total Gibbs free energy of medium that

must be minimum with respect to stress and magnetic field at the equilibrium. It
must be noticed that the magneto-mechanical part of the mechanical Gibbs free
energy could be defined in the frame of magnetic Gibbs free energy expression
using a Taylor expansion as well [28]. Indeed this term denotes the coupling
between magnetics and mechanics. Its expression is key for an appropriate
modeling of the experimental observations made in the previous section.

3.2. Simplification of Gibbs free energy at the domain scale

Following the proposed scaling, α denotes now a domain family (or more
simply a domain), whose number is defined by the number of easy magnetic axes
in the crystal (6 directions for < 100 > easy axes materials, and 8 directions
for < 111 > easy axes materials). It is first interesting to observe that the
magnetization at the domain scale oriented along an axis ~γα has a constant
norm equal to the saturation magnetization Ms [50]. The magnetization vector
can be defined using the direction cosines γi in the local frame (usually crystal
frame ~ei) as:

~Mα = Ms~γα = Ms
t[γ1 γ2 γ3] = Msγi~ei (14)

In a magnetic domain, spatial variations of magnetization are inexistent, the
magnetization gradient is consequently zero. The Gibbs free energy (average
energy density over a domain) can consequently be simplified but will not allow
the domain walls to be described 3.
The dyadic product of ~Mα allows the second-rank orientation tensor Rα to de
defined :

~Mα ⊗ ~Mα = M2
s ~γα ⊗ ~γα = M2

s

 γ21 γ1γ2 γ1γ3
γ1γ2 γ22 γ2γ3
γ1γ3 γ2γ3 γ23

 = M2
sRα (15)

Using the cubic symmetry and the identity
∑
i γiγi = 1, the magnetic part

of Gibbs free energy simplifies into [28, 50]:

gmagα = K0 +K1(γ21γ
2
2 + γ21γ

2
3 + γ22γ

2
2) +K2(γ21γ

2
2γ

2
3)− µ0

~Hα. ~Mα (16)

3This is addressed by micromagnetic formulations [49, 50]



where K0, K1 and K2 are the so-called magnetocrystalline constants (defin-
ing the magnetocrystalline -non convex- energy density) and the last term is usu-

ally called Zeemann energy density (if ~Hα is considered homogeneous [50, 22]).

The mechanical part of the Gibbs free energy may be simplified at the domain
scale by using the so-called magnetostriction tensor of a domain α defined by
[40]:

εµα =
3

2

 λ100(γ21 − 1
3 ) λ111γ1γ2 λ111γ1γ3

λ111γ1γ2 λ100(γ22 − 1
3 ) λ111γ2γ3

λ111γ1γ3 λ111γ2γ3 λ100(γ23 − 1
3 )

 (17)

where λ100 and λ111 are the magnetostriction constants that correspond to
the deformation of a perfect single crystal along < 100 > and < 111 > axes
respectively at the magnetic saturation. This tensor is considered independent
to stress and leads to the following reformulation of the mechanical part of the
Gibbs free energy by allowing the integral term to be simplified4:

gmechα = −1

2
σα : C−1α : σα − σα : εµα (18)

To the best knowledge of author, multiscale or macroscopic models that use
a linear stress dependent magneto-elastic energy are not able to depict the non-
monotonic effect, as observed experimentally. Micromagnetic models are no
exception despite a more realistic description of the microstructure by taking
into account demagnetizing fields. Some authors tried to propose a correction
by implementing a stress dependent demagnetizing field [23, 27]. This solution
is not satisfactory because it corresponds to the addition of an artificial weak
coupling.

3.3. Implementation of a second order stress term in the Gibbs free energy

We have first to recall that magnetostriction at the local scale (leading typ-
ically to λ100 and λ111 parameters) is explained by the so-called spin-orbit cou-
pling [49, 40]. Spin orbit coupling means that the spin moment of an electron
and its orbital moment are coupled. Indeed the electron’s orbit around the
atomic nucleus creates a magnetic field that modifies the direction of its spin
magnetic moment (the magnetic moment wants to align on the magnetic field
direction). Therefore, any change of magnetic field (effective field) leads to a
reorientation of the electron’s spin. But the orbital motion of the electron is
also coupled with the lattice sites, that is called the orbital-lattice coupling.
The main consequence is that if the orbital motion around the atomic nucleus
is changed, the atomes position moves through the strong orbit-lattice coupling
and leads to a deformation. It is called magnetostriction strain. Consider-
ing an initial undeformed state, magnetostriction depends on the orientation

4This simplification is especially encountered in the construction of macroscopic models
[9, 51] but not always justified.



of saturation magnetization. Indeed, spins reorient in a given direction, and
the resultant orbital-lattice coupling leads to deformation that may be different
from one direction to another (and may be from negative to positive value: e.g.
iron - λ100 = 21× 10−6, λ111 = −21× 10−6 [40]). Because stress at the crystal-
lographic scale leads to a distorsion of lattice, the magnetostriction that can be
reached may be different at a given stress level and leads to significant changes of
magnitude. It can be recalled at this step that the theoretical magnetostriction
of an isotropic body is expressed as [31]:

λsat =
2

5
λ100k

a +
3

5
λ111k

b (19)

ka and kb are homogenization parameters depending on the elastic proper-
ties. They are given by:

ka =
µa
µeff

µeff + µ?

µa + µ?
; kb =

µb
µeff

µeff + µ?

µb + µ?
(20)

µa and µb are the the single crystal shear moduli. µeff is the shear modulus
of the effective medium depending on the estimation that is looked for. µ? is the
Hill’s shear modulus, whose definition depends on the shear and compression
moduli of the reference medium supposed isotropic. It is clear, following this
relation that the sign of ”average” magnetostriction may differ depending on
the amplitude of intrinsic parameters that are λ100 andλ111. Taking the second
order effect into consideration leads to consider that λ100 andλ111 are not con-
stant but are stress dependent. A change of sign of picked up magnetostriction
(from positive to negative) could explain the change of sensitivity of magnetic
behavior at increasing stress.

From a thermodynamic point of view, the above analysis leads to observe
that the definition of the mechanical part of the Gibbs free energy given by equa-
tion (18) is not unique and corresponds to an assumption where the magneto-
elastic term of the Gibbs free energy (usually called magneto-elastic energy) is
considered linearly dependent to stress. Indeed the magneto-elastic energy may
be presented as a Taylor development of the free energy (including a quadratic
magnetic contribution):

ψmagmechα = − ~Mα ⊗ ~Mα : Eα : σα = M2
s Rα : Eα : σα (21)

Quantity M2
s Eα is often presented as a fourth order magnetostriction ten-

sor, function of three independent constants in case of cubic symmetry. This
number reduces to two constants (i.e. λ100 and λ111) using the (usual) incom-
pressibility condition. We observe the identity: (Rα : M2

s Eα) = εµα. However
a second order development in stress is theoretically possible. It has been pro-
posed by several authors [28, 52] to model a phenomenon known as morphic
effect. Indeed, using a higher order makes it possible to explain the evolution
of the stiffness constants of some materials with the direction of magnetization
(nickel [28]). The introduction of a second order stress term leads consequently



to dependance of compressibility and shear moduli to the magnetic state of the
medium. This phenomenon thus contributes in a minor way to the ∆E effect,
mainly related to the evolution of the magnetic domain configuration under
stress [30]. This higher order term also allows, as noticed by [52] to make the
magnetostrictive ”constants” stress dependent. Such a second order develop-
ment has been previously employed by [27, 48, 53] for strain (Helmholtz free
energy was addressed) in macroscopic models. Finally, the magneto-elastic en-
ergy is written using a sixth order tensor Eα (M2

s Eα is the morphic tensor)
following:

ψmagmechα = − ~Mα ⊗ ~Mα : Eα : σα −
1

2
σα : ( ~Mα ⊗ ~Mα : Eα) : σα (22)

ψmagmechα = −M2
s Rα : (Eα : σα +

1

2
σα : Eα : σα) (23)

The Gibbs free energy density is now written inside a domain and for a constant
as:

gα = −1

2
σα : C−1α : σα−M2

s Rα : (Eα : σα+
1

2
σα : Eα : σα)+K1(γ21γ

2
2+γ21γ

2
3+γ22γ

2
2)+K2(γ21γ

2
2γ

2
3)−µ0

~Hα. ~Mα

(24)
This formulation has two consequences:

• Magnetostriction includes now a stress-dependent term. Indeed, total de-
formation is obtained as the derivation of the Gibbs free energy with
respect to stress

εα = − ∂gα
∂σα

= C−1α : σα +M2
s Rα : [Eα + Eα : σα] (25)

The deformation is separated in elastic and magnetostriction terms fol-
lowing

εe = C−1α : σα and ε′µα = M2
s Rα : [Eα+Eα : σα] = εµα+M2

s Rα : Eα : σα
(26)

We observe that the magnetostriction strain is the composition of the first
order magnetostriction strain defined in equation (17) and a second order
term linearly stress dependent.

• Stiffness includes now a magnetic-dependent term. Compliance is the
composition of the initial compliance and a fourth order tensor related to
the orientation of magnetization via the orientation tensor Rα:

C′−1α = −∂
2gα
∂σ2

α

= C−1α +Rα : Eα (27)



This compliance change is called the morphic effect and can be seen as
the intrinsic part of the ∆E effect5.

Of course, one strong difficulty if we want this theory to have praticle appli-
cation is the identification of material parameters associated with the morphic
tensor. Indeed the morphic tensor is a sixth-rank tensor and even if cubic sym-
metry is considered at the domain scale and using the symmetric properties
of Cauchy stress and orientation second-rank tensor, the number of indepen-
dent constants reduces to 9 (126 independent constants in case of triclinic space
group material)[28]. This number remains too high to imagine a simple iden-
tification and further simplifications are required. It must be noticed that the
incompressibility hypothesis (used for the first-order magnetostriction) cannot
apply here since stress usually modifies the volume of a material.
The solution that is proposed is to apply an assumption on space group by us-
ing an isotropy condition only for this second-order term. The expression of the
Gibbs free energy of the second order term can be derived from the work of [52].
After removal of quadratic stress and magnetically independent terms (modi-
fying the elastic compliance), Kraus6 obtained a second-order magneto-elastic
component g′′magmechα in two terms:

g′′magmechα = −1

2
M2
s Rα : (σα : Eα : σα) = g′′magmech1

α + g′′magmech2
α (28)

with

g′′magmech1
α = −3

2
λ′s

(
Rα −

1

3
I

)
: Lα (29)

and

g′′magmech2
α = −3

2
λ′′s

(
Rα −

1

3
I

)
: Mα (30)

where λ′s and λs” are two more magnetostrictive constants responsible of
the second-order magnetoelastic effects considering isotropic conditions, I is
the identity second-rank tensor. Lα and Mα are second-rank stress-dependent
tensors defined as function of stress components σij of σα by:

Lα =

 σ2
11 − σ22σ33 σ12 tr(σα) σ13 tr(σα)
σ12 tr(σα) σ2

22 − σ11σ33 σ23 tr(σα)
σ13 tr(σα) σ23 tr(σα) σ2

33 − σ11σ22

 (31)

and

5The ∆E effect defined literaly as a ”change of Young modulus” (E addressing the Young
modulus) [7] is the composition of the morphic effect [28] and a reorganization of the domain
structure at the upper scale - see [30] for an analytical modeling of this reorganization.

6In his paper [52], Kraus calculated the stress-dependent saturation magnetostriction and
magnetic-dependent Young modulus of isotropic body. However he did not propose a consti-
tutive behavior.



Mα =

 σ2
23 − σ22σ33 σ33σ12 − σ13σ23 σ22σ13 − σ12σ23

σ33σ12 − σ13σ23 σ2
13 − σ11σ33 σ11σ23 − σ12σ13

σ22σ13 − σ12σ23 σ11σ23 − σ12σ13 σ2
12 − σ11σ22

 (32)

where tr(σα) indicates the trace of stress tensor at the domain scale. The
second order magnetostriction can consequently be derived following:

ε′′
µ
α = M2

s Rα : Eα : σα = −∂g
′′magmech
α

∂σα
(33)

leading to the components detailed hereafter:

ε′′µ11 = 3
2

 γ2
1 − 1

3
γ1γ2 γ1γ3

γ1γ2 γ2
2 − 1

3
γ2γ3

γ1γ3 γ2γ3 γ2
3 − 1

3

 :

 2λ′sσ11 λ′sσ12 λ′sσ13

λ′sσ12 −(λ′s + λ′′s )σ33 (λ′s + λ′′s )σ23

λ′sσ13 (λ′s + λ′′s )σ23 −(λ′s + λ′′s )σ22


ε′′µ22 = 3

2

 γ2
1 − 1

3
γ1γ2 γ1γ3

γ1γ2 γ2
2 − 1

3
γ2γ3

γ1γ3 γ2γ3 γ2
3 − 1

3

 :

 −(λ′s + λ′′s )σ33 λ′sσ12 (λ′s + λ′′s )σ13

λ′sσ12 2λ′sσ22 λ′sσ23

(λ′s + λ′′s )σ13 λ′sσ23 −(λ′s + λ′′s )σ11


ε′′µ33 = 3

2

 γ2
1 − 1

3
γ1γ2 γ1γ3

γ1γ2 γ2
2 − 1

3
γ2γ3

γ1γ3 γ2γ3 γ2
3 − 1

3

 :

 −(λ′s + λ′′s )σ22 (λ′s + λ′′s )σ12 λ′sσ13

(λ′s + λ′′s )σ12 −(λ′s + λ′′s )σ11 λ′sσ23

λ′sσ13 λ′sσ23 2λ′sσ33


ε′′µ23 = 3

4

 γ2
1 − 1

3
γ1γ2 γ1γ3

γ1γ2 γ2
2 − 1

3
γ2γ3

γ1γ3 γ2γ3 γ2
3 − 1

3

 :

 2λ′′sσ23 −λ′′sσ13 −λ′′sσ12

−λ′′sσ13 0 (λ′s + λ′′)σ11 + λ′s(σ22 + σ33)
−λ′′sσ12 (λ′s + λ′′)σ11 + λ′s(σ22 + σ33) 0


ε′′µ13 = 3

4

 γ2
1 − 1

3
γ1γ2 γ1γ3

γ1γ2 γ2
2 − 1

3
γ2γ3

γ1γ3 γ2γ3 γ2
3 − 1

3

 :

 0 −λ′′sσ23 (λ′s + λ′′s )σ22 + λ′s(σ11 + σ33)
−λ′′sσ23 2λ′′sσ13 −λ′′sσ12

(λ′s + λ′′)σ22 + λ′s(σ11 + σ33) −λ′′sσ12 0


ε′′µ12 = 3

4

 γ2
1 − 1

3
γ1γ2 γ1γ3

γ1γ2 γ2
2 − 1

3
γ2γ3

γ1γ3 γ2γ3 γ2
3 − 1

3

 :

 0 (λ′s + λ′′s )σ33 + λ′s(σ11 + σ22) −λ′′sσ23

(λ′s + λ′′s )σ33 + λ′s(σ11 + σ22) 0 −λ′′sσ13

−λ′′sσ23 −λ′′sσ13 2λ′′sσ12


(34)

since

Rα −
1

3
I =

 γ21 − 1
3 γ1γ2 γ1γ3

γ1γ2 γ22 − 1
3 γ2γ3

γ1γ3 γ2γ3 γ23 − 1
3

 (35)

3.4. Constitutive behavior, localization and homogenization

The objective of the multiscale approach is to calculate, through scale change
procedures, the macroscopic magnetization ~M and magnetostriction εµ as func-
tion of macroscopic magnetic field ~H and stress σ. Localization (from the
macroscale to the domain scale) and homogenization (from domain scale to
macroscale) steps are required, involving to apply a constitutive behavior at the
local (domain) scale.

~Hα is the magnetic field at the domain scale. σα is the stress tensor at the
domain scale. Homogeneous field and stress assumptions at the grain scale (36)



lead to a stronger simplification of the Gibbs free energy (37) (pure mechanical
terms are removed).

~Hα = ~Hgr ; σα = σgr (36)

gα = −M2
s Rα : (Eα : σgr+

1

2
σgr : Eα : σgr)+K1(γ21γ

2
2+γ21γ

2
3+γ22γ

2
2)+K2(γ21γ

2
2γ

2
3)−µ0

~Hgr. ~Mα

(37)
Once the Gibbs free energy gα is known for a given domain α of direction

~γα = [cosθαsinφα; sinθαsinφα; cosφα], its volume fraction fα (38) is calculated
according to an explicit Boltzmann-type relation [18, 22]. This stochastic ap-
proach, proposed by other authors [49, 21] is relevant since the volume con-
sidered is sufficient, assuming that a magnetic domain is much smaller than
a representative volume element (considered as a small body immersed into
a large closed thermodynamic system)[54]. Numerical results should conse-
quently be compared to experimental results obtained at equilibrium. As (39)
is an adjusting parameter related to the initial magnetic susceptibility χ0 of the
material in absence of external or configuration loading [22, 23]. This calcula-
tion is complemented by an energy minimization (40) for the determination of
the magnetization direction ~γα (giving the direction cosines ). This formula-
tion is well suited for a single variant and single phase ferromagnetic material
(ferromagnetic ferrite or austenite)7.

fα =
exp(−As gα)∑
α

exp(−As gα)
(38)

with

As =
3χ0

µ0M2
s

(39)

{θα, φα} = min(gα) (40)

Assuming that the elastic behavior and the magnetic susceptibility are ho-
mogeneous within a grain, the magnetostriction strain and the magnetization of
a single crystal are written as the average magnetostriction and magnetization
over the domains (41) and (42).

εµgr =< εµα >=
∑
α

fα ε
µ
α (41)

7A more complex formulation has been proposed recently [43] to take a possible phase
transformation (ferromagnetic to ferromagnetic, or ferromagnetic to paramagnetic) or the
existence of several variants into account. The total number of internal variables strongly
depends on the number of grains, phases, variants and number of domain families inside each
variant.



~Mgr =< ~Mα >=
∑
α

fα ~Mα (42)

This calculation has to be made for each grain of a polycrystalline aggregate.
Since grains are not isotropic and disoriented form each other, some localization
rules are required to define the stress and magnetic fields at the grain scale
as function of macroscopic loadings. An Eshelby approach is applied for the
determination of both fields. The orientation of a grain inside the polycrystalline
medium is defined by three Euler angles, which are different from one grain
to another. The local magnetization and deformation are different from one
grain to another. Local magnetic and mechanical loadings ( ~Hgr and σgr) are

then different from the global loadings ( ~H and σ). Typically the calculation
of the local loadings are carried out on each grain through a self-consistent
polycrystalline scheme [22], where loadings at the grain scale are derived from
the macroscopic loadings, using equations (43) and (44). The gap between local
and global quantities defines the demagnetizing field and the residual stress.

~Hgr = ~H +
1

3 + 2χm
( ~M − ~Mgr) (43)

χm is the secant magnetic susceptibility (χm = ‖ ~M‖/‖ ~H‖),

σgr = Bgr : σ + Cacc : (εµ − εµgr) (44)

with the accommodation stiffness tensor:

Cacc = ((Cgr)−1 + (C?)−1)−1 (45)

and the stress concentration tensor:

Bgr = Cgr : (Cgr + C?)−1 : (C0 + C?) : (C0)−1 (46)

C? = C0 : ((SEsh)−1 − I) is the Hill’s constraint tensor. C0 is the stiff-
ness tensor of the effective medium. If a self-consistent scheme is chosen, C0

refers to the self-consistent stiffness tensor. SEsh is the so-called Eshelby ten-
sor, calculated following Mura [55]. The incompatibility operator defines the
compatibility effects resulting from the different behaviors between an isolated
grain and the surrounding medium [56]. These tensors depend on crystallo-
graphic orientation of the considered grain.

Once this self-consistent procedure is converged, the local magnetic and me-
chanical loadings ( ~Hgr and σgr) are determined, leading to the local response

of the model ( ~Mgr, ε
µ
gr).

Once the full knowledge of magnetization and magnetostriction of each grain
is obtained, the macroscopic responses ~M and εµ of the material are obtained
from an averaging operation:

~M =< ~Mgr > (47)



εµ =< tBgr : εµgr > (48)

4. Comparisons between modeling and experiments

4.1. Thermodynamical consistency of experimental results

We go back to the initial definition of Gibbs free energy (9) and consider the
material as homogeneous. The additive decomposition of (macroscopic) elastic
and magnetostriction strains apply.

dg = −(εe + εµ) : dσ − µ0
~M.d ~H (49)

The constitutive equations still verify the partial derivatives:

εe + εµ = − ∂g
∂σ

(50)

and

µ0
~M = − ∂g

∂ ~H
(51)

These relationships are however applicable at constant stress for the first
equation and at constant magnetic field for the second. Since magnetostriction
strain and magnetization are now macroscopic, they both depend on magnetic
field and stress. The second order derivative of the Gibbs free energy leads to :

∂2g

∂σ∂ ~H
= − ∂εµ

∂ ~H

∣∣∣∣
σ

(52)

for the first equation and to:

∂2g

∂ ~H∂σ
= −µ0

∂ ~M

∂σ

∣∣∣∣∣
~H

(53)

for the second equation, where ..|σ and ..| ~H indicate that relationships are
valuable for a constant stress and for a constant magnetic field respectively.
At the energy equilibrium, the two second order partial derivatives are equal
leading to the thermodynamic consistency equation (see [51, 37]):

∂εµ

∂ ~H

∣∣∣∣
σ

= µ0
∂ ~M

∂σ

∣∣∣∣∣
~H

(54)

Figure 6a plots the experimental function µ0
∂M
∂σ get form data plotted in

figure 2a. Figure 6b plots the experimental function ∂εµ

∂H get form data plot-
ted in figure 4a. The same unit has been used for both functions (T/MPa)
illustrating the same kind of variations and amplitudes (especially at low field
and low stress). Furthermore figure 6c plots the relative difference between



both functions, corresponding to a thermodynamic relative error (rel. error=
(µ0

∂M
∂σ − ∂εµ

∂H
)/max(µ0

∂M
∂σ

)× 100). This error is high where functions exhibit the
highest variations but remains lower than 15%. This result confirms that the
non-monotonic stress effect observed for the magnetic behavior is related to the
change of variation direction of the magnetostriction. An appropriate definition
of Gibbs free energy density should therefore enable these two phenomenons to
be taken into account simultaneously.

4.2. Analytical modeling of magnetostrictive behavior including second order
effect

We wish to develop an analytical expression of longitudinal and transversal
magnetostriction as function of magnetic field and stress in order to identify the
missing magnetostrictive parameters by comparison to experimental data. The
analytical modeling we propose is using the following assumptions:

• material is supposed as an agreggate of grains equally distributed over
the space and defining a isotropic macroscopic behavior (whatever the
behavior);

• cubic space-group is kept for the first order order magnetostriction effect
at the grain scale meaning that stress independent magnetostriction is
function of parameters λ100 and λ111 available in literature for most of
materials used for electrical engineering applications;

• isotropic conditions are used for the second order stress effect at the grain
scale. The formulation developed at the end of section 3.2 is retained,
involving two unknown coefficients λ′s and λ′′s ;

• it has been supposed that the magneto-crystalline anisotropy energy does
not participate to the evolution of the magnetostriction strain. In such
conditions, only the elastic and magnetostatic energies are explicitly con-
sidered in the description of the magnetic equilibrium of a domain. As
a consequence, this simplified modeling only applies for a magnetization
range where domain wall displacement occurs, excluding rotation;

• stress and magnetic field are supposed homogeneous over the material;

• stress is uniaxial and supposed applied in the direction of magnetic field.

A simplified analytical modeling of the ∆E effect has been recently pro-
posed [30], using the multiscale model detailed in [22] and in section 3.2. This
simplified approach was limited to the situation where no magnetic field was
applied, so that the magneto-static energy was not appearing in the definition
of the magnetic equilibrium. The integration of magnetic field is necessary and
possible but requires a semi- analytical and semi-numerical resolution.

An isotropic polycrystal can be seen as an aggregate of single crystals with
random orientation. As argued in [30] and [31], a polycrystal can consequently
be considered as a single crystal for which all directions would be easy directions.



In one domain of such a single crystal, the first order magnetostriction strain
tensor can be written (in its own framework):

εµαm =
3

2

 λm(γ21 − 1
3 ) λmγ1γ2 λmγ1γ3

λmγ1γ2 λm(γ22 − 1
3 ) λmγ2γ3

λmγ1γ3 λmγ2γ3 λm(γ23 − 1
3 )

 (55)

λm denotes the maximum magnetostriction strain of the considered poly-
crystal in the direction of the magnetic moment of the considered domain. It
can be derived from the first order magnetostrictive constants λ100 and λ111
following different assumptions, depending of either or not the magnetization
rotation is considered, and depending on the elastic behavior of the domain and
the average medium. An analytical calculation of the average magnetostrictive
tensor is proposed in [22]. At the magnetic saturation λm = λsat given by equa-
tion (19). If rotation is not considered and for a material exhibiting < 100 >
easy directions, λm = 2

5λ100k
a, reducing to λm = 2

5λ100 for homogeneous stress
condition.

The magnetization direction of each domain is fixed in space and defined
by direction cosines and saturation magnetization (56). Direction cosines are
function of spherical angles θ and ϕ that can be seen as continuous functions
varying in the range (0-2π) and (0-π) respectively:

~Mα = Ms

 γ1
γ2
γ3

 = Ms

 cosθ sinϕ
sinθ sinϕ

cosϕ

 (56)

Orthonormal frame (~e1, ~e2, ~e3) can be consequently seen as in the macro-
scopic frame where macroscopic loadings are applied.

We choose direction ~e3 as the mechanical and magnetic loading direction.
Macroscopic stress tensor and magnetic field vector reduce in:

σ =

 0 0 0
0 0 0
0 0 σ

 ; ~H =

 0
0
H

 (57)

The derivation of the maximal magnetostriction uses the same rules for the
second-order magnetostriction tensor than for the first order magnetostriction.
A 2/5 ratio is applied to isotropic magnetostrictive quantities λ′s and λ′′s . Con-
sidering on the other hand the uniaxial condition with applied stress σ33 = σ,
the second order magnetostriction strain tensor given by equation (34) simplifies
in:

ε′′µαm =
3

5
σ

 −(λ′s + λ′′s )(γ22 − 1
3 ) (λ′s + λ′′s )(γ1γ2) λ′s γ1γ3

(λ′s + λ′′s )(γ1γ2) −(λ′s + λ′′s )(γ21 − 1
3 ) λ′s γ2γ3

λ′s γ1γ3 λ′s γ2γ3 2λ′s(γ
2
3 − 1

3 )

 (58)



The total magnetostriction strain measured in the direction of applied field
(and stress) εµα// is given by the addition of εµαm33 and ε′′µαm33 (59). The total

magnetostriction strain measured perpendicularly to the direction of applied
field and stress εµα⊥ is given by the addition of εµαm11 and ε′′µαm11 averaged with
εµαm22 and ε′′µαm22.

εµα// =
3

5
(γ23 −

1

3
)(λ100 + 2σλ′s)

εµα⊥ = − 3

10
(γ23 −

1

3
) (λ100 − σ(λ′s + λ′′s ))

(59)

These equations can be expressed as function of spherical angles following:

εµα// =
1

5
(3 cos2ϕ− 1)(λ100 + 2σλ′s)

εµα⊥ = − 1

10
(3 cos2ϕ− 1) (λ100 − σ(λ′s + λ′′s ))

(60)

On the other hand the Gibbs free energy of a domain family is calculated
following the definitions of section 3.2 and 3.3, and considering the simplified
loading and the no-rotation assumption:

gα(H,σ) = −µ0HMs cosϕ− 1

5
σ(3 cos2ϕ− 1)(λ100 + σλ′s) (61)

Considering homogeneous stiffness, localization operation is avoided. The
average magnetostriction is given by:

εµm =

∫
α

fα(εµmα + ε′′µmα) dα (62)

fα indicates the volume fraction of domain α (see equation (38) in 3.4)
calculated using (since gα does not depend on θ):

fα =
exp(−As.gα)

2π

∫ π

0

exp(−As.gα) sinϕ dϕ

(63)

with (see equation (39) in 3.4):

As =
3χ0

µ0M2
s

(64)

After few calculations, the longitudinal and transversal magnetostriction
strains are obtained:

εµm// =

∫ π

0

1
5
(3 cos2ϕ− 1)(λ100 + 2σλ′s) exp(Asµ0HMs cosϕ+ 1

5
Asσ(3 cos2ϕ− 1)(λ100 + σλ′s))∫ π

0

exp(Asµ0HMs cosϕ+
1

5
Asσ(3 cos2ϕ− 1)(λ100 + σλ′s)) sinϕ dϕ

sinϕ dϕ

εµm⊥ =

∫ π

0

− 1
10
(3 cos2ϕ− 1) (λ100 − σ(λ′s + λ′′s )) exp(Asµ0HMs cosϕ+ 1

5
Asσ(3 cos2ϕ− 1)(λ100 + σλ′s))∫ π

0

exp(Asµ0HMs cosϕ+
1

5
Asσ(3 cos2ϕ− 1)(λ100 + σλ′s)) sinϕ dϕ

sinϕ dϕ

(65)

It can be observed that:



• magnetostriction strains are function of field and stress developing 3D
functions and allowing to plot classical εµ(H) curves at various stress
(magnetostriction behavior) or εµ(σ) curves at various magnetic field (∆E
effect);

• the longitudinal magnetostriction strain is function of only one second-
order magnetostriction constant; the identification of this parameter re-
quires to compare numerical results to longitudinal experiments at low
field (before rotation).

• the transversal magnetostriction strain is function of both second-order
magnetostriction constants; a comparison between numerical results and
transversal measurements may allow the second parameter to be identified.

• ∆E effect curves cannot be used since an initialization of Wheatstone
bridges is made during the measurement procedure of magnetostriction
behavior under stress. Only relative variations of magnetostriction with
magnetic field are relevant.

On the other hand, formula (62) and (63) apply for average magnetization
~Mm (rotation not considered) leading to:

~Mm =

∫
α

fα ~Mα dα (66)

Component in direction to the applied field Mm// is simply given by:

Mm// =

∫ π

0

Ms cosϕ exp(Asµ0HMs cosϕ+ 1
5Asσ(3 cos2ϕ− 1)(λ100 + σλ′s))∫ π

0

exp(Asµ0HMs cosϕ+
1

5
Asσ(3 cos2ϕ− 1)(λ100 + σλ′s)) sinϕ dϕ

sinϕ dϕ

(67)
We are able now to plot longitudinal and transversal magnetostriction as

function of magnetization and optimize λ′s and λ′′s parameters.

4.3. Experimental identification of morphic parameter

Different set of λ′s and λ′′s parameters has been tested. The complexity of
the model (even simplified) makes it very difficult to set up an identification
procedure by minimization of a residue. Parameters finally chosen are probably
not optimal in this sense but satisfy the overall behavior. Table 1 gathers the
different parameters finally used for graphical representations. Parameters Ms,
λ100 and λ111 come from literature [6]. Parameter χ0 is corresponding to the
initial slope of magnetization curve at the unloaded state. Parameters λ′s and λ′′s
have been optimized by comparison to experimental magnetostriction curves.

Figure 7 plots the magnetic behavior and initial susceptibility as function
of stress as given by the simplified model when only the first order magnetoe-
lastic term is considered in the Gibbs free energy. We observe as expected a



Table 1: Parameters used in the simplified modeling of NO 3wt.%Si-Fe alloy

Parameter Ms λ100 λ111 χ0 λ′s λ′′s
Value 1.61×106 23.5 -4.5 9600 -0.295 1.180
Unit A/m ppm ppm - ppm/MPa ppm/MPa

monotonous improvement of magnetic behavior. The associated modeled mag-
netostriction curves (longitudinal and transversal) are plotted in figure 8. Mag-
netostriction saturates with increasing stress without sign change, in accordance
with the saturation of magnetic behavior without decreasing of susceptibility.

In figure 9, the taking into account of the second order stress terms leads
to a better representation of the magnetic and magnetostrictive behaviors in
the range of field and stress studied in the experimental part. Magnetic be-
havior for 78 MPa tensile stress joins the magnetic behavior at unloaded state.
The maximal susceptibility is however obtained for a stress of about 40MPa,
higher than the value of 20MPa observed in the experiments (figure 9b). Mag-
netostriction curves show the expected change in curvature, directly related to
the amplitudes of λ′s and λ′′s parameters (figures 10a and 10b). The simplified
approach does not, however, make it possible to reproduce all the fineness of
the experimental behavior. Given the variations observed, we are entitled to
question the behavior of this model at higher stress on the one hand, and in
compression on the other hand. It is indeed important to observe the limits of
the proposed approach.

The effect of wide stress range (from -500MPa to +500MPa) on initial sus-
ceptibility has been plotted in figure 11a: it is first interesting to observe that
modeling using first or second order stress effect leads to a very similar behav-
ior under compressive stress. In case of tensile stress, the susceptibility reaches
three times its nominal value when the first order stress effect is used: this re-
sult was foreseen but is of course not in accordance with experimental results.
The second order stress formulation brings to null susceptibility after 200 MPa.
Indeed the quadratic stress form governs the Gibbs free energy at high stress,
which leads to a global effect close to a compression effect on magnetic behavior.
Even if high stress range has not been tested, the observed trends in figure 3b
bring to a saturation of susceptibility at a level of the same order of magnitude
as the susceptibility at zero stress. Figure 11b reports the magnetostriction
deformation only due to stress (at zero applied magnetic field and zero magne-
tization), highlighting the so-called ∆E effect [7]. Longitudinal and transversal
deformations are plotted. A saturation of ∆E effect is observed in tension and
compression for both directions when only the first order stress term is con-
sidered. When the second order expression is employed, saturation disappears
and curves reach a constant slope (positive slope ζ// along the tensile direction;
negative slope ζ⊥ along the direction transversal to the applied stress). Indeed,
slopes ζ// and ζ⊥ are directly related to the second derivative of the Gibbs free



energy and to isotropic parameters λ′s and λ′′s highlighting the so-called morphic
effect [40]:

ζ// =
dεµm//

dσ
= −2

5
λ′s and ζ⊥ =

dεµm⊥
dσ

=
1

10
(λ′s + λ′′s ) (68)

These values correspond to an equivalent stiffness of about 8500 GPa (to be
compared to a typical Young modulus of 200 GPa), not detectable by a classical
tensile stress / strain experiment.



4.4. Comparison between experiments and multiscale modeling

The application of the full multiscale constitutive model of NO 3%Si-Fe-Si
alloy is presented in this section with or without considering the second order
magnetoelastic term in the Gibbs free energy expression. Parameters used,
mixing literature values and parameters fitted using the simplified modeling
(χ0, λ′s and λ′′s ) are given in table 2. An orientation data file containing 396
orientations representative of the crystallographic texture of the material has
been used for the modeling (figure 12). Data are issued from previous electron
back-scattered diffraction (EBSD) measurements [32, 23].

Table 2: Parameters used in the mutliscale modeling of NO 3wt.%Si-Fe alloy

Parameter Ms K1 ; K2 λ100 ; λ111 χ0 λ′s ; λ′′s C11;C12;C44

Value 1.61×106 38 ; 0 23.5 ; -4.5 9600 -0.295 ; 1.180 202; 122; 229
Unit A/m kJ/m3 ppm - ppm/MPa GPa

Figures 13a and 13b show the results of multiscale modeling of magnetic
behavior when the material is submitted to a uniaxial stress applied along the
transversal direction (TD). The magnetic field is also applied along TD. As al-
ready noticed in [23], the model tends to overestimate the magnetization at low
field whatever the retained magneto-elastic description. This is attributed to
the fact that intragranular heterogeneities and local demagnetizing effects are
insufficiently taken into account by the modeling. Trends observed with the
simplified modeling remain of course unchanged. Taking account of rotation
mechanism and crystallographic texture does not change the global variations.
The modeling using only the first order stress term provides a constant improve-
ment of the magnetic behavior at increasing stress levels. When the second order
stress term is considered, the overestimation of the magnetization for a given
magnetic field can still be noticed, but the effect of stress on the behavior is
satisfactorily described (figure 14). This point is clearly highlighted by the plot
of initial susceptibilty provided by the two modelings in figure 14. The non-
monotonic dependence of the magnetic susceptibility to the applied uniaxial
stress is appropriately described when the second order magneto-elastic term
is considered. Furthermore, general trends are correctly rendered by the new
modeling for the description of the magnetostriction strain as reported in figure
15a and 15b, meeting the trends observed with the simplified modeling.

Extension of the modeling to higher stress magnitude seems however not
completely satisfactory as illustrated in figure 16. The effect of wide stress range
(from -500MPa to +500MPa) on initial susceptibility has been plotted in figure
16a considering or not considering the second order stress effect. Figure 16b
reports on the other hand the longitudinal and transversal ∆E effect for both
modeling. We observe first that these results elicit the same global comments
as with the simplified model. Some particular points can be highlighted:



• modeling using first or second order stress effect leads to a behavior under
compressive stress different from that observed with the simplified mod-
eling: susceptibility obtained with the first order stress modeling reaches
a saturation value close to 2000 although this value reaches 0 for the sec-
ond order stress modeling. This difference can be assigned to rotation
mechanism.

• the initial susceptibility modeled when the first order stress effect is con-
sidered reach a high value (two times the nominal value) before to slowly
decrease with increasing tensile stress. It is another illustration of rotation
effect corresponding to Villari reversal. The introduction of second order
stress term completely hides this mechanism.

• ∆E effect magnitude reported in figure 16b is about 2.5 times the mag-
nitudes observed in case of simplified modeling. This is the result of
magnetization rotation too, that leads to a transformation of factors 2/5
and -1/10 in equations (68) into factors 1 and -1/2.

As discussed in the case of simplified modeling, the initial susceptibility would
tend to saturate at a level close to the initial susceptibility observed at zero
stress. This trend is not rendered by the modeling, restricting the validity range
of the present modeling to the range of experiments reported in the paper.

5. Conclusion

The objective of this paper was to be able to better account of the non-
monotonic evolution of the magnetic behavior under tensile stress by an ad-
equate modeling, in a range where the Villari reversal is still not significant.
Taking into account higher order stress terms in the expression of the Gibbs free
energy seems to be the key. On the one hand, it makes it possible to account
for the non-monotonic effect and, on the other hand, to model in a realistic way
the corresponding evolution of the longitudinal and transversal magnetostrictive
behaviors. In addition, a procedure using a simplified semi-analytical model was
developed to identify two new magnetostrictive parameters. The description,
however, remains limited to an isotropic framework for the second-order stress
term, which can lead to some uncontrolled phenomena at this stage. Apply-
ing the model to higher stress levels also clearly shows the limitations of the
proposed approach. In addition to a complete identification of second-order
terms within the framework of cubic symmetry (using the same kind of set-up
and single crystals cut along several crystallographic directions), the search for
functions of high order stress invariants may be a preferred path for the future,
leading however to a more complex dependence of the magnetic behavior to
mechanical stresses.
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[13] A.A. Abdallh, L. Dupré, ”The influence of magnetic material degradation
on the optimal design parameters of electromagnetic devices”, IEEE Trans.
Mag. (2017)



[14] M.J. Sablik, L.A. Riley, G.L. Burkhardt, H. Kwun, P.Y. Cannell, K.T.
Watts, R.A. Langman, ”Micromagnetic model for the influence of biaxial
stress on hysteretic magnetic properties”, Journal of Applied Physics, 75
(1994), pp.5673-5675.

[15] J. Pearson, P. T. Squire, M. G. Maylin, and J. G. Gore, ”Biaxial stress
effects on the magnetic properties of pure iron”, IEEE Transactions on Mag-
netics, 36 5 (2000), pp. 3251-3523.

[16] O. Hubert, L. Daniel, ”Energetical and multiscale approaches for the def-
inition of an equivalent stress for magneto-elastic couplings”, Journal of
Magnetism and Magnetic Materials, 323, (2011), pp.1766-1781.

[17] W.D. Armstrong, ”Magnetization and magnetostriction processes in
Tb(0.27-0.30)Dy(0.73-0.70)Fe(1.9-2.0)”. Journal of Applied Physics, 81
(1997), pp.2321-2326.

[18] N. Buiron, L. Hirsinger and R. Billardon, ”A multiscale model for magneto-
elastic couplings”, Journal de Physique IV, 9 (1999), pp.187-196.

[19] W.D. Armstrong, ”A directional magnetization potential based model of
magnetoelastic hysteresis”, Journal of Applied Physics, 91 (2002), pp.2202-
2210.

[20] A. De Simone, R. James, ”A constrained theory of magnetoelasticity”,
Journal of Mechanics and Physics of Solids, 50 (2002), pp.283-320.

[21] R.C. Smith, S. Seelecke, M. Dapino, Z. Ounaies, ”A unified framework
for modeling hysteresis in ferroic materials”, Journal of the Mechanics and
Physics of Solids, 54 (2006), pp.46-85.

[22] L. Daniel, O. Hubert, N. Buiron and R. Billardon, ”Reversible magneto-
elastic behavior: a multiscale approach”, Journal of the Mechanics and
Physics of Solids, 56 (2008), pp.1018-1042.

[23] L. Daniel, M. Rekik, O. Hubert, ”A multiscale model for magneto-elastic
behaviour including hysteresis effects”, Archive of Applied Mechanics, 84, 9
(2014), pp.1307-1323.

[24] L. Bernard, X. Mininger, L. Daniel, G. Krebs, F. Bouillault, M. Gabsi,
”Effect of stress on switched reluctance motors: a magneto-elastic finite-
element approach based on multiscale constitutive laws”, IEEE Transactions
on Magnetics, 47 issue 9, (2011), pp.2171-2178.

[25] O. Perevertov, ”Influence of the applied elastic tensile and compressive
stress on the hysteresis curves of Fe-3%Si non-oriented steel”, Journal of
Magnetism and Magnetic Materials, 428 (2017), pp.223-228

[26] O. Hubert, S. Lazreg, ”Two phase modeling of the influence of plastic strain
on the magnetic and magnetostrictive behaviors of ferromagnetic materials”,
Journal of Magnetism and Magnetic Materials, 424 2 (2017), pp.421-442.



[27] U. Aydin, P. Rasilo, F. Martin, D. Singh, L. Daniel, A. Belahcen, M.
Rekik, O. Hubert, R. Kouhia, A. Arkkio, ”Magneto-mechanical modeling of
electrical steel sheets”, Journal of Magnetism and Magnetic Materials, 439
(2017), pp.82-90.

[28] W.P. Mason, ”A Phenomenological Derivation of the First- and Second-
Order Magnetostriction and Morphic Effects for a Nickel Crystal”, Physical
Review, 82 5 (1951), pp.715-723.
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Figure 2: Effect of uniaxial stress on magnetization behavior of NO 3wt.%Si-Fe: (a) magne-
tization at constant stress; (b) magnetization at constant magnetic field.
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Figure 3: Effect of uniaxial stress on magnetization behavior of NO 3wt.%Si-Fe: (a) sensitivity
of magnetization to stress (µ0: vacuum permeability) at constant magnetic field; (b) initial
anhysteretic susceptibility χ as function of stress.
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Figure 4: Effect of uniaxial stress on magnetostriction behavior of NO 3wt.%Si-Fe: (a) longi-
tudinal magnetostriction; (b) transversal magnetostriction.
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Figure 7: Effect of uniaxial stress on magnetization behavior (a) and initial susceptibility (b)
- modeling results without second order stress effect - NO 3wt.%Si-Fe.
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Figure 8: Effect of uniaxial stress on magnetostriction strain: longitudinal (a) and transversal
(b) - modeling results without second order stress effect - NO 3wt.%Si-Fe.
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Figure 9: Effect of uniaxial stress on magnetization behavior (a) and initial susceptibility (b)
- modeling results using the second order stress effect - NO 3wt.%Si-Fe.
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Figure 10: Effect of uniaxial stress on magnetostriction strain: longitudinal (a) and transversal
(b) - modeling results using the second order stress effect - NO 3wt.%Si-Fe.
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Figure 11: Effect of wide stress range on initial susceptibility (a) and longitudinal and transver-
sal ∆E effect (b) - effect of first order or second order expression using the simplified modeling
- NO 3wt.%Si-Fe.
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Figure 12: Discrete pole figures (396 orientations) for a NO 3wt.%Fe-Si alloy [23]
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Figure 13: Multiscale modeling result of the effect of uniaxial stress on magnetization behavior:
(a) first order stress effect; (b) secondorder stress effect - NO 3wt.%Si-Fe.
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Figure 14: Multiscale modeling result of the effect of uniaxial stress on initial susceptibility:
comparison between first order and second order stress effect - NO 3wt.%Si-Fe.
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Figure 15: Multiscale modeling result of the effect of uniaxial stress on magnetostriction
behavior: (a) longitudinal deformation (first and second order stress effect); (b) transversal
deformation (first and second order stress effect) - NO 3wt.%Si-Fe.
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Figure 16: Multiscale modeling result of large uniaxial stress range on initial susceptibility (a)
and longitudinal and transversal ∆E effect (b)- effect of 1rst order or 2nd order expression -
NO 3wt.%Si-Fe.


