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Abstract

This paper introduces a new multivariate convolutional sparse coding
based on tensor algebra with a general model enforcing both element-wise
sparsity and low-rankness of the activations tensors. By using the CP
decomposition, this model achieves a significantly more efficient encoding
of the multivariate signal – particularly in the high order/ dimension
setting – resulting in better performance. We prove that our model is
closely related to the Kruskal tensor regression problem, offering interesting
theoretical guarantees to our setting. Furthermore, we provide an efficient
optimization algorithm based on alternating optimization to solve this
model. Finally, we evaluate our algorithm with a large range of experiments,
highlighting its advantages and limitations.

1 Introduction
In recent years, dictionary learning and convolutional sparse coding techniques
(CSC) have been successfully applied in a wide range of topics, including image
classification [Mairal et al., 2009, Huang and Aviyente, 2007], image restoration
[Aharon et al., 2006], and signal processing [Mairal et al., 2010]. The main
idea behind these representations is to conjointly learn a dictionary containing
the patterns observed in the signal, and sparse activations that encode the
temporal or spatial locations where these patterns occur. Previous works have
mainly focused on the study of univariate signals or images [Garcia-Cardona
and Wohlberg, 2017], solving the dictionary learning problem using sparsity
constraint on atoms activations.

In many applications ranging from videos to neuroimaging, data are multi-
variate and therefore better encoded by a tensor structure [Zhou et al., 2013,
Cichocki et al., 2015]. This has led in the recent years to an increased interest
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in adapting statistical learning methods to the tensor framework, in order to
efficiently capture multilinear relationships [Su et al., 2012]. In particular, the low
rank setting has been the subject of many previous works in the past few years,
as an efficient tool to exploit the structural information of the data, particularly
in regression problems [Zhou et al., 2013, Rabusseau and Kadri, 2016, Li et al.,
2017, He et al., 2018]. However, traditional low rank approaches for regression
problems are difficult in this setting, as estimating or finding the rank of a
tensor with order at least 3 is significantly more complex than in the traditional
matrix case [Håstad, 1990], and requires new algorithms [Li et al., 2017]. More
recently, [He et al., 2018] have proposed a new approach –inspired by the SVD
decomposition – that combines both low rank and sparsity constraints in the
multivariate regression setting.

In this article, we propose to extend the classical CSC model to multivariate
data by introducing a new tensor CSC model that combines both low-rank and
sparse activation constraints. This model that we call Kruskal Convolutional
Sparse Coding (K-CSC) (or Low-Rank Multivariate Convolutional Sparse Cod-
ing) offers the advantages of 1) taking into account the underlying structure
of the data and 2) using fewer activations to decompose the data, resulting in
an improved summary (dictionary) and a better reconstruction of the original
multivariate signal.

Our main contributions are as follows. First, we show that under mild
assumptions, this new problem can be rewritten as a Kruskal tensor regression,
from which we discuss interesting properties. Then, we provide an efficient
algorithm, based on an alternating procedure, that solves the K-CSC problem
and scales with the number of activation parameters. Finally, we evaluate our
algorithm experimentally using a large range of simulated and real tensor data,
illustrating the advantages and drawbacks of our model.

2 Low-Rank Multivariate Convolutional Sparse
Coding

2.1 Preliminaries on tensors
We first introduce the notation used in this paper and briefly recall some element
of tensor algebra (see [Kruskal, 1977, Kolda, 2006, Kolda and Bader, 2009,
Sidiropoulos et al., 2017] for a more in-depth introduction).

Across the paper, we use calligraphy font for tensors (X ) bold uppercase
letters for matrices (X) bold lowercase letters for vectors (x) and lowercase
letter for scalars (x). Let ‖X‖F and ‖X‖1 respectively denotes the Frobenius
and the `1 norms, and let

〈
·
〉
F

be the scalar product associated with ‖ · ‖F .
The symbol ◦ refers to the the outer product, ⊗ to the Kronecker product, � to
the Khatri-Rao product, and ×m denotes the m-product. The symbol ?1,··· ,p
refers to the multidimensional discrete convolutional operator between scalar
valued functions where the subscript indices are the dimension involved (see
Figure 1). When the signal is unidimensional, ?1 reduces to ?, the 1-D discrete
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convolutional operator.

Proposition 1. (CP Decomposition.) For any X ∈ X , Rn1 × . . . × Rnp ,
∃R > 0, and, x(i)

r ∈ Rni , 1 ≤ i ≤ p, 1 ≤ r ≤ R, such that

X =

R∑
r=1

x(1)
r ◦ · · · ◦ x(p)

r , (1)

where ∀i ≥ 2, ‖x(i)
r ‖F = 1. The smallest R for which such decomposition exists

is called the Canonical Polyadic rank of X (CP-rank(X ) or rank(X ) for short),
and in this case (1) is referred to as the CP decomposition of X .

Definition 1. (Kruskal operator.) With the notation of Proposition 1,the
Kruskal operator [[ · ]] is defined as

[[X1, · · · ,Xp]] ,
R∑

r=1

x(1)
r ◦ · · · ◦ x(p)

r .

where Xi =
[
x
(i)
1 , . . . ,x

(i)
R

]
∈ Rni×R, 1 ≤ i ≤ p.

2.2 Model formulation
Let Y ∈ Y , Rn1×···×np be a multidimensional signal and D1, · · · ,DK in D ,
Rw1×···×wp a collection of K multidimensional atoms such that ∀i, 1 ≤ wi ≤ ni.
The Kruskal Convolutional Sparse Coding model (K-CSC) is defined as

Y =

K∑
k=1

Dk ?1,··· ,p Zk + E, (2)

where A) ∀1 ≤ k ≤ K, Zk ∈ Z , Rm1×···×mp (with mi = ni−wi + 1) are sparse
activation tensors with CP-rank lower than R, with R small, and B) E ∈ Y is
an additive (sub)gaussian noise, whose every component are independent and
centered.

Advantages of low-rank tensor. The addition of a low rank constraint
offers two main advantages. First, it reduces the number of unknown activation
parameters from K

(∏p
i=1mi

)
(unconstrained model) to K

(
R
∑p

i=1mi

)
. For

instance, in the regression case of typical RGB images of size n-by-n-by-3, the
number of parameters decrease to R · (2n + 3) instead of 3n2, resulting in a
better scalability of the problem. Second, it exploits the structural information
of Y , and has already been proved to be effective in various contexts (e.g. [Guo
et al., 2012, Liu et al., 2013]). For example, previous works have shown that the
vectorization of an image removes the inherent spatial structure of it while low
rank tensor regression produces more interpretable results [Zhou et al., 2013].

Relation with separable convolution. The low-rank constraint imposes
that each activation Zk has a CP-rank(Zk) ≤ R and writes as the sum of at most
R separable filters (product of multiple one dimensional filters). Problem (2) is
therefore a separable convolution problem, which allows to use a FFT resolution
and to significantly speed up the calculus of the convolution. As an example,
the complexity of filtering an n1-by-n2 image with a w1-by-w2 non-separable
filter is O(n1n2w1w2) – instead of O(n1n2(w1 + w2)) for a separable filter.
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Figure 1: Illustration of the multidimensional convolution with 3-th order tensors,
where each cube represents a dimension and each axis an order. Notice that the
result has one additional dimension in each order.

Remark 1. For simplicity, we assume in this paper that, ∀k, CP-Rank(Zk) = R.
However, it is straightforward to extend (2) to a model where each tensor Zk

have a different CP-rank (i.e. CP-Rank(Zk) = Rk).

2.3 Kruskal CSC as Tensor Regression
CSC models are often rewritten as a regression problem by using a circulant
dictionary matrix [Garcia-Cardona and Wohlberg, 2018]. In this section, we adopt
the same strategy. We show that the K-CSC model (2) can be reformulated as
an instance of the rank-R Generalized Linear tensor regression Models introduced
in [Zhou et al., 2013] – also known as Kruskal tensor regression model – [Zhou
et al., 2013] and then use this new formulation to discuss the properties of the
model. First we introduce the notion of circulant tensor, which is a generalization
of the circulant matrix.

Definition 2. (Circulant tensor.) Let w1 < n1, . . . , wp < np ∈ N∗ and D ∈
Rw1×···×wp . We define the (quasi)-circular tensor generated by D, Circ(D) ∈
R(n1×m1)···×(np×mp), as follows

Circ(D)(`1, k1, · · · , `p, kp) =

{
0 if ∃1 ≤ i ≤ p s.t. `i < ki or `i ≥ ki + wi

D(`1 − k1, · · · , `p − kp) otherwise.

In other word, Circ(D) contains the atom D which is translated in every
directions. The following proposition shows the equivalence between K-CSC
model and Kruskal regression. The consequence of this relation are studied in
the next Section.

Proposition 2. (K-CSC as Kruskal regression.) Let D1, · · · ,DK in D be a
collection of K multidimensional atoms. Then, (2) is equivalent to

Y = A(Z) + E, (3)

where Z is in RK × Z such that Zk , Z(k, ·, · · · , ·) =
∑R

r=1 z
(1)
k,r ◦ · · · ◦ z

(p)
k,r and

A is the linear map defined by
A : RK × Z −−−→ Y

Z 7−−−→
(∑K

k=1

〈
D̃k;i1,··· ,ip ,Zk

〉
F

)n1,...,np

i1=1,...,ip=1
,

where ∀k, D̃k;i1,··· ,ip = Circ(Dk)(i1, ·, i2, ·, · · · , ip, ·).
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Proof. The proposition is a consequence of the following equality(
Dk ?1,··· ,p z

(1)
r ◦ · · · ◦ z(p)r

)
i1,··· ,ip

=
〈
Circ(Dk)(i1, :, i2, :, · · · , ip, :), z(1)r ◦ · · · ◦ z(p)r

〉
F

=
(
D̃k;i1,··· ,ip

p

×
m=1

z(m)
r

)
,

where D̃k;i1,··· ,ip×p

m=1
z
(m)
r , D̃k;i1,··· ,ip ×1 z

(1)
r ×2 z

(2)
r · · · ×p z

(p)
r .

3 Model estimation
In order to solve (2), we minimize the associated negative log-likelihood with
an additional sparsity constraint – a common tool in CSC – on the activation
tensors. This leads to the following minimization problem:

arg min(
D1,··· ,DK ,Z1,1,··· ,ZK,p

)
∈S

∥∥∥∥∥Y−
K∑

k=1

Dk?1,··· ,p[[Zk,1, · · · ,Zk,p]]

∥∥∥∥∥
2

F

+
∑
k,`

α`‖Zk,`‖1,

(4)
where ∀` α` > 0 and

(
D1, · · · ,DK ,Z1,1, · · · ,ZK,p

)
∈ S i.f.f.{

∀k,Dk ∈ D, ‖Dk‖F ≤ 1

∀k, `,Zk,` ∈ Rn`×R and ‖ (Zk,`)i,· ‖F = 1

Notice that the low rank constraint is embedded in S by the use of the Kruskal
operator [[ · ]] and the fact that ∀k, `, Zk,` ∈ Rn`×R. This use of the Kruskal
operator can be seen as a generalization of the Burer-Monteiro heuristic for
matrix [Burer and Monteiro, 2003].

Multiple CP Decompositions. It should be noted that the CP decompo-
sition is known to be unique when it satisfies the Kruskal condition [Kruskal,
1989], but only up to permutation of the normalized factor matrices. Therefore,
the Zk,` that solve (4) may not be unique, but they are isolated equivalent
minimizers, and thus this problem does not negatively impact the optimization.

Regularizations. In (4), the sparsity constraint enforces the sparsity of each
element of the CP-decomposition for every activation tensors independently.
Hence, the sparsity of each mode can be controlled. In addition, it is possible to
add a specific ridge penalization (i.e.

∑p
`=1 β`

∑K
k=1‖Zk,`‖2F , (β1, · · · , βp) � 0)

to (4) to limit numerical instabilities, decrease risks of overfitting and ensure the
unity of the solution [Zhou et al., 2013].

Sparse Low Rank Regression. A consequence of Proposition 2 is that (4)
can be seen as an instance of a low-rank sparse regression problem. It has
been shown that while both properties are desirable, a balance between the two
constraints has to be found, as the two regularizations may have adversarial
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influence on the minimizer [Richard et al., 2012]. This is achieved in our setting
by using a Ivanov regularization for the rank (CP-rank ≤ R) and a Tykhonov
regularization for the sparsity (

∑
k,` α`‖Zk,`‖1): the solution should be as sparse

as possible while having a CP-rank lower than R.

Solving the optimization problem with AK-CSC
The non-convex problem (4)(due to the rank constraint) is convex with respect
to each Z block ([Zk,i, · · · ,Zk,i])i, and ([D1, · · · ,DK ]). Hence, we use a block
coordinate strategy to minimize it. Our algorithm, called Alternated K-CSC
(AK-CSC), splits the main non-convex problem into several convex subproblems;
1) by freezing D and all except one Z block at a time (Z-step) 2) by freezing
only the activation tensor (D-step). Algorithm 1 presents this process.

Activations update, Z-step. In order to solve (4) with respect to Z, we
proceed as follows: we assume that the dictionary D is fixed and we iteratively
solve the problem where all mode except the `-th one of each activation tensor
are constant, for ` varying between 1 and p. In other words, for each value of `,
we solve the problem

arg min
Z1,`,··· ,ZK,`

∥∥∥∥∥Y−
K∑

k=1

Dk?1,··· ,p[[Zk,1, · · · ,Zk,p]]

∥∥∥∥∥
2

F

+α`

K∑
k=1

‖Zk,`‖1+β`

K∑
k=1

‖Zk,`‖2F .

(5)
where the ‖·‖2F is added to improve the minimization process, as previously
discussed. Without any loss of generality, we set ` = 1 in the rest of this section,
as the other values of ` can be treated similarly.

Proposition 3. The first term of minimization problem (5) can be rewritten as∥∥∥Y − K∑
k=1

Dk ?1,··· ,p [[Zk,1, · · · ,Zk,p]]
∥∥∥2
F

=

C∑
c

∥∥∥Ỹ :,c −
S∑
s

D̃s,:,c ? z
(`)
s

∥∥∥2
2
,

with C =
∏p

i=2 ni, S = KR and z(`)s =
[
z
(`)
1,1, · · · , z

(`)
1,R, z

(`)
2,1, · · · , z

(`)
K,R

]
.

Proof. In the following, for all k, we denote by Z̄k =
∑R

r=1 z̄
(1)
k,r ◦ · · · ◦ z̄

(p)
k,r ∈ Y

the tensor where we add 0 on each dimension to reach the one of Z.∥∥∥Y − K∑
k=1

Dk ?1,··· ,p Zk

∥∥∥2
F

=

n1,··· ,np∑
i1=1,··· ,ip=1

(
Yi1,··· ,ip −

K∑
k=1

R∑
r=1

w1∑
j1=1

z̄
(1)
k,r(i1 − j1)

w2,··· ,wp∑
j2=1,··· ,jp=1

Dk,j1,··· ,jp z̄
(2)
k,r(i2 − j2) · · · z̄(p)k,r(ip − jp)

)2
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=

n1,··· ,np∑
i1=1,··· ,ip=1

(
Yi1,··· ,ip −

K∑
k=1

R∑
r=1

w1∑
j1=1

z̄
(1)
k,r(i1 − j1)

(
Dk;j1,:,··· ,: ?2,··· ,p z

(2)
k,r ◦ · · · ◦ z

(p)
k,r

)
i2,··· ,ip

)2
=

n2,··· ,np∑
i2=1,··· ,ip=1

∥∥∥Y :,i2,··· ,ip −
K∑

k=1

R∑
r=1

D̃k,r,:,i2··· ,ip ? z
(1)
k,r

∥∥∥2
2

=

C∑
c=1

∥∥∥Y :,c −
S∑

s=1

D̃s,:,c ? z
(1)
s

∥∥∥2
2
,

where D̃k;r,j1,i2··· ,ip =
(
Dk;j1,:,··· ,: ?2,··· ,p z

(2)
k,r ◦ · · · ◦ z

(p)
k,r

)
i2,··· ,ip

.

From the previous proposition, it is clear that in (5), each subproblem is
a CSC with multichannel dictionary filters and single-channel activation maps
[Wohlberg, 2016a], i.e. we need to solve

arg min
z
(`)
s

C∑
c

∥∥∥Ỹ :,c −
S∑
s

D̃s,:,c ? z
(`)
s

∥∥∥2
2

+ α`

S∑
s

‖z(`)s ‖1 + β`

S∑
s

‖z(`)s ‖22.

Therefore, this Z block step can be solved using standard multi-channel CSC
algorithms (see [Garcia-Cardona and Wohlberg, 2018] for a complete review).

Dictionary update, D-step. Given the K activation tensors (Zk)k, the
dictionary update aims at improving how the model reconstructs Y by solving

arg min
∀k,Dk∈D, ‖Dk‖F≤1

∥∥∥Y − K∑
k=1

Dk ?1,··· ,p [[Zk,1, · · · ,Zk,p]]
∥∥∥2
F
. (6)

This step presents no significant difference with existing methods. This problem
is smooth and convex and can be solved using classical algorithms [Mairal et al.,
2010, Yellin et al., 2017, Chalasani et al., 2013].

4 Related work
Related models. With specific choices on the parameters or on the dimension
values, the K-CSC model reduces to well-known CSC problems. In the following,
we enumerate some of them which also use the (multidimensional) convolutional
product.

• Univariate CSC: For vector-valued atoms and signals (p = 1), our model
reduces to the 1-D Convolutional Dictionary Learning model (CDL). The
sparse coding step – i.e. the minimization on (zk)k – is commonly referred as
Convolutional Basis Pursuit DeNoising where the two leading approaches are
based on the the Fast Iterative Shrinkage-Thresholding Algorithm (FISTA)
[Beck and Teboulle, 2009] and on ADMM [Boyd et al., 2011]. The dictionary
update step – i.e. the minimization on (dk)k – is referred as Method of Optimal
Directions (with a constraint on the filter normalization) where, again, the
most efficient solutions are based on FISTA and ADMM [Garcia-Cardona and
Wohlberg, 2018].
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Algorithm 1: Alternated Kruskal Convolutional Sparse Coding (AK-CSC)
Input: Signal Y , (α1, · · · , αp)
Output: (Zk)k, (Dk)k

1 for t = 1, 2, · · · do
2 – (Z-step) –
3 for m = 1, 2, · · · , p do
4 Ỹ ←− unfold

(
Y ,m

)
;

5 /* Construction of the specific dictionary */ ;
6 s←− 1 ;
7 for k = 1, 2, · · · ,K do
8 Z̃ ←− [[Z

(t+1)
k,1 , · · · ,Z(t+1)

m−1 ,Z
(t)
m+1, · · · ,Z

(t)
k,p]] ;

9 for r = 1, 2, · · · , R do
10 for a = 1, 2, · · · , wm do
11 D̃s,a,: ←−

vectorized
(
D(t)

k,:,··· ,a,··· ,: ?1,··· ,(m−1),(m+1),··· ,p Z̃
)
;

12 s←− s+ 1 ;

13 /* Update of the m-th Z block */ ;
14 Z(t+1)

m ←−

reshape
(

arg min
z
(m)
s

C∑
c

∥∥∥Ỹ :,c −
S∑
s

D̃s,:,c ? z
(m)
s

∥∥∥2
2

+ αm‖z(m)
s ‖1

)
;

15 – (D-step) –
16 (D(t+1))k ←−

arg min
∀k,Dk∈D,‖Dk‖F≤1

∥∥∥∥∥Y −
K∑

k=1

Dk ?1,··· ,p [[Z
(t+1)
1,1 , · · · ,Z(t+1)

K,p ]]

∥∥∥∥∥
2

F

;

• Multivariate CSC: If p > 1 and R = +∞ (i.e. no low-rank constraint), our
model reduces to the multivariate CDL model also referred as multi-channel
CDL. To the best of our knowledge, the only reference to multivariate CSC
is [Wohlberg, 2016a], where the author proposes two models for 3-channel
images. More recently, [Garcia-Cardona and Wohlberg, 2018] propose scalable
algorithms for hyper-spectral images (tensor of order 3 with a high dimension
on the third mode).

• Multivariate CSC with rank-1 constraint: If p = 2, R = 1 and w2 = 1
(i.e. vector-valued atoms), our model reduces to the one recently presented in
[La Tour et al., 2018]. In this work, the authors strongly rely on the rank one
constraint to solve the CSC problem and only consider spatio-temporal data.

Differences with recent tensor based approaches. Some previous
works have proposed different approaches to CSC in a tensor setting, albeit
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Figure 2: A) Loss (4) as a function of the rank parameter R and the number of
full loops (Z and D steps). B) `2-distance after convergence as a function of
the rank parameter R (the true one being R∗ = 4) on 8 trials C) Heatmap of
the `2-distance for several hyperparameters values (R = R∗).

without a low rank setting – a key component of our approach. In [Jiang et al.,
2018], the authors introduce a new formulation based on a t-linear combination
(related to the t-product). In [Bibi and Ghanem, 2017] they propose a generic
CSC model based on tensor factorization strategy called t-SVD which also use
the t-product. Notice that, while this new formulation reduces back to 2-D
CSC when the tensor order is set to particular sizes, the notion of low-rank on
the activations is not considered. Other tensor-based CSC models enforce the
low-rank constraint on the dictionary instead of the activations using a Tucker or
a CP decomposition [Zhang et al., 2017, Tan et al., 2015] or tensor factorization
techniques [Huang and Anandkumar, 2015].

5 Experiments
In this section we evaluate our tensor-based dictionary learning framework K-
CSC on both synthetic and real-world datasets. We compare our algorithm
AK-CSC to state-of-the-art dictionary learning algorithm based on ADMM.
Results are for tensor-structured output regression problems on which we report
`2-distance. All experiments are conducted on a linux laptop with 4-core 2.5GHz
Intel CPUs using Tensorly [Kossaifi et al., 2019], Sporco [Wohlberg, 2017] and
standard python libraries.

Z-step solver. As shown in the previous section, the main problem can
be rewriten as a regression problem. Hence, to solve the Z-step, it is possible
to use standard tensor regression solvers [Zhou et al., 2013, Li et al., 2017, He
et al., 2018]. However, it necessitates the construction of an enormous circulant
tensor which is not tractable in practice due to memory limitation. In section
3, we show that the Z-step necessitates to solve p multi-channel CSC problem
with a large amount of channels (C =

∏p
i=2 ni). While this problem has received

only limited attention for many more than three channels, in our experiment,
we used the algorithm proposed in [Garcia-Cardona and Wohlberg, 2018] which
turns out to be scalable regarding the value of C.

Initialization. Each activation subproblem is regularized with a `1-norm,

9



which induces sparsity on a particular mode. As an example, consider the update
of the Z block ([Zk,i, · · · ,Zk,i]), during the Z-step (see equation (5)). From
Tibshirani et al. [2015], we know that there exists a value αmax

i above which the
subproblem solution is always zeros. As αmax

i depends on the "atoms" D̃s,:,c

and on the multichannel signal Ỹ :,c, its value changes after a complete loop. In
particular, its value might change a lot between the initialization and the first
loop. This is problematic since we cannot use a regularization αi above this
initial αmax

i . The standard strategy to initialize univariate CSC methods is to
generate Gaussian white noise atoms. However, as these atoms generally poorly
correlate with the signals, the initial value of αmax

i are low compared to the
following ones. To fix this problem, we use the strategy propose in [La Tour et al.,
2018] and initialize the dictionary with random parts of the signal. Furthermore,
in all the experiments, a zero-padding is added to the initial tensor Y .

Synthetic data. To highlight the behavior of AK-CSC and the influence
of the hyperparameters, we consider two different scenarios; 1) The rank is
unknown 2) The rank is known. In both cases, the true dictionary is given and
only the CSC task is evaluated. We generate K = 10 random tensor atoms
of size R2×4×8 where entries follow a Gaussian distribution with mean 0 and
standard deviation in [1, 10]. Each atom is associated to a sparse activation
tensor of CP-rank R∗ = 4. The third order tensor Y generated by model (2)
is in R16×32×64. First, we illustrate the convergence of AK-CSC by plotting
the loss (4) as a function of the rank parameter R (Figure 2 A)). Convergence
is reached after a reasonable number of full loops. It appears that choosing
a rank R greater than the true one permits a faster convergence. However,
as depicted in Figure 2 B), an over estimation of the rank does not increase
nor decrease the reconstruction error. Also note that, as expected, the error
after convergence drastically decreases when we reach the true rank R∗. The
research of the best set of hyperparameters for α = (α1, α2, α3) is done in
[0, 100]3. Figure 2 C) illustrates how the three hyperparameters related to the
sparsity influence the `2-distance, i.e. the reconstruction of Y. We see that
our method is robust to small modification of the hyperparameters. This is an
important property which facilitates the search of the best set of hyperparameters.

Color Animated Pictures. We consider a RGB-animated picture composed
of 20 images of size 30× 30× 3 that make up the animation of Mario running.
Hence, the animated picture is a 4-th order tensor of size Y ∈ R30×30×3×20. The
objective is to learn a maximum of K = 20 RGB-animated atoms in R20×10×3×3

in order to reconstruct Y. We compare the reconstruction of our algorithm
AK-CSC when R = 1 to the ADMM approach without low-rank constraint,
which is a classical and efficient CSC solver (see comparative section [Wohlberg,
2016b]). Figure 3 A) shows that for the same level of sparsity α our method
always uses fewer non-zero coefficients and yet provides a better reconstruction.
Indeed, the rank constraint on the activations allows to choose more accurate
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Figure 3: A) `2-distance and number of non-zero coefficients as a function of the
sparsity level α on 20 trials. B) First 5 frames of: Original data (top), recon-
struction with AK-CSC (middle) and, reconstruction with ADMM (bottom).

Figure 4: Original data (top), reconstruction with AK-CSC (middle) and,
reconstruction with ADMM (bottom).

non-zero coefficients. For instance, Figure 3B) shows that even with 2.5 times
less non-zero coefficients, AK-CSC provides a visual better reconstruction.

Functional Magnetic Resonance Imaging dataset. In a last example, we
analyze functional Magnetic Resonance Imaging data (fMRI) from the Autism
Brain Imaging Data Exchange (ABIDE) [Di Martino et al., 2008]. The fMRI data
is a third-order tensor in R31×37×31. We learn K = 20 atoms of size R10×10×10

and of rank R = 1. As in the previous example, we compare the reconstruction of
our algorithm AK-CSC to the ADMM approach. The resulting reconstruction
is displayed on Figure 4 and the learned atoms are in the supplementary materials.
It appears that for the same level of sparsity, the reconstruction performance
is more efficient with AK-CSC. Furthermore, the learned atoms are more
informative than those with the classical method.

6 Conclusion
In this paper, we introduced K-CSC, a new multivariate convolutional sparse
coding model using tensor algebra that enforces both element-wise sparsity and
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low-rankness of the activations tensors. We provided an efficient algorithm based
on alternate minimization called AK-CSC to solve this model, and we showed
that K-CSC can be rewritten as a Kruskal Tensor regression problem. Finally,
we showed that AK-CSC achieves good performances on both synthetic and
real data.
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7 Detailed proof
We detail the proof of the following proposition from the main paper.

Proposition 4. The first term of minimization problem (4) can be rewritten as∥∥∥Y − K∑
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Figure 5: Heatmap of the `2-distance between Y and its reconstruction to tune
hyperparameters when considering third order tensor and R∗ = 4.

8 Additional results

8.1 Synthetic data
We provide the full heatmap obtained in the Synthetic data section on Figure
5. This Figure shows how the three hyperparameters related to the sparsity
influence the `2-distance, i.e. the reconstruction of Y . We see that our method
is robust to small modification of the hyperparameters. This is an important
property which facilitates the search of the best set of hyperparameters.

8.2 Functional Magnetic Resonance Imaging dataset
The atoms learned from the main article for functional Magnetic Resonance
Imaging (fMRI) are exposed Figure ??. We can see that our method learns
interesting atoms (on the left) while standard methods failed to use the full
dictionary (on the right). Indeed, more than half of the atoms learned by ADMM
remain noise.

8.3 Color Animated Picture
To highlight the behavior of AK-CSC with regard to its non-convexity, we
performed 20 trials of the same minimization program. Results of such an exper-
iments is provided on Figure ??. This illustration shows that the convergence is
globally identical on each trials. Hence, our algorithm seems to be robust.

8.4 Black and White Animated Picture
In this section, we focus on a black and white version of the animated pictures
of Mario. Interestingly, the number of used atoms and of activations is much
more smaller for our method. Indeed, it appears that only important atoms are
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Figure 6: Learned atoms for the fMRI. On the left, the atoms from our method.
On the right, atoms from the classical method.

kept as for the other one, the resulting dictionary is redundant. Quantitatively,
for a similar error of reconstruction, the number of activations is much smaller.
Figure 8 shows one example of reconstruction with associated important atoms.
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Figure 7: Mean and standard deviation of the evolution of the loss function with
AK-CSC regarding the number of full loops (Z and D steps) on 20 trials.

Figure 8: Illustration of the true (on the top) and reconstruct (on the bottom)
animated picture. The third picture corresponds to the significant learned
animated atoms. On the left, our method and on the right, the classical one.
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