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Abstract

We propose a numerical method for solving high dimensional fully nonlinear partial differential equations
(PDEs). Our algorithm estimates simultaneously by backward time induction the solution and its gradient by
multi-layer neural networks, while the Hessian is approximated by automatic differentiation of the gradient
at previous step. This methodology extends to the fully nonlinear case the approach recently proposed in
[HPW20] for semi-linear PDEs. Numerical tests illustrate the performance and accuracy of our method
on several examples in high dimension with non-linearity on the Hessian term including a linear quadratic
control problem with control on the diffusion coefficient, Monge-Ampère equation and Hamilton-Jacobi-
Bellman equation in portfolio optimization.
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1 Introduction

This paper is devoted to the resolution in high dimension of fully nonlinear parabolic partial differential equations
(PDEs) of the form {

∂tu+ f(., ., u,Dxu,D
2
xu) = 0, on [0, T )× Rd,

u(T, .) = g, on Rd,
(1.1)

with a non-linearity in the solution, its gradient Dxu and its hessian D2
xu via the function f(t, x, y, z, γ) defined

on [0, T ]× Rd×R×Rd×Sd (where Sd is the set of symmetric d× d matrices), and a terminal condition g.
The numerical resolution of this class of PDEs is far more difficult than the one of classical semi-linear PDEs

where the nonlinear function f does not depend on γ. In fact, rather few methods are available to solve fully
nonlinear equations even in moderate dimension.

• First based on the work of [Che+07], an effective scheme developed in [FTW11] using some regression
techniques has been shown to be convergent under some ellipticity conditions later removed by [Tan13].
Due to the use of basis functions, this scheme does not permit to solve PDE in dimension greater than 5.

• A scheme based on nesting Monte Carlo has been recently proposed in [War18]. It seems to be effective
in very high dimension for maturities T not too long and linearities not too important.

• A numerical algorithm to solve fully nonlinear equations has been proposed by [BEJ19] based on the
second order backward stochastic differential equations (2BSDE) representation of [Che+07] and global
deep neural networks minimizing a terminal objective function, but no test on real fully nonlinear case is
given. This extends the idea introduced in the pioneering papers [EHJ17; HJE18], which were the first
serious works for using machine learning methods to solve high dimensional PDEs.

• The Deep Galerkin method proposed in [SS18] based on some machine learning techniques and using
some automatic differentiation of the solution seems to be effective on some cases. It has been tested in
[AA+18] for example on the Merton problem.
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In this article, we introduce a numerical method based on machine learning techniques and backward in
time iterations, which extends the proposed schemes in [VSS18] for linear problems, and in the recent work
[HPW20] for semi-linear PDEs. The approach in these works consists in estimating simultaneously the solution
and its gradient by multi-layer neural networks by minimizing a sequence of loss functions defined in backward
induction. A basic idea to extend this method to the fully nonlinear case would rely on the representation
proposed in [Che+07]: at each time step tn of an Euler scheme, the Hessian D2

xu at tn is approximated by
a neural network minimizing some local L2 criterion associated to a BSDE involving Dxu at date tn+1 and
D2
xu. Then, the pair (u,Dxu) at date tn is approximated/learned with a second minimization similarly as in

the method described by [HPW20]. The first minimization can be implemented with different variations but
numerical results show that the global scheme does not scale well with the dimension. Instability on the D2

xu
calculation rapidly propagates during the backward resolution. Besides, the methodology appears to be costly
when using two optimizations at each time step. An alternative approach that we develop here, is to combine
the ideas of [HPW20] and the splitting method in [Bec+19] in order to derive a new deep learning scheme
that requires only one local optimization during the backward resolution for learning the pair (u,Dxu) and
approximating D2

xu by automatic differentiation of the gradient computed at the previous step.
The outline of the paper is organized as follows. In Section 2, we briefly recall the mathematical description of

the classical feedforward approximation, and then derive the proposed neural networks-based backward scheme.
We test our method in Section 3 on various examples. First we illustrate our results with a PDE involving a non-
linearity of type uD2

xu. Then, we consider a stochastic linear quadratic problem with controlled volatility where
an analytic solution is available, and we test the performance and accuracy of our algorithm up to dimension
20. Next, we apply our algorithm to a Monge-Ampère equation, and finally, we provide numerical tests for
the solution to fully nonlinear Hamilton-Jacobi-Bellman equation, with non-linearities of the form |Dxu|2/D2

xu,
arising in portfolio selection problem with stochastic volatilities.

2 The proposed deep backward scheme

Our aim is to numerically approximate the function u : [0, T ] × Rd 7→ R, assumed to be the unique smooth
solution to the fully nonlinear PDE (1.1) under suitable conditions. This will be achieved by means of neural
networks approximations for u and its gradient Dxu, relying on a backward scheme and training simulated data
of some forward diffusion process. Approximations of PDE in high dimension by neural networks have now
become quite popular, and are supported theoretically by recent results in [Hut+18] and [DLM20] showing their
efficiency to overcome the curse of dimensionality.

2.1 Feedforward neural network to approximate functions

We denote by d0 the dimension of the input variables, and d1 the dimension of the output variable. A (deep)
neural network is characterized by a number of layers L+ 1 ∈ N \ {1, 2} with m`, ` = 0, . . . , L, the number of
neurons (units or nodes) on each layer: the first layer is the input layer with m0 = d, the last layer is the output
layer with mL = d1, and the L− 1 layers between are called hidden layers, where we choose for simplicity the
same dimension m` = m, ` = 1, . . . , L− 1.

A feedforward neural network is a function from Rd0 to Rd1 defined as the composition

x ∈ Rd 7−→ AL ◦ % ◦AL−1 ◦ . . . ◦ % ◦A1(x) ∈ R . (2.1)

Here A`, ` = 1, . . . , L are affine transformations: A1 maps from Rd0 to Rm, A2, . . . , AL−1 map from Rm to Rm,
and AL maps from Rm to Rd1 , represented by

A`(x) = W`x+ β`,

for a matrix W` called weight, and a vector β` called bias term, % : R → R is a nonlinear function, called
activation function, and applied component-wise on the outputs of A`, i.e., %(x1, . . . , xm) = (%(x1), . . . , %(xm)).
Standard examples of activation functions are the sigmoid, the ReLu, the Elu, tanh.

All these matrices W` and vectors β`, ` = 1, . . . , L, are the parameters of the neural network, and can be
identified with an element θ ∈ RNm , where Nm =

∑L−1
`=0 m`(1+m`+1) = d0(1+m)+m(1+m)(L−2)+m(1+d1)

is the number of parameters. We denote by Nd0,d1,L,m the set of all functions generated by (2.1) for θ ∈ RNm .

2.2 Forward-backward representation

Let us introduce a forward diffusion process

Xt = X0 +

∫ t

0

µ(s,Xs)ds+

∫ t

0

σ(s,Xs)dWs, 0 ≤ t ≤ T, (2.2)
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where µ is a function defined on [0, T ]×Rd with values in Rd, σ is a function defined on [0, T ]×Rd with values
in Md the set of d× d matrices, and W a d-dimensional Brownian motion on some probability space (Ω,F ,P)
equipped with a filtration F = (Ft)0≤t≤T satisfying the usual conditions. The process X will be used for the
simulation of training data in our deep learning algorithm, and we shall discuss later the choice of the drift and
diffusion coefficients µ and σ, see Remark 2.3.

Let us next denote by (Y,Z,Γ) the triple of F-adapted processes valued in R×Rd×Sd, defined by

Yt = u(t,Xt), Zt = Dxu(t,Xt), Γt = D2
xu(t,Xt), 0 ≤ t ≤ T. (2.3)

By Itô’s formula applied to u(t,Xt), and since u is solution to (1.1), we see that (Y, Z,Γ) satisfies the backward
equation:

Yt = g(XT )−
∫ T

t

[
µ(s,Xs).Zs +

1

2
tr(σσᵀ(s,Xs)Γs)− f(s,Xs, Ys, Zs,Γs)

]
ds

−
∫ T

t

σᵀ(s,Xs)Zs.dWs, 0 ≤ t ≤ T. (2.4)

Remark 2.1 This BSDE does not uniquely characterize a triple (Y, Z,Γ) contrarily to the semilinear case
(without a non-linearity with respect to Γ) in which proper assumptions on the equation coefficients provide
existence and uniqueness for a solution couple (Y,Z). In the present case at least two options can be used to
estimate the Γ component:

• Rely on the 2BSDE representation from [Che+07] which extends the probabilistic representation of [PP90]
for semilinear equations to the fully nonlinear case. It is the approach used by [BEJ19] with a global large
minimization problem, as in [HJE18].

• Compute the second order derivative by automatic differentiation. This is the point of view we adopt in
this paper together with a local approach solving several small optimization problems. In this way, we
provide an extension of [HPW20] to cover a broader range of nonlinear PDEs.

�

2.3 Algorithm

We now provide a numerical approximation of the forward backward system (2.2)-(2.4), and consequently of
the solution u (as well as its gradient Dxu) to the PDE (1.1).

We start from a time grid π = {ti, i = 0, . . . , N} of [0, T ], with t0 = 0 < t1 < . . . < tN = T , and time steps
∆ti := ti+1− ti, i = 0, . . . , N −1. The time discretization of the forward process X on π is then equal (typically
when µ and σ are constants) or approximated by an Euler scheme:

Xti+1
= Xti + µ(ti, Xti)∆ti + σ(ti, Xti)∆Wti , i = 0, . . . , N − 1,

where we set ∆Wti := Wti+1 −Wti (by misuse of notation, we keep the same notation X for the continuous
time diffusion process and its Euler scheme). The backward SDE (2.4) is approximated by the time discretized
scheme

Yti ' Yti+1
−
[
µ(ti, Xti).Zti +

1

2
tr
(
σσᵀ(ti, XtiΓti

)
− f(ti, Xti , Yti , Zti ,Γti)

]
∆ti − σᵀ(ti, Xti)Zti .∆Wti ,

that is written in forward form as

Yti+1
' F (ti, Xti , Yti , Zti ,Γti ,∆ti,∆Wti), i = 0, . . . , N − 1, (2.5)

with

F (t, x, y, z, γ, h,∆) := y − f̃(t, x, y, z, γ)h + zᵀσ(t, x)∆, (2.6)

f̃(t, x, y, z, γ) := f(t, x, y, z, γ)− µ(t, x).z − 1

2
tr
(
σσᵀ(t, x)γ

)
.

The idea of the proposed scheme is the following. Similarly as in [HPW20], we approximate at each time
ti, u(ti, .) and its gradient Dxu(ti, .), by neural networks x ∈ Rd 7→ (Ui(x; θ),Zi(x; θ)) with parameter θ that
are learned optimally by backward induction: suppose that Ûi+1 := Ui+1(.; θ∗i+1), Ẑi+1 := Zi+1(.; θ∗i+1) is an

3



approximation of u(ti+1, .) and Dxu(ti+1, .) at time ti+1, then θ∗i is computed from the minimization of the
quadratic loss function:

L̂i(θ) = E
∣∣∣Ûi+1 − F (ti, Xti ,Ui(Xti ; θ),Zi(Xti ; θ), DẐi+1(T (Xti+1

)),∆ti,∆Wti)
∣∣∣2

where T is a truncation operator such that T (X) is bounded for example by a quantile of the diffusion process
and DẐi+1 stands for the automatic differentiation of Ẑi+1. The idea behind the truncation is the following.
During one step resolution, the estimation of the gradient is less accurate at the edge of the explored domain
where samples are rarely generated. Differentiating the gradient gives a very oscillating Hessian at the edge
of the domain. At the following time step resolution, these oscillations propagate to the gradient and the
solution even if the domain where the oscillations occur is rarely attained. In order to avoid these oscillations,
a truncation is achieved, permits to avoid that the oscillations of the neural network fit in zone where the
simulations propagate scarcely to areas of importance. This truncation may be necessary to get convergence on
some rather difficult cases. Of course this truncation is only valid if the real Hessian does not varies too much.

The intuition for the relevance of this scheme to the approximation of the PDE (1.1) is the following. From
(2.3) and (2.5), the solution u to (1.1) should approximately satisfy

u(ti+1, Xti+1
) ' F (ti, Xti , u(ti, Xti), Dxu(ti, Xti), D

2
xu(ti, Xti),∆ti,∆Wti).

Suppose that at time ti+1, Ûi+1 is an estimation of u(ti+1, .). Recalling the expression of F in (2.6), the quadratic
loss function at time ti is then approximately equal to

L̂i(θ) ' E
∣∣∣u(ti, Xti)− Ui(Xti ; θ) +

(
Dxu(ti, Xti)−Zi(Xti ; θ)

)ᵀ
σ(ti, Xti)∆Wti

− ∆ti
[
f̃(ti, Xti , u(ti, Xti), Dxu(ti, Xti), D

2
xu(ti, Xti))− f̃(ti, Xti ,Ui(Xti ; θ),Zi(Xti ; θ), DẐi+1(T (Xti+1

)))
]∣∣∣2.

By assuming that f̃ has small non-linearities in its arguments (y, z, γ), say Lipschitz, possibly with a suitable
choice of µ, σ, the loss function is thus approximately equal to

L̂i(θ) ' (1 +O(∆ti))E
∣∣u(ti, Xti)− Ui(Xti ; θ)

∣∣2 +O(∆ti)E
∣∣Dxu(ti, Xti)−Zi(Xti ; θ)

∣∣2 +O(|∆ti|2).

Therefore, by minimizing over θ this quadratic loss function, via stochastic gradient descent (SGD) based on
simulations of (Xti , Xti+1 ,∆Wti) (called training data in the machine learning language), one expects the neural
networks Ui and Zi to learn/approximate better and better the functions u(ti, .) and Dxu(ti, ) in view of the
universal approximation theorem for neural networks. The rigorous convergence of this algorithm is postponed
to a future work.

To sum up, the global algorithm is given in Algo 1 in the case where g is Lipschitz and the derivative can
be analytically calculated almost everywhere. If the derivative of g is not available, it can be calculated by
automatic differentiation of the neural network approximation of g.

Algorithm 1 Algorithm for fully non-linear equations.

1: Use a single deep neural network (UN (.; θ),ZN (.; θ)) ∈ Nd,1+d,L,m and minimize (by SGD)
L̂N (θ) := E

∣∣∣UN (XtN ; θ)− g(XtN )
∣∣∣2 +

∆tN−1
d

E
∣∣∣ZN (XtN ; θ)−Dg(XtN )

∣∣∣2
θ∗N ∈ arg min

θ∈RNm
L̂N (θ).

2: ÛN = UN (.; θ∗N ), and set ẐN = ZN (.; θ∗N )
3: for i = N − 1, . . . , 0 do
4: Use a single deep neural network (Ui(.; θ),Zi(.; θ)) ∈ Nd,1+d,L,m for the approximation of

(u(ti, .), Dxu(ti, .)), and compute (by SGD) the minimizer of the expected quadratic loss function
L̂i(θ) := E

∣∣∣Ûi+1(Xti+1
) − F (ti, Xti ,Ui(Xti ; θ),Zi(Xti ; θ), DẐi+1(T (Xti+1

)),∆ti,∆Wti)
∣∣∣2

θ∗i ∈ arg min
θ∈RNm

L̂i(θ).
(2.7)

5: Update: Ûi = Ui(.; θ∗i ), and set Ẑi = Zi(.; θ∗i ).

Remark 2.2 Several alternatives can be implemented for the computation of the second order derivative. A
natural candidate would consist in choosing to approximate the solution u at time ti by a neural network Ui
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and estimate Γi as the iterated automatic differentiation D2
xUi. However, it is shown in [HPW20] that choosing

only a single neural network for u and using its automatic derivative to estimate the Z component degrades the
error in comparison to the choice of two neural networks U ,Z. A similar behavior has been observed during our
tests for this second order case and the most efficient choice was to compute the derivative of the Z network.
This derivative can also be estimated at the current time step ti instead of ti+1. However this method leads to
an additional cost for the neural networks training by complicating the computation of the automatic gradients
performed by Tensorflow during the backpropagation. It also leads numerically to worse results on the control
estimation, as empirically observed in Table 5 and described in the related paragraph ”Comparison with an
implicit version of the scheme”. For this reason, we decided to apply a splitting method and evaluate the
Hessian at time ti+1. For this reason, we decided to apply a splitting method and evaluate the Hessian at time
ti+1. �

Remark 2.3 The diffusion process X is used for the training simulations in the stochastic gradient descent
method for finding the minimizer of the quadratic loss function in (2.7), where the expectation is replaced by
empirical average for numerical implementation. The choice of the drift and diffusion parameters are explained
in Section 3.1. �

3 Numerical results

We first construct an example with different non-linearities in the Hessian term and the solution. We graphically
show that the solution is very well calculated in dimension d = 1 and then move to higher dimensions. We
then use an example derived from a stochastic optimization problem with an analytic solution and show that
we are able to accurately calculate the solution. Next, we consider the numerical resolution of the Monge-
Ampère equation, and finally, give some tests for a fully nonlinear Hamilton-Jacobi-Bellman equation arising
from portfolio optimization with stochastic volatilities.

3.1 Choice of the algorithm hyperparameters

We describe in this paragraph how we choose the various hyperparameters of the algorithm and explain the
learning strategy.

• Parameters of the training simulations: the choice of the drift coefficient is typically related to the
underlying probabilistic problem associated to the PDE (for example a stochastic control problem), and should
drive the training process to regions of interest, e.g.., that are visited with large probability by the optimal state
process in stochastic control. In practice, we can take a drift function µ(.) equal to the drift associated to some
a priori control. This choice of control could be an optimal control for a related problem for which we know
the solution, or could be the control obtained by the first iteration of the algorithm. The choice of the diffusion
coefficient σ is also important: large σ induces a better exploration of the state space, but as we will see in most
of examples below, it gives a scheme slowly converging to the solution with respect to the time discretization
and it generates a higher variance on the results. Moreover, for the applications in stochastic control, we
might explore some region that are visited with very small probabilities by the optimal state process, hence
representing few interest. On the other hand, small σ means a weak exploration, and we might lack information
and precision on some region of the state space: the solution calculated at each time step is far more sensitive
to very local errors induced by the neural network approximation and tends to generate a bias. Therefore a
trade off has to be found between rather high variance with slow convergence in time and fast convergence in
time with a potential bias. We also refer to [NR20] for a discussion on the role of the diffusion coefficient.

In practice and for the numerical examples in the next section, we test the scheme for different σ and by
varying the number of time steps, and if it converges to the same solution, one can consider that we have
obtained the correct solution. We also show the impact of the choice of the diffusion coefficient σ.

• Parameters of truncation: Given the training simulations X, we choose a truncation operator Tp indexed
by a parameter p close to 1, so that Tp(Xt) corresponds to a truncation of Xt at a given quantile φp. In the
numerical tests, we shall vary p between 0.95 and 0.999.

• Parameters of the optimization algorithm over neural networks: In the whole numerical part,
we use a classical Feedforward network using layers with m neurons each and a tanh activation function, the
output layer uses an identity activation function. At each time step the resolution of equation (2.7) is achieved
using a mini-batch with 1000 training trajectories. The training and learning rate adaptation procedure is the
following:

• Every 40 inner gradient descent iterations, the loss is checked on 10000 validation trajectories.

• This optimization sequence is repeated with 200 outer iterations for the first optimization step at date
tN = T and only 100 outer iterations at the dates ti with i < N .
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• An average of the loss calculated on 10 successive outer iterations is performed. If the decrease of the
average loss every 10 outer iterations is less than 5% then the learning rate is divided by 2.

The optimization is performed using the Adam gradient descent algorithm, see [KB14]. Notice that the
adaptation of the learning rate is not common with the Adam method but in our case it appears to be crucial to
have a steady diminution of the loss of the objective function. The procedure is also described in [CWNMW19]
and the chosen parameters are similar to this article. At the initial optimization step at time tN = T , the
learning rate is taken equal to 1E − 2 and at the following optimization steps, we start with a learning rate
equal to 1E − 3.

During time resolution, it is far more effective to initialize the solution of equations (2.7) with the solution
(U ,Z) at the next time step. Indeed the previously computed values at time step ti+1 are good approximations
of the processes at time step ti if the PDE solution and its gradient are continuous. All experiments are achieved
using Tensorflow [Aba+15]. In the sequel, the PDE solutions on curves are calculated as the average of 10 runs.
We provide the standard deviation associated to these results. We also show the influence of the number of
neurons on the accuracy of the results.

3.2 A non-linearity in uD2
xu

We consider a generator in the form

f(t, x, y, z, γ) = ytr(γ) +
y

2
+ 2y2 − 2y4e−(T−t),

and g(x) = tanh
(∑d

i=1 xi√
d

)
, so that an analytical solution is available:

u(t, x) = tanh
(∑d

i=1 xi√
d

)
e−

T−t
2 .

We fix the horizon T = 1, and choose to evaluate the solution at t = 0 and x = 0.5 1Id√
d

(here 1Id denotes

the vector in Rd with all components equal to 1), for which u(t, x) = 0.761902 while its derivative is equal to
1.2966. This initial value x is chosen such that independently of the dimension the solution is varying around
this point and not in a region where the tanh function is close to −1 or 1.

The coefficients of the forward process used to solve the equation are (here Id is the identity d× d-matrix)

σ =
σ̂√
d

Id, µ = 0,

and here the truncation operator is chosen equal to

Tp(X0,x
t ) = min

{
max[x− σ

√
tφp, X

0,x
t ], x+ σ

√
tφp
}
,

where φp = N−1(p), with N is the CDF of a unit centered Gaussian random variable.
In the numerical results, we take p = 0.999 and m = 20 neurons. We first begin in dimension d = 1, and

show in Figure 1 how u, Dxu and D2
xu are well approximated by the resolution method.

On Figure 2, we check the convergence, for different values of σ̂ of both the solution u and its derivative
at point x and date 0. Standard deviation of the function value is very low and the standard deviation of the
derivative still being low.
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Y at date t = 0.5. Z at date t = 0.5 Γ at date t = 0.5

Y at date t = 0.006125. Z at date t = 0.006125 Γ at date t = 0.006125

Figure 1: A single valuation run for test case one 1D using 160 time steps, σ̂ = 2., p = 0.999, 20 neurons, 2
layers.

Convergence of u depending on σ̂ Standard deviation of u

Convergence of Dxu depending on σ̂ Standard deviation of Dxu

Figure 2: Convergence in 1D of the case one, number of neurons par layer equal to 20, 2 layers, p = 0.999.
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As the dimension increases, we have to increase the value of σ̂ of the forward process. In dimension 3, the
value σ̂ = 0.5 gives high standard deviation in the result obtained as shown on Figure 3, while in dimension 10,
see Figure 4, we see that the value σ̂ = 1 is too low to give good results. We also clearly notice that in 10D, a
smaller time step should be used but in our test cases we decided to consider a maximum number of time steps
equal to 160.

Convergence of u depending on σ̂ Convergence of Dxu (first component) depending on σ̂

Figure 3: Convergence in 3D of the case one, number of neurons par layer equal to 20, 2 layers, p = 0.999.

Convergence of u depending on σ̂ Convergence of Dxu depending on σ̂ (first component)

Figure 4: Convergence in 10D of the case one, number of neurons par layer equal to 20, 2 layers, p = 0.999.

On this simple test case, the dimension is not a problem and very good results are obtained in dimension
20 or above with only 20 neurons and 2 layers.
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3.3 A linear quadratic stochastic test case.

In this example, we consider a controlled process X = Xα with dynamics in Rd according to

dXt = (AXt +Bαt)dt+DαtdWt, 0 ≤ t ≤ T, X0 = x,

where W is a real Brownian motion, the control process α is valued in R, and the constant coefficients A ∈Md,
B ∈ Rd, D ∈ Rd. The quadratic cost functional to be minimized is

J(α) =E
[ ∫ T

0

(
X ᵀ

t QXt + α2
tN
)
dt+ X ᵀ

TPXT
]
,

where P , Q are non negative d× d symmetric matrices and N ∈ R is strictly positive.
The Bellman equation associated to this stochastic control problem is:

∂u

∂t
+ inf
a∈R

[
(Ax+Ba).Dxu+

a2

2
tr(DDᵀD2

xu) + xᵀQx+Na2
]

= 0, (t, x) ∈ [0, T )× Rd,

u(T, x) = xᵀPx, x ∈ Rd,

which can be rewritten as a fully nonlinear equation in the form (1.1) with

f(t, x, y, z, γ) = xᵀQx+Ax.z − 1

2

|Bᵀz|2

tr(DDᵀγ) + 2N
.

An explicit solution to this PDE is given by

u(t, x) = xᵀK(t)x,

where K(t) is non negative d× d symmetric matrix function solution to the Riccati equation:

K̇ +A>K +KA+Q− KBB>K

N +D>KD
= 0, K(T ) = P.

We take T = 1. The coefficients of the forward process used to solve the equation are

σ =
σ̂√
d

Id, µ(t, x) = Ax.

In our numerical example we take the following parameters for the optimization problem:

A = Id, B = D = 1Id, Q = P =
1

d
Id, N = d

and we want to estimate the solution at x = 1Id.
In this example, the truncation operator (indexed by p between 0 and 1 and close to 1) is as follows:

Tp(Xx
t ) = min

{
max

[
xeÂt − σ

√
e2Ât − 1̂

2Â
φp, X

x
t

]
, xeÂt + σ

√
e2Ât − 1̂

2Â
φp
}
,

where φp = N−1(p), Â is a vector so that Âi = Aii, i = 1, ..., d, 1̂ is a unit vector, and the square root is taken
componentwise.

On Figure 5 we give the solution of the PDE with d = 1 using σ̂ = 1.5 obtained for two dates: at t = 0.5
and at t close to zero. We observe that we have a very good estimation of the function value and a correct one
of the Γ value at date t = 0.5. The precision remains good for Γ close to t = 0 and very good for u and Dxu.
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Y at date t = 0.5. Z at date t = 0.5 Γ at date t = 0.5

Y at date t = 0.006125. Z at date t = 0.006125 Γ at date t = 0.006125

Figure 5: Test case linear quadratic 1D using 160 time steps, σ̂ = 1.5, p = 0.999, 100 neurons.

On Figure 6, we give the results obtained in dimension d = 1 by varying σ̂. For a value of σ̂ = 2, the
standard deviation of the result becomes far higher than with σ̂ = 0.5 or 1.

Convergence of u depending on σ̂. Standard deviation of u

Figure 6: Convergence in 1D of the linear quadratic case, number of neurons par layer equal to 50, 2 layers,
p = 0.999.

On Figure 7, for d = 3, we take a quite low truncation factor p = 0.95 and observe that the number of
neurons to take has to be rather high. We have also checked that taking a number of hidden layers equal to 3
does not improve the results.
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10 neurons 20 neurons

30 neurons 50 neurons

Figure 7: Convergence in 3D of the linear quadratic case, 2 layers, testing the influence of the number of
neurons, truncation p = 0.95.

On Figure 8, for d = 3, we give the same graphs for a higher truncation factor. As we take a higher
truncation factor, the results are improved by taking a higher number of neurons (100 in the figure below).
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10 neurons 20 neurons

50 neurons 100 neurons

Figure 8: Convergence in 3D of the linear quadratic case, 2 layers, testing the influence of the number of
neurons, truncation p = 0.99.

On Figure 9, we observe in dimension 7 the influence of the number of neurons on the result for a high
truncation factor p = 0.999. We clearly have a bias for a number of neurons equal to 50. This bias disappears
when the number of neurons increases to 100.

Convergence with 50 neurons Convergence with 100 neurons

Figure 9: Convergence in 7D of the linear quadratic case, 2 layers, p = 0.999.
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On Figure 10, for d = 7, we check that influence of the truncation factor appears to be slow for higher
dimensions.

Figure 10: Function value convergence in 7D of the linear quadratic case with 2 layers, 100 neurons, testing p,
using σ̂ = 2

.

Finally, we give results in dimension 10, 15 and 20 for p = 0.999 on Figures 11, 12. We observe that the
number a neurons with 2 hidden layers has to increase with the dimension but also that the increase is rather
slow in contrast with the case of one hidden layer as theoretically shown in [Pin99]. For σ̂ = 5 we had to take
300 neurons to get very accurate results.

10D 15D

Figure 11: Function value convergence in 10D and 15D of the linear quadratic case with 2 layers, p = 0.999.
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Figure 12: Function value convergence in 20D of the linear quadratic case with 2 layers, p = 0.999.

3.4 Monge-Ampère equation

Let us consider the parabolic Monge-Ampère equation{
∂tu+ det(D2

xu) = h(x), (t, x) ∈ [0, T ]× Rd,
u(T, x) = g(x),

(3.1)

where det(D2
xu) is the determinant of the Hessian matrix D2

xu. It is in the form (1.1) with

f(t, x, γ) = det(γ)− h(x).

We test our algorithm by choosing a C2 function g, then compute G = det(D2
xg), and set h := G− 1. Then,

by construction, the function

u(t, x) = g(x) + T − t,

is solution to the Monge-Ampère equation (3.1). We choose g(x) = cos(
∑d
i=1 xi/

√
d), and we shall train with

the forward process X = x0 + W , where W is a d-dimensional Brownian motion. On this example, we use
neural networks with 3 hidden layers, d + 10 neurons per layer, and we do not need to apply any truncation
to the forward process X. Actually, we observe that adding a truncation worsens the results. For choosing the
truncation level, we first test the method with no truncation before decreasing the quantile parameter p. In the
Monge-Ampère case the best results are obtained without any truncation. It may be caused by the oscillation
of the Hessian.

The following table gives the results in dimension d = 5, 15, and for T = 1.

Dimension d Averaged value Standard deviation Relative error (%) Theoretical solution
5 0.37901 0.00312 0.97 0.382727
15 0.25276 0.00235 1.17 0.255754

Table 1: Estimate of u(0, x0 = 15) on the Monge Ampere problem (3.1) with N = 120. Average and standard
deviation observed over 10 independent runs are reported.

3.5 Portfolio selection

We consider a portfolio selection problem formulated as follows. There are n risky assets of uncorrelated price
process P = (P 1, . . . , Pn) with dynamics

dP it = P itσ(V it )
[
λi(V

i
t )dt+ dW i

t

]
, i = 1, . . . , n,

where W = (W 1, . . . ,Wn) is a n-dimensional Brownian motion, b = (b1, . . . , bn) is the rate of return of the
assets, λ = (λ1, . . . , λn) is the risk premium of the assets, σ is a positive function (e.g. σ(v) = ev corresponding
to the Scott model), and V = (V 1, . . . , V n) is the volatility factor modeled by an Ornstein-Uhlenbeck (O.U.)
process

dV it = κi[θi − V it ]dt+ νidB
i
t, i = 1, . . . , n, (3.2)
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with κi, θi, νi > 0, and B = (B1, . . . , Bn) a n-dimensional Brownian motion, s.t. d < W i, Bj > = δijρijdt, with
ρi := ρii ∈ (−1, 1). An agent can invest at any time an amount αt = (α1

t , . . . , α
n
t ) in the stocks, which generates

a wealth process X = Xα governed by

dXt =

n∑
i=1

αitσ(V it )
[
λi(V

i
t )dt+ dW i

t

]
.

The objective of the agent is to maximize her expected utility from terminal wealth:

E
[
U(XαT )] ← maximize over α

It is well-known that the solution to this problem can be characterized by the dynamic programming method
(see e.g. [Pha09]), which leads to the Hamilton-Jacobi-Bellman for the value function on [0, T )× R×Rn:∂tu+

n∑
i=1

[
κi(θi − vi)∂viu+

1

2
ν2i ∂

2
viu
]

=
1

2
R(v)

(∂xu)2

∂2xxu
+

n∑
i=1

[
ρiλi(vi)νi

∂xu∂
2
xviu

∂2xxu
+

1

2
ρ2i ν

2
i

(∂2xviu)2

∂2xxu

]
u(T, x, v) = U(x), x ∈ R, v ∈ Rn,

with a Sharpe ratio R(v) := |λ(v)|2, for v = (v1, . . . , vn) ∈ (0,∞)n. The optimal portfolio strategy is then given
in feedback form by α∗t = â(t,X ∗t , Vt), where â = (â1, . . . , ân) is given by

âi(t, x, v) = − 1

σ(vi)

(
λi(vi)

∂xu

∂2xxu
+ ρiνi

∂2xviu

∂2xxu

)
, (t, x, v = (v1, . . . , vn)) ∈ [0, T )× R×Rn,

for i = 1, . . . , n. This Bellman equation is in the form (1.1) with

f(t, x, y, z, γ) =

n∑
i=1

[
κi(θi − vi)zi +

1

2
ν2i γii

]
− 1

2
R(v)

z20
γ00
−

n∑
i=1

[
ρiλi(vi)νi

z0γ0i
γ00

+
1

2
ρ2i ν

2
i

(γ0i)
2

γ00

]
,

for x = (x, v) ∈ Rn+1, z = (z0, . . . , zn) ∈ Rn+1, γ = (γij)0≤i,j≤n ∈ Sn+1, and displays a high non-linearity in
the Hessian argument γ.

The truncation operator indexed by a parameter p is chosen equal to

Tp(X0,x
t ) = min

{
max[x+ µt− σ

√
tφp, X

0,x
t ], x+ µt+ σ

√
tφp
}
,

where φp = N−1(p), N is the CDF of a unit centered Gaussian random variable. We use neural networks with
2 hidden layers and d + 10 neurons per layer. We shall test this example when the utility function U is of
exponential form: U(x) = − exp(−ηx), with η > 0, and under different cases for which closed-form solutions
are available:

(1) Merton problem. This corresponds to a degenerate case where the factor V , hence the volatility σ and
the risk premium λ are constant, so that the generator of Bellman equation reduces to

f(t, x, y, z, γ) = −1

2
|λ|2 z

2

γ
, (t, x, y, z) ∈ [0, T ]× R×R×R, (3.3)

with explicit solution given by:

u(t, x) = e−(T−t)
|λ|2
2 U(x), âi =

λi
ησ
.

We train with the forward process

Xk+1 = Xk + λ∆tk + ∆Wk, k = 0, . . . , N, X0 = x0.

(2) One risky asset: n = 1. A quasi-explicit solution is provided in [Zar01]:

u(t, x, v) = U(x)w(t, v), with w(t, v) =
∥∥∥ exp

(
− 1

2

∫ T

t

R(V̂ t,vs )ds
)∥∥∥

L1−ρ2

where V̂ t,vs is the solution to the modified O.U. model

dV̂s =
[
κ(θ − V̂s)− ρνλ(V̂s)

]
ds+ νdBs, s ≥ t, V̂t = v.
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We test our algorithm with λ(v) = λv, λ > 0, for which we have an explicit solution:

w(t, v) = exp
(
− φ(t)

v2

2
− ψ(t)v − χ(t)

)
, (t, v) ∈ [0, T ]× R,

where (φ, ψ, χ) are solutions of the Riccati system of ODEs:

φ̇− 2κ̄φ− ν2(1− ρ2)φ2 + λ2 = 0, φ(T ) = 0,

ψ̇ − (κ̄+ ν2(1− ρ2)φ)ψ + κθφ = 0, ψ(T ) = 0,

χ̇+ κθψ − ν2

2
(−φ+ (1− ρ2)ψ2) = 0, χ(T ) = 0,

with κ̄ = κ+ ρνλ, and explicitly given by (see e.g. Appendix in [SZ99])

φ(t) = λ2
sinh(κ̂(T − t))

κ̂ cosh(κ̂(T − t)) + κ̄ sinh(κ̂(T − t))

ψ(t) = λ2
κθ

κ̂

cosh(κ̂(T − t))− 1

κ̂ cosh(κ̂(T − t)) + κ̄ sinh(κ̂(T − t))

χ(t) =
1

2(1− ρ2)
ln
[

cosh(κ̂(T − t)) +
κ̄

κ̂
sinh(κ̂(T − t))

]
− 1

2(1− ρ2)
κ̄(T − t)

− λ2
(κθ)2

κ̂2

[ sinh(κ̂(T − t))
κ̂ cosh(κ̂(T − t)) + κ̄ sinh(κ̂(T − t))

− (T − t)
]

− λ2
(κθ)2κ̄

κ̂3
cosh(κ̂(T − t))− 1

κ̂ cosh(κ̂(T − t)) + κ̄ sinh(κ̂(T − t))
,

with κ̂ =
√
κ2 + 2ρνλκ+ γ2λ2. We train with the forward process

Xk+1 = Xk + λθ∆tk + ∆Wk, k = 0, . . . , N − 1, X0 = x0,

Vk+1 = Vk + ν∆Bk, k = 0, . . . , N − 1, V0 = θ.

(3) No leverage effect, i.e., ρi = 0, i = 1, . . . , n. In this case, there is a quasi-explicit solution given by

u(t, x, v) = U(x)w(t, v), with w(t, v) = E
[

exp
(
− 1

2

∫ T

t

R(V t,vs )ds
)]
, (t, v) ∈ [0, T ]× Rn, (3.4)

where V t,v is the solution to (3.2), starting from v at time t. We test our algorithm with λi(v) = λivi, λi
> 0, i = 1, . . . , n, v = (v1, . . . , vn), for which we have an explicit solution given by

w(t, v) = exp
(
−

n∑
i=1

[
φi(t)

v2i
2

+ ψi(t)vi + χi(t)
])
, (t, v) ∈ [0, T ]× Rn,

φi(t) = λ2i
sinh(κ̂i(T − t))

κi sinh(κ̂i(T − t)) + κ̂i cosh(κ̂i(T − t))

ψi(t) = λ2i
κiθi
κ̂i

cosh(κ̂i(T − t))− 1

κi sinh(κ̂i(T − t)) + κ̂i cosh(κ̂i(T − t))

χi(t) =
1

2
ln
[

cosh(κ̂i(T − t)) +
κi
κ̂i

sinh(κ̂i(T − t))
]
− 1

2
κi(T − t)

− λ2i
(κiθi)

2

κ̂2i

[ sinh(κ̂i(T − t))
κ̂i cosh(κ̂i(T − t)) + κi sinh(κ̂i(T − t))

− (T − t)
]

− λ2
(κiθi)

2κi
κ̂3i

cosh(κ̂i(T − t))− 1

κ̂i cosh(κ̂i(T − t)) + κi sinh(κ̂i(T − t))
,

with κ̂i =
√
κ2i + ν2i λ

2
i . We train with the forward process

Xk+1 = Xk + ∆Wk, k = 0, . . . , N − 1, X0 = x0,

V ik+1 = V ik + νi∆B
i
k, k = 0, . . . , N − 1, V i0 = θi,

with < W,Bi >t = 0.
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Merton Problem. We take η = 0.5, λ = 0.6, T = 1, N = 120, and σ(v) = ev. We plot the neural networks
approximation of u,Dxu,D

2
xu, α (in blue) together with their analytic values (in orange). For comparison with

Figures 6 and 7, we report the error on the gradient and the initial control. In practice, after empirical tests,
we choose p = 0.98 for the truncation.

Averaged value Standard deviation Theoretical value Relative error (%)
u(0, x0 = 1) -0.50561 0.00029 -0.50662 0.20

Dxu(0, x0 = 1) 0.25081 0.00088 0.25331 0.99
α(0, x0 = 1) 0.83552 0.02371 0.80438 3.87

Table 2: Estimate of the solution, its derivative and the optimal control at the initial time t = 0 in the Merton
problem (3.3). Average and standard deviation observed over 10 independent runs are reported.

Y at date t = 0.5042. Z at date t = 0.5042 Γ at date t = 0.5042

Y at date t = 0.0084. Z at date t = 0.0084 Γ at date t = 0.0084

Figure 13: Estimates of the solution and its derivatives on the Merton problem (3.3) using 120 time steps.

α at date t = 0.5042. α at date t = 0.0084.

Figure 14: Estimates of the optimal control α on the Merton problem (3.3).

One asset (n = 1) in Scott volatility model. We take η = 0.5, λ = 1.5, θ = 0.4, ν = 0.4, κ = 1,
ρ = −0.7. For all tests we choose T = 1, N = 120, and σ(v) = ev. In practice, after empirical tests, we choose
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p = 0.98 for the truncation.

Averaged value Standard deviation Relative error (%)
-0.53431 0.00070 0.34

Table 3: Estimate of u(0, x0 = 1, θ) on the One Asset problem with stochastic volatility (d = 2). Average and
standard deviation observed over 10 independent runs are reported. The exact solution is −0.53609477.

No Leverage in Scott model. In the case with one asset (n = 1), we take η = 0.5, λ = 1.5, θ = 0.4,
ν = 0.2, κ = 1. For all tests we choose T = 1, N = 120, and σ(v) = ev. In practice, after empirical tests, we
choose p = 0.95 for the truncation.

Dimension d Averaged value Standard deviation Relative error (%) Theoretical solution
2 -0.49980 0.00073 0.35 -0.501566
5 -0.43768 0.00137 0.92 -0.441765
8 -0.38720 0.00363 1.96 -0.394938
10 -0.27920 0.05734 1.49 -0.275092

Table 4: Estimate of u(0, x0 = 1, θ) on the No Leverage problem (3.4). Average and standard deviation observed
over 10 independent runs are reported.

In the case with four assets (n= 4, d = 5), we take η = 0.5, λ =
(
1.5 1.1 2. 0.8

)
, θ =

(
0.1 0.2 0.3 0.4

)
,

ν =
(
0.2 0.15 0.25 0.31

)
, κ =

(
1. 0.8 1.1 1.3

)
.

In the case with seven assets (n = 7, d = 8) we take η = 0.5, λ =
(
1.5 1.1 2. 0.8 0.5 1.7 0.9

)
,

θ =
(
0.1 0.2 0.3 0.4 0.25 0.15 0.18

)
, ν =

(
0.2 0.15 0.25 0.31 0.4 0.35 0.22

)
,

κ =
(
1. 0.8 1.1 1.3 0.95 0.99 1.02

)
.

In the case with nine assets (n= 9, d = 10), we take η = 0.5, λ =
(
1.5 1.1 2. 0.8 0.5 1.7 0.9 1. 0.9

)
,

θ =
(
0.1 0.2 0.3 0.4 0.25 0.15 0.18 0.08 0.91

)
, ν =

(
0.2 0.15 0.25 0.31 0.4 0.35 0.22 0.4 0.15

)
,

κ =
(
1. 0.8 1.1 1.3 0.95 0.99 1.02 1.06 1.6

)
.

Hamilton-Jacobi-Bellman equation from portfolio optimization is a typical example of full-nonlinearity in
the second order derivative, and the above results show that our algorithm performs quite well up to dimension
d = 8, but gives a high variance in dimension d = 10.

Comparison with an implicit version of the scheme. As explained in Remark 2.2, an alternative
option for the estimation of the Hessian is to approximate it by the automatic differentiation of the current
neural network for the Z component. It corresponds to the replacement of DẐi+1(T (Xti+1)) by DZi(T (Xti)); θ)
in (2.7). An additional change has to be made to the method for it to work. At the last optimization step (for
time step t0 = 0), we notice empirically that the variable Γ0 is not able to properly learn the initial Hessian
value at all. Therefore for this last step we use variables Y0, Z0 and an explicit estimation of the second order
derivative given by DẐ1(T (Xt1)). We see in Table 5 that the results for the Merton problem are very similar to
the ones from Table 2 for the splitting scheme but with a worse estimation of the Hessian and optimal control
(the error is multiplied by around 1.5). When we tested this implicit scheme on the Monge Ampere problem
we also faced computational problems during the optimization step of Tensorflow. The numerical computation
of the gradient of the objective function for the backpropagation step, more precisely for the determinant part,
often gives rise to matrix invertibility errors which stops the algorithm execution. For these two reasons, we
focused our study on the explicit scheme.

Average Std True value Relative error (%)

u(0, x0 = 1) -0.50572 0.00034 -0.50662 0.18
Dxu(0, x0 = 1) 0.25091 0.00067 0.25331 0.95
α(0, x0 = 1) 0.85254 0.01956 0.80438 5.99

Table 5: Estimate of the solution, its derivative and the optimal control at the initial time t = 0 in the Merton
problem (3.3) with implicit estimation of the Hessian. Average and standard deviation (Std) observed over 10
independent runs are reported

Comparison with the 2BSDE scheme of [BEJ19]. We conclude this paper with a comparison of
our algorithm with the global scheme of [BEJ19], called Deep 2BDSE. The tests below concern the Merton
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problem (3.3) but similar behavior happens on the other examples with stochastic volatilities. This scheme was
implemented in the original paper only for small number of time steps (e.g. N = 30). Thus we tested this
algorithm on two discretizations, respectively with N = 20 and N = 120 time steps, as shown in Figure 15,
for T = 1 where we plotted the learning curve of the Deep BSDE method. These curves correspond to the
values taken by the loss function during the gradient descent iterations. For this algorithm the loss function to
minimize in the training of neural networks is defined as the mean L2 error between the generated YN value
and the true terminal condition g(XN ). We observe that for this choice of maturity T = 1 the loss function
oscillates during the training process and does not vanish. As a consequence the Deep 2BSDE does not converge
in this case. Even when decreasing the learning rate, we noticed that we cannot obtain the convergence of the
scheme.

However, the Deep 2BSDE method does converge for small maturities T , as illustrated in Table 6 with
T = 0.1 and different values for the number of time steps N . Nevertheless, even if the value function is well
approximated, the estimation of the gradient and control did not converge (the corresponding variance is very
large), in comparison with our scheme whereas the gradient is very well approximated and the control is quite
precise. We also have a much smaller variance in the results. Table 7 shows the results obtained by our method
with T = 0.1 in order to compare it with the performance of [BEJ19]. It illustrates the limitations of the global
approach and justifies our introduction of a local method.

Figure 15: Learning curve in logarithmic scale for the scheme [BEJ19] on the Merton problem (3.3) with N =
20 times steps on the left and N = 120 time steps on the right. The maturity is T = 1
. 10000 gradient descent iterations were conducted.

N Averaged value Standard deviation Theoretical value Relative error (%)
u(0, x0 = 1) 5 -0.60667 0.01588 -0.59571 1.84
u(0, x0 = 1) 10 -0.59841 0.02892 -0.59571 0.45
u(0, x0 = 1) 20 -0.59316 0.04251 -0.59571 0.43

Dxu(0, x0 = 1) 5 0.09668 0.25630 0.29786 67.54
Dxu(0, x0 = 1) 10 0.03810 0.44570 0.29786 93.36
Dxu(0, x0 = 1) 20 0.07557 0.55030 0.29786 74.63

α(0, x0 = 1) 5 -0.15243 0.61096 0.80438 118.95
α(0, x0 = 1) 10 0.59971 1.97906 0.80438 25.44
α(0, x0 = 1) 20 0.28385 0.43775 0.80438 64.71

Table 6: Estimate of the solution, its derivative and the optimal control at the initial time t = 0 in the Merton
problem (3.3) with maturity T = 0.1 for the [BEJ19] scheme. Average and standard deviation observed over
10 independent runs are reported.
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N Averaged value Standard deviation Theoretical value Relative error (%)
u(0, x0 = 1) 5 -0.59564 0.01136 -0.59571 0.01
u(0, x0 = 1) 10 -0.59550 0.00037 -0.59571 0.04
u(0, x0 = 1) 20 -0.59544 0.00054 -0.59571 0.04

Dxu(0, x0 = 1) 5 0.29848 0.00044 0.29786 0.21
Dxu(0, x0 = 1) 10 0.29842 0.00084 0.29786 0.19
Dxu(0, x0 = 1) 20 0.29785 0.00054 0.29786 0.001

α(0, x0 = 1) 5 0.82322 0.01014 0.80438 2.34
α(0, x0 = 1) 10 0.85284 0.07565 0.80438 6.02
α(0, x0 = 1) 20 0.84201 0.09892 0.80438 4.68

Table 7: Estimate of the solution, its derivative and the optimal control at the initial time t = 0 in the
Merton problem (3.3) with maturity T = 0.1 for our scheme. Average and standard deviation observed over 10
independent runs are reported.
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