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Abstract

We propose a numerical method for solving high dimensional fully nonlinear partial differential equations
(PDEs). Our algorithm estimates simultaneously by backward time induction the solution and its gradient by
multi-layer neural networks, while the Hessian is approximated by automatic differentiation of the gradient
at previous step. This methodology extends to the fully nonlinear case the approach recently proposed in
[HPW19] for semi-linear PDEs. Numerical tests illustrate the performance and accuracy of our method
on several examples in high dimension with nonlinearity on the Hessian term including a linear quadratic
control problem with control on the diffusion coefficient, Monge-Ampere equation and Hamilton-Jacobi-
Bellman equation in portfolio optimization.
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1 Introduction

This paper is devoted to the resolution in high dimension of fully nonlinear parabolic partial differential equations
(PDEs) of the form

{Btu—i— f(, ., u, Dyu, D*u) = 0, on [0,T) x RY, (L.1)

u(T,.) =g, on RY,

with a non-linearity in the solution, its gradient D,u and its hessian D2u via the function f(¢,x,y, z,v) defined
on [0,T] x RY x R x RY xS? (where S is the set of symmetric d X d matrices), and a terminal condition g.

The numerical resolution of this class of PDEs is far more difficult than the one of classical semi-linear PDEs
where the nonlinear function f does not depend on ~. In fact, rather few methods are available to solve fully
nonlinear equations even in moderate dimension.

e First based on the work of [Che+07|, an effective scheme developed in [FTW11] using some regression
techniques has been shown to be convergent under some ellipticity conditions later removed by [Tanl13].
Due to the use of basis functions, this scheme does not permit to solve PDE in dimension greater than 5.

e A scheme based on nesting Monte Carlo has been recently proposed in [Warl§|. It seems to be effective
in very high dimension for maturities not too long and linearities not too important.

e A numerical algorithm to solve fully nonlinear equations has been proposed by |[BEJ19] based on the
second order backward stochastic differential equations (2BSDE) representation of [Che+07] and global
deep neural networks minimizing a terminal objective function, but no test on real fully nonlinear case
is given. This extends the idea introduced in the pioneering papers [EHJ17; [HE18], which were the first
serious works for using machine learning methods to solve high dimensional PDEs.

e The Deep Galerkin method proposed in [SS18| based on some machine learning techniques and using
some automatic differentiation of the solution seems to be effective on some cases. It has been tested in
[AA+1§| for example on the Merton problem.
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In this article, we introduce a numerical method based on machine learning techniques and backward in
time iterations, which extends the proposed schemes in [VSS18] for linear problems, and in the recent work
[HPW19| for semi-linear PDEs. The approach in these works consists in estimating simultaneously the solution
and its gradient by multi-layer neural networks by minimizing a sequence of loss functions defined in backward
induction. A basic idea to extend this method to the fully nonlinear case would rely on the representation
proposed in |[Che+07]: at each time step ¢, of an Euler scheme, the Hessian D?u at t,, is approximated by
a neural network minimizing some local Lsy criterion associated to a BSDE involving D, u at date t,,41 and
D2u. Then, the pair (u, D,u) at date t,, is approximated/learned with a second minimization similarly as in
the method described by [HPW19]. The first minimization can be implemented with different variations but
numerical results show that the global scheme does not scale well with the dimension. Instability on the D2u
calculation rapidly propagates during the backward resolution. Besides, the methodology appears to be costly
when using two optimizations at each time step. An alternative approach that we develop here, is to combine
the ideas of [HPW19] and the splitting method in [Bec+19| in order to derive a new deep learning scheme
that requires only one local optimization during the backward resolution for learning the pair (u, Dyu) and
approximating D?u by automatic differentiation of the gradient computed at the previous step.

The outline of the paper is organized as follows. In Section 2] we briefly recall the mathematical description of
the classical feedforward approximation, and then derive the proposed neural networks-based backward scheme.
We test our method in Section [3| on several various examples. First we illustrate our results with a PDE
involving a non linearity of type uD2u. Then, we consider a stochastic linear quadratic problem with controlled
volatility where an analytic solution is available, and we test the performance and accuracy of our algorithm
up to dimension 20. Next, we apply our algorithm to a Monge-Ampere equation, and finally, we provide
numerical tests for the solution to fully nonlinear Hamilton-Jacobi-Bellman equation, with nonlinearities of the
form |D,u|?/D2u, arising in portfolio selection problem with stochastic volatilities.

2 The proposed deep backward scheme

Our aim is to numerically approximate the function w : [0,T] x R? — R, assumed to be the unique smooth
solution to the fully nonlinear PDE under suitable conditions. This will be achieved by means of neural
networks approximations for u and its gradient D, u, relying on a backward scheme and training simulated data
of some forward diffusion process. Approximations of PDE in high dimension by neural networks have now
become quite popular, and are supported theoretically by recent results in [Hut+18] and [DLM19| showing their
efficiency to overcome the curse of dimensionality.

2.1 Feedforward neural network to approximate functions

We denote by dy the dimension of the input variables, and d; the dimension of the output variable. A (deep)
neural network is characterized by a number of layers L + 1 € N\ {1,2} with my, £ = 0,..., L, the number of
neurons (units or nodes) on each layer: the first layer is the input layer with mg = d, the last layer is the output
layer with my, = di, and the L — 1 layers between are called hidden layers, where we choose for simplicity the
same dimension my =m, £ =1,..., L — 1.

A feedforward neural network is a function from R% to R% defined as the composition

reRY— ApopoAp_j0...000A(z) € R. (2.1)

Here Ay, ¢ = 1,..., L are affine transformations: A; maps from R%® to R™, A,, ..., A;_1 map from R™ to R™,
and A;, maps from R™ to Rdl, represented by

Ai(z) = Wz + fs,

for a matrix Wy called weight, and a vector 5, called bias term, o : R — R is a nonlinear function, called

activation function, and applied component-wise on the outputs of Ay, i.e., o(x1,...,2m) = (o(x1), ..., 0(xm)).
Standard examples of activation functions are the sigmoid, the ReLu, the Elu, tanh.
All these matrices W, and vectors B¢, £ = 1,..., L, are the parameters of the neural network, and can be

identified with an element § € RV, where N,,, = ZL:_OI me(1+mes1) = do(L+m)+m(14+m)(L—2)+m(1+dy)

is the number of parameters. We denote by Ny, 4,.,m the set of all functions generated by (2.1)) for 6 € RN,

2.2 Forward-backward representation

Let us introduce a forward diffusion process

¢ ¢
X =Xo +/ (s, Xs)ds +/ o(s, Xs)dWs, 0<t<T, (2.2)
0 0



where 4 is a function defined on [0, T] x R? with values in R?, o is a function defined on [0, 7] x R? with values
in M the set of d x d matrices, and W a d-dimensional Brownian motion on some probability space (Q, F,P)
equipped with a filtration F = (F;)o<;<7 satisfying the usual conditions. The process X will be used for the
simulation of training data in our deep learning algorithm, and we shall discuss later the choice of the drift and
diffusion coefficients p and o, see Remark [2:2]

Let us next denote by (Y, Z,T') the triple of F-adapted processes valued in R x R? xS?, defined by

Y, = u(t,Xs), Z; = Dyu(t,X;), Ty = D?u(t,X;), 0<t<T. (2.3)

By It6’s formula applied to u(t, X;), and since w is solution to (1.1]), we see that (Y, Z,T') satisfies the backward
equation:

T
Y, = g(XT) - / [,LL(&XS)'ZS + %tr(UUT(saXs)Fs) - f(sa Xsa Ysa Zsars)] ds
t

T
- / o7 (8,Xs)Zs.dW,, 0<t<T. (2.4)
t

2.3 Algorithm

We now provide a numerical approximation of the forward backward system —, and consequently of
the solution u (as well as its gradient D,u) to the PDE (1.1)).

We start from a time grid 7 = {¢;,i=0,...,N} of [0,T], withtg =0 < t; < ... <ty =T, and time steps
Aty :=tiy1—t;, 1 =0,..., N —1. The time discretization of the forward process X on 7 is then equal (typically
when p and o are constants) or approximated by an Euler scheme:

Xt = Xti —|—/J,(t“XtL)Atz—|—0’(t“XtL)AWt1, i:O,...,N— 1,

i+1

where we set AW,, := W,,,, — W;, (by misuse of notation, we keep the same notation X for the continuous
time diffusion process and its Euler scheme). The backward SDE ({2.4)) is approximated by the time discretized
scheme

1
}/ti = }/t - [M(tiaXti)-Zti + §tr(UUT(ti7XtiFti) - f(tz; XtiaYVtw Ztmrti)] Atl - O-T(thth;)Zti'AWti)

.
that is written in forward form as
Yion ~ F(ti, X1, Ve, Z0,, Ty, Ay, AW, i=0,... N — 1, (2.5)
with
F(t,x,y, 2,7, h,A) := y— f(t,z,y,z,7)h + 270(t, 2)A, (2.6)
f(t,:my, z,v) = f(t,z,y,2,7) — plt,z).z — %tr(aoT(t,x)v).

The idea of the proposed scheme is the following. Similarly as in [HPW19], we approximate at each time
t;, u(t;,.) and its gradient Dyu(t;,.), by neural networks = € R — (U;(x;0), Z;(x; 0)) with parameter ¢ that
are learned optimally by backward induction: suppose that Z/IZH = Ui1(50711), Zerl = Ziy1(07,,) is an
approximation of w(t;y1,.) and Dyu(t;+1,.) at time t;,11, then 67 is computed from the minimization of the
quadratic loss function:

. . . 2
Li(0) = E\Uiy1 — F(ti, Xy, , Ui (X3 0), 2i(X4,50), DZi1 (T (Xe,,,)), Aty AWti)‘

where 7 is a truncation operator such that T(X) is bounded for example by a quantile of the diffusion process
and DZzH stands for the automatic differentiation of Z7,+1 The truncation permits to avoid that the oscillations
of the neural network fit in zone where the simulations propagate scarcely to areas of importance. This truncation
may be necessary to get convergence on some rather difficult cases.

The intuition for the relevance of this scheme to the approximation of the PDE is the following. From

and ( . the solution u to (1.1]) should approximately satisfy
u(ti+1, Xti+1) >~ F(ti, Xti y U(ti, Xn), Dl.u(ti, Xti), Diu(ti, Xti)7 Ati, AWt,)

Suppose that at time ¢;1, L?Hl is an estimation of u(t;41,.). Recalling the expression of F' in (2.6]), the quadratic
loss function at time ¢; is then approximately equal to

Li(8) = Elu(t:, X,) — Us(X0,30) + (Dauts, X1,) = Z(X0,30)) "o (b, X, )AW,,

- Ati [fN(thXtiau(tivXti)vau(tivXti)aDgu(thXti)) fN(tuXt (Xt ’0)7Zi(Xti;0)7D2i+1(T(Xti+1)))]

‘ 2



By assuming that f has small nonlinearities in its arguments (y, z,7), say Lipschitz, possibly with a suitable
choice of p, o, the loss function is thus approximately equal to

Li(0) = (14 O(AL)E|ults, X1,) — Us(X0,;0)|° + O(AL)E|Dyults, Xo,) — Z:(X,,30)|* + O(| AL ).

Therefore, by minimizing over # this quadratic loss function, via stochastic gradient descent (SGD) based on
simulations of (Xy,, Xy,,,, AW;,) (called training data in the machine learning language), one expects the neural
networks U; and Z; to learn/approximate better and better the functions w(t;,.) and D,u(t;,) in view of the
universal approximation theorem for neural networks. The rigorous convergence of this algorithm is postponed
to a future work.

To sum up, the global algorithm is given in Algo [1| in the case where g is Lipschitz and the derivative can
be analytically calculated almost everywhere. If the derivative of g is not available, it can be calculated by
automatic differentiation of the neural network approximation of g.

Algorithm 1 Algorithm for fully non linear equations.

1: Use a single deep neural network (Un(.;0), Zn(-;0)) € Na14d,1,m and minimize (by SGD)

Atn_ 2
g LE| Zn (X¢y;0) — Dg(Xy,)

Lyn(0) == EUn(Xey:0) — 9(Xey) i +

Ox € in Ly(6).
N €arg min ~(0)
2 Uy = Un(.;0%), and set Zy = Zn(.;0%)
3: for i=N-1,...,0do
4: Use a single deep neural network (U;(.;0),2;(:;0)) € Ngitdrm for the approximation of
(u(t;,.), Dzu(ts, .)), and compute (by SGD) the minimizer of the expected quadratic loss function

~

~ N 2
Ll(é‘) = E Z/{iH (Xt F(ti, Xt“ui (Xti§ 9), Z’L(XtL7 9), DZi+1(T(Xti+1))7 At“ Ath)

i+1) -

) (2.7)
07 € arg min L;(0).
geRNm

5: Update: U; = U;(.;07), and set Z, = Zi(.;07).

Remark 2.1 A variation in the algorithm consists in using two neural networks for LA{Z and 21‘ instead of one.
O

Remark 2.2 The diffusion process X is used for the training simulations in the stochastic gradient descent
method for finding the minimizer of the quadratic loss function in , where the expectation is replaced by
empirical average for numerical implementation. The choice of the drift coefficient is typically related to the
underlying probabilistic problem associated to the PDE (for example a stochastic control problem), but does
not really matter. The choice of the diffusion coeflicient o is more delicate: large o induces a better exploration
of the state space, but would require a lot of neurons. Moreover, for the applications in stochastic control, we
might explore some region that are visited with very small probabilities by the optimal state process, hence
representing few interest. On the other hand, small 0 means a weak exploration, and we might lack information
and precision on some region of the state space. In practice and for the numerical examples in the next section,
we test the scheme for different o and by varying the number of time steps, and if it converges to the same
solution, one can consider that we have obtained the correct solution. O

3 Numerical results

We first construct an example with different non linearities in the Hessian term and the solution. We graphically
show that the solution is very well calculated in dimension one and then move to higher dimensions. We then
use an example derived from a stochastic optimization problem with an analytic solution and show that we
are able to accurately calculate the solution. Next, we consider the numerical resolution of the Monge-Ampere
equation, and finally, give some tests for a fully nonlinear Hamilton-Jacobi-Bellman equation arising from
portfolio optimization with stochastic volatilities.

In the whole numerical part, we use a classical Feed Forward Network using layers with n neurons each
and a tanh activation function, the output layer uses an identity activation function. At each time step the
resolution of equation is achieved using some mini-batch with 1000 trajectories. Every 50 inner iterations
the convergence rate is checked using 10000 trajectories and an adaptation of the learning rate is achieved using
an Adam gradient descent, see [KB14]. Notice that the adaptation of the learning rate is not common with the



Adam method but in our case it appears to be crucial to have a steady diminution of the loss of the objective
function. The procedure is described in [CWNMW19] and the parameters chosen are the same as in this article.

During time resolution, it is far more effective to initialize the solution of equations with the solution
(U, Z) at the next time step. The number of outer iterations is fixed for each optimization. It is set to 500
for the first optimization at date N and then a value of 100 outer iteration is used at the dates i < N. At
the first time step, the learning rate is taken equal to 1E — 2 and at the following time steps, we start with a
learning rate equal to 1E — 3. All experiments have achieved using Tensorflow [Aba+15]. In the sequel, the
PDE solutions on curves are calculated as the average of 10 runs. We provide some standard deviation observed
for some results. We also show the impact of the choice of the diffusion coefficient o, and the influence of the
number of neurons on the accuracy of the results.

3.1 A non linearity in uD?u

We consider a generator in the form

flt,zy,2,7) = ytr(y) + % +2y% — 2yte” (T,

and g(x) = tanh (Z%é m"), so that an analytical solution is available:

u(t,z) = tanh z .

S iy T
(T;)e

We fix the horizon T" = 1, and choose to evaluate the solution at ¢t = 0 and = = 0.5% (here Ty denotes

the vector in R? with all components equal to 1), for which u(¢,z) = 0.761902 while its derivative is equal to
1.2966. This initial value x is chosen such that independently of the dimension the solution is varying around
this point and not in a region where the tanh function is close to —1 or 1.

The coefficients of the forward process used to solve the equation are

o
oc=——1g, =0,
\/gd 12

(here I is the identity d x d-matrix) and the truncation operator indexed by a parameter p is chosen equal to
E(X?’x) = min { max[z — oVigy, X0z + U\/i(ép},

where ¢, = N 71(p), N is the CDF of a unit centered Gaussian random variable. In the numerical results we
take p = 0.999 and n = 20 neurons.

We first begin in dimension one, and show in figure [l how u, D,u and D?u are well approximated by the
resolution method.

On figure [2, we check the convergence, for different values of & of both the value function and its derivative
at point z and date 0. Standard deviation of the function value is very low and the standard deviation of the
derivative still being low.
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Figure 1: A single valuation run for test case one 1D using 160 time steps, ¢ = 2., p = 0.999, 20 neurons,
layers.
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Figure 2: Convergence in 1D of the case one, number of neurons par layer equal to 20, 2 layers, p = 0.999.
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As the dimension increases, we have to increase the value of 6 of the forward process. In dimension 3, the
value 6 = 0.5 gives high standard deviation in the result obtained as shown on figure [3] while in dimension 10,
see Figure [4] we see that the value & = 1 is too low to give good results. We also clearly notice that in 10D, a
smaller time step should be used but in our test cases we decided to consider a maximum number of time steps
equal to 160.
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Figure 3: Convergence in 3D of the case one, number of neurons par layer equal to 20, 2 layers, p = 0.999.

0.90 1 G- 1
e a=15 0.415 -
0887 o= 2
Y —-—- Reference e S . N
0.86
0.405 -
0.84 -
E] 4 0.400 -
o ]
> 0.82 1 =
0.395 -
0.801 0.390 .
— o=1
--- 8=15
078 4 0.385 4 ¢
— =2
0.76 4 0.380 4 —--- Reference
: . : : . ‘ . . : : . .
2.5 3.0 35 4.0 45 5.0 2.5 3.0 35 4.0 45 5.0
Log{number of time steps) Log(number of time steps)
Convergence of u depending on & Convergence of D,u depending on & (first component)

Figure 4: Convergence in 10D of the case one, number of neurons par layer equal to 20, 2 layers, p = 0.999.

On this simple test case, the dimension is not a problem and very good results are obtained in dimension
20 or above with only 20 neurons and 2 layers.



3.2 A linear quadratic stochastic test case.

In this example, we consider a controlled process X = X* with dynamics in R? according to
dXt = (A.Xt + Bat)dt + Datth, 0 S t S T‘7 XO = x,

where W is a real Brownian motion, the control process « is valued in R, and the constant coefficients A € M¢,
B e R? D e R® The quadratic cost functional to be minimized is

T
J(a) ZE{ /O (X7 QX, + afN)dt + X}PXT],

where P, () are non negative d X d symmetric matrices and N € R is strictly positive.
The Bellman equation associated to this stochastic control problem is:

2
% + inf [(Az + Ba).Dyu + %tr(DDTDgu) +27Qx + Na?] = 0, (t,)€[0,T) xR?,
ac

uw(T,z) = =" Pz, zeR%,

which can be rewritten as a fully nonlinear equation in the form (1.1f) with

ft,z,y,2,7) = 27Qr + Ax.z — lﬂ
e 2tr(DD7v) 4+ 2N

An explicit solution to this PDE is given by
u(t,z) = 2" K(t)x,
where K (t) is non negative d x d symmetric matrix function solution to the Riccati equation:

KBB'K

K+ATK+ KA - =
+ + +Q N+DTKD ’

K(T) = P.

We take T'= 1. The coeflicients of the forward process used to solve the equation are

ag
o :7]: y t,{r = ALE
NG 4, p(t,z)

In our numerical example we take the following parameters for the optimization problem:

1
A=14, B=D =1, Q:PzaId, N=d
and we want to estimate the solution at =z = 1.
In this example, the truncation operator (indexed by p between 0 and 1 and close to 1) is as follows:

T (XY) = min{max[xeAt—g ﬁd) XI] xeAt+g &—i(ﬁ}
T 2A Pt b 24 138

where ¢, = N=1(p), A is a vector so that A; = A;;, i = 1,...,d, 1is a unit vector, and the square root is taken
componentwise.

On figure 5| we give the solution of the PDE using & = 1.5 obtained for two dates: at ¢ = 0.5 and at t close
to zero. We observe that we have a very good estimation of the function value and a correct one of the I' value
at date t = 0.5. The precision remains good for I" close to ¢t = 0 and very good for u and D,u.
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Figure 5: Test case linear quadratic 1D using 160 time steps, & = 1.5, p = 0.999, 100 neurons.

On figures[6] we give the results obtained in dimension one by varying 6. For a value of & = 2, the standard
deviation of the result becomes far higher than with 6 = 0.5 or 1.
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Figure 6: Convergence in 1D of the linear quadratic case, number of neurons par layer equal to 50, 2 layers,

p = 0.999.

On figure [7, we take a quite low truncation factor p = 0.95 and observe that the number of neurons to take
has to be rather high. We have also checked that taking a number of hidden layers equal to 3 does not improve

the results.
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neurons, truncation p = 0.95.
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On figure [§] we give the same graphs for a truncation factor higher. As we take a higher truncation factor

the number of neurons to use has to be increased to 100.
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Figure 8: Convergence in 3D of the linear quadratic case, 2 layers, testing the influence of the number of

neurons, truncation p = 0.99.

On figure [9] we observe in dimension 7 the influence of the number of neurons on the result for a high
truncation factor p = 0.999. With a number of neurons equal to 50, we clearly have a bias disappearing with a
number of neurons equal to 100. We had to take higher values of & to get good results.
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Figure 9: Convergence in 7D of the linear quadratic case, 2 layers, p = 0.999.
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On figure we check that influence of the truncation factor appears to be slow for higher dimensions.
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Figure 10: Function value convergence in 7D of the linear quadratic case with 2 layers, 100 neurons, testing p.

Finally, we give results in dimension 10, 15 and 20 for p = 0.999 on figures We observe that the
number a neurons with 2 hidden layers has to increase with the dimension but also that the increase is rather
slow in contrast with the case of one hidden layer as theoretically shown in . For 6 = 5 we had to take
300 neurons to get very accurate results.
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Figure 11: Function value convergence in 10D and 15D of the linear quadratic case with 2 layers, p = 0.999.
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Figure 12: Function value convergence in 20D of the linear quadratic case with 2 layers, p = 0.999.
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3.3 Monge-Ampere equation

Let us consider the parabolic Monge-Ampere equation

dyu + det(D2u) = h(z), (t,x)e€[0,T] x R,
u(T,x) = g(x),

where det(D2u) is the determinant of the Hessian matrix D2u. It is in the form (1.1]) with
[t ,7) = det(y) — h(z).

We test our algorithm by choosing a C? function g, then compute G = det(D2g), and set h := G — 1. Then,
by construction, the function

u(t,z) = glx)+T —t,

is solution to the Monge-Ampere equation (3.1)). We choose g(z) = cos(zgzl x;/v/d), and we shall train with
the forward process X = xg + W, where W is a d-dimensional Brownian motion. On this example, we use
neural networks with 3 hidden layers, d 4+ 10 neurons per layer, and we do not need to apply any truncation to
the forward process X. Actually, we observe that adding a truncation worsens the results.

The following tables give the results in dimension d = 5, 8 and 15, and for T' = 1.

Averaged value | Standard deviation | Relative error (%)
0.37901 0.00312 0.97

Figure 13: Estimate of u(0,zo = 15) on the Monge Ampere problem (3.1]) (d = 5) with N = 120. Average and
standard deviation observed over 10 independent runs are reported. The theoretical solution is 0.38272712.

Averaged value | Standard deviation | Relative error (%)
0.25276 0.00235 1.17

Figure 14: Estimate of u(0,29 = 115) on the Monge Ampere problem (3.1) (d = 15) with N = 120. Average
and standard deviation observed over 10 independent runs are reported. The theoretical solution is 0.25575373.

3.4 Portfolio selection

We consider a portfolio selection problem formulated as follows. There are n risky assets of uncorrelated price
process P = (P1,..., P") with dynamics

AP} = Plo(VH)[N(VH)dt+dW)], i=1,...,n,

where W = (W1, ..., W") is a n-dimensional Brownian motion, b = (b',...,b") is the rate of return of the
assets, A = (Al,...,\") is the risk premium of the assets, o is a positive function (e.g. o(v) = e¥ corresponding
to the Scott model), and V = (V! ... V") is the volatility factor modeled by an Ornstein-Uhlenbeck (O.U.)
process

d‘/;l = K; [91 - th]dt + l/idBi, 1=1,...,n, (32)
with ;,0;,v; > 0, and B = (B1,..., B") a n-dimensional Brownian motion, s.t. d < W% B/ > = 03 pijdt, with

pi := pii € (—1,1). An agent can invest at any time an amount oy = (af,...,a}) in the stocks, which generates
a wealth process X = X* governed by

A, = Y afo(VE) [\ (Vi)dt + dw].
=1

The objective of the agent is to maximize her expected utility from terminal wealth:

E[U(Xf)] <« maximize over o
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It is well-known that the solution to this problem can be characterized by the dynamic programming method
(see e.g. [Pha09]), which leads to the Hamilton-Jacobi-Bellman for the value function on [0,7) x R x R™:

1 5.9 1 (Oxu)? & Oudi,u 1 , 2 (02,,u)?
Opu + Z Ki(0; — v;)0p,u + Vi ol u] = §R(U) 24 + ; [Pz‘&(%)%w SPivi 220 ]
(T,X,v) = U(x), x e R, veR",
with a Sharpe ratio R(v) := |[A(v)|?, for v = (vq,...,v,) € (0,00)". The optimal portfolio strategy is then given

in feedback form by o = a(t, X}, Vi), where @ = (a1,...,a,) is given by

. 1 du Oy, u n
ai(t,x,v) = _@QZ( )32 i, ) (t,x,0 = (v1,...,0)) € [0,T) x R x R",

for i = 1,...,n. This Bellman equation is in the form (1.1)) with

n n
1 1 22 Zovoi | 1 (70i)*
t E — ZR(n)Z% — E (v s Z 2200
ft,z,y,2,7) 2 Ki(0; i)z + 2”1 %l] 9 (U)’YOO 2 [pz i(vi)vi ~00 + 2p1 Vi 00 ]7
for x = (x,v) € R™ 2 = (20,...,2,) € R" v = (vi;)0<ij<n € S, and displays a high-nonlinearity in

the Hessian argument -.

The truncation operator indexed by a parameter p is chosen equal to
Tp(X;"*) = min {max[z — oVtby, X0, @ + ax/fgf)p},

where ¢, = N'71(p), NV is the CDF of a unit centered Gaussian random variable. In practice, we choose p = 0.95.
We use neural networks with 2 hidden layers and d 4+ 10 neurons per layer. We shall test this example when the
utility function U is of exponential form: U(x) = —exp(—nz), with n > 0, and under different cases for which
closed-form solutions are available:

(1) Merton problem. This corresponds to a degenerate case where the factor V', hence the volatility o and
the risk premium A are constant, so that the generator of Bellman equation reduces to

1 2
f(t,x,y,z,’y) = 7§|>‘|2%3 (t,x,y,z) € [O,T} X RXRXR’ (33)

with explicit solution given by:
22

u(t,z) = e T V2 U@), 4 = =

We train with the forward process

Xk+1: Xk+)\Atk+AWk7 k}:O,...,N, Xo = xo.

(2) One risky asset: n = 1. A quasi-explicit solution is provided in [Zar01]:

u(t,x,v) = UR)w(t,v), with w(t,v) = Hexp(f% /t ' R(V;’”)ds)’

L1-p?
where V* is the solution to the modified O.U. model
av, = [r(0 — V,) — prA(V. )|ds +vdB,, s>t, Vi =v.

We test our algorithm with A(v) = Av, A > 0, for which we have an explicit solution:

2
v
w(t7v) = exp ( - ¢(t)5 - ¢(t)v - X(t))a (t,’U) € [OvT} X Rv
where (¢, 1, x) are solutions of the Riccati system of ODEs:

b — 2R — 21— p))$? + 22 =0, §(T) = 0,
- (m+ 21— p >¢>>w+ne¢—o W(T) =0,

1/2

X+ 60y — —-(=p+ (1= p")P?) = 0, X(T) =0,
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with & = k + prA, and explicitly given by (see e.g. Appendix in [SZ99])

N = )2
¢(t) kcosh(A(T —t)) + Rsinh(A(T —t))
w(t) = 5 K0 cosh(&(T —t)) — 1
" &k kcosh(A(T —t)) + Rsinh(A(T —t))
1 N K . 1 _
x(t) = 0= ) In [cosh(&(T — t)) + — sinh(R(T — t))] — 51— pz)li(T —t)
(k0)? sinh(#(T —t))
e —t) _ — — (T = 1)]
k%2 Lk cosh(R(T —t)) 4+ ksinh(&(T —t))
32 (k0)%k cosh(R(T —t)) — 1
&3 kcosh(R(T —t)) + Rsinh(&(T —t))’
with & = \/k2 + 2pvAk + 9222, We train with the forward process
X1 = X + NOAt, + AWy, k=0,...,N—1, Xy=xo,
Vit1 = Vi + VABy, k=0,....N—1, Vo, = 6.
(3) No leverage effect, i.e., p; = 0,4 = 1,...,n. In this case, there is a quasi-explicit solution given by

u(t,x,v) = U(x)w(t,v), with w(t,v) = E[exp(— % /t ' R(v;vv)ds)} (t,v) € [0,T] x R™, (3.4)

where V% is the solution to (3.2)), starting from v at time ¢. We test our algorithm with \;(v) = \vg, A;
>0,i=1,...,n,v = (v1,...,v,), for which we have an explicit solution given by

w(t,v) = exp ( — Z [¢i(t>% + ¥i(t)vi + Xi(t)])7 (t;v) € [0, T] x R”,
) sinh(&;(T —t))
i) = A ri sinh(4;(T — t)) + & cosh(#; (T — t))
o Kil; cosh(#; (T —1t)) — 1
Vilt) = A= sinh(#; (T — 1)) + f; cosh(#; (T — 1))

xi(t) = %ln [cosh(k;(T —t)) + Z—z sinh(#;(T — t))] — %mi(T —t)

2 (Kib;)? sinh(#;(T —t))
- A k2 L%l cosh(#;(T — 1)) + r; sinh(#; (T — t)) (T — t)}
_ )2 (ki) ki cosh(#;(T —t)) — 1

k3 Rycosh(ki(T —t)) + r;sinh(&; (T —t))’

K2

with #; = \/k? + v2\?. We train with the forward process

Xip1= X+ Y Nl + AWy, k=0,...,N—1, X = xo,
i=1

Vig = Vi+uABj, k=0,..,N-1, Vj = 0,
with < W, B* >, = 0.

Merton Problem. We take n = 0.5, A = 0.6, T =1, N = 120, and o(v) = e”. We plot the neural networks
approximation of u, D,u, D2u, « (in blue) together with their analytic values (in orange).

Averaged value | Standard deviation | Relative error (%)
-0.50510 0.00393 0.30

Figure 15: Estimate of u(0,29 = 1) in the Merton problem (3.3). Average and standard deviation observed
over 10 independent runs are reported. The theoretical solution is -0.50662.
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Figure 16: Estimates of u, D,u, D?u and of the optimal control o on the Merton problem (3.3)).
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One asset (n = 1) in Scott volatility model. We take n = 0.5, A = 1.5, 0 = 04, v = 0.4, k = 1,

p = —0.7. For all tests we choose T' = 1, N = 120, and o(v)

= e”. We plot the error between the neural

networks approximation of u, Dyu, D2u and their analytic values.
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Averaged value | Standard deviation | Relative error (%)
-0.53327 0.00619 0.53

Figure 17: Estimate of u(0,xo = 1,0) on the One Asset problem with stochastic volatility (d = 2). Average and
standard deviation observed over 10 independent runs are reported. The exact solution is —0.53609477.

No Leverage in Scott model. In the case with one asset (n = 1), we take n = 0.5, A = 1.5, § = 0.4,
v =10.2, K = 1. For all tests we choose T' = 1, N = 120, and o(v) = e¥. We plot the error between the neural
networks approximation of u, Dyu, D?u and their analytic values.

Averaged value | Standard deviation | Relative error (%)
-0.50160 0.00594 0.007

Figure 18: Estimate of u(0,xo = 1,6) on the No Leverage problem (3.4) with one asset (d = 2). Average and
standard deviation observed over 10 independent runs are reported. The exact solution is —0.501566.

In the case with four assets (n = 4), we take n = 0.5, A\ = (1.5 1.1 2. 0.8), 0= (0.1 0.2 0.3 0.4)7
v=(02 015 025 031),x= (1. 08 11 13).

Averaged value | Standard deviation | Relative error (%)
-0.45119 0.00507 2.13

Figure 19: Estimate of u(0,xg = 1, ) on the No Leverage problem ({3.4)) with four assets (d = 5) and N = 120.
Average and standard deviation observed over 10 independent runs are reported. The theoretical solution is
-0.44176462.

In the case with seven assets we take n = 0.5, A = (1.5 1.1 2. 08 05 1.7 0.9),
0= (0.1 0.2 0.3 04 025 0.15 0.18)7 v= (0.2 0.15 0.25 0.31 04 0.35 0.22),
k= (1. 08 1.1 1.3 095 0.99 1.02).

Averaged value | Standard deviation | Relative error (%)
-0.40146 0.00819 1.65

Figure 20: Estimate of u(0,x9 = 1,0) on the No Leverage problem with seven assets (d = 8) and N = 120.
Average and standard deviation observed over 10 independent runs are reported. The theoretical solution is
—0.39493783.

In the case with nine assets (n = 9), we take n = 0.5, A= (1.5 1.1 2. 0.8 05 1.7 09 1. 09),6=
0.1 02 03 04 025 0.15 0.18 0.08 0.91), V= (0.2 0.15 0.25 0.31 04 035 0.22 04 0.15),
k=(1. 08 1.1 1.3 095 099 1.02 1.06 L6).

Averaged value | Standard deviation | Relative error (%)
-0.30150 0.03475 9.60

Figure 21: Estimate of u(0,xo = 1,0), with 120 time steps on the No Leverage problem with 9 assets (d = 10)
and N = 120. Average and standard deviation observed over 10 independent runs are reported. The theoretical
solution is -0.27509173.

Hamilton-Jacobi-Bellman equation from portfolio optimization is a typical example of full-nonlinearity in
the second order derivative, and the above results show that our algorithm performs quite well up to dimension
d = 8, but does not give accurate approximation in dimension d = 10. We conclude this paper with some
comparison of our algorithm with the the global scheme of [BEJ19|, called Deep 2BDSE. This scheme was
implemented in the original paper only for small number of time steps (e.g. N = 30), and so we tested this
algorithm on two discretizations, respectively with N = 20 and N = 120 time steps, as shown in figure where
we plotted the learning curve of the loss function in terms of the number of gradient descent iterations. Even
when decreasing the learning rate, we observe that it does not help to obtain the convergence of the scheme.
However, the Deep 2BSDE method converges for small maturities, as illustrated in figure The tests below
concern the Merton problem but similar behavior happens on the other examples with stochastic volatilities.
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Validation loss function through gradient descent iterations

Validation loss function through gradient descent iterations
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Figure 22: Learning curve in logarithmic scale for the scheme [BEJ19] on the Merton problem (3.3) with N = 20
times steps on the left and N = 120 time steps on the right. 10000 gradient descent iterations were conducted.

N | Averaged value | Standard deviation | Relative error (%)

5 -0.59490 0.03323 0.14

10 -0.61843 0.03097 3.81

20 -0.60780 0.03987 2.03
Figure 23: Estimate of u(0,z9 = 1) in the Merton problem with T' = 0.1 using [BEJ19]. Average and
standard deviation observed over 10 independent runs are reported. The theoretical solution is Yy = —0.5957108.

N | Averaged value | Standard deviation | Relative error (%)

5 -0.02559 0.47267 108.59

10 0.18009 0.45100 39.54

20 0.16433 0.39681 44.83

Figure 24: Estimate of D,u(0,29 = 1) in the Merton problem (3.3)) with 7" = 0.1 using [BEJ19|. Average and
standard deviation observed over 10 independent runs are reported. The theoretical solution is Zy = 0.2978554.

Reference

[AA+18]
[Aba+15]

[Bec+19]
[BEJ19]

[Che+07]

[CWNMW19]

[DLM19)]

[EHJ17]

[FTW11]

S

A. Al-Aradi et al. “Solving Nonlinear and High-Dimensional Partial Differential Equations via
Deep Learning”. In: arXiv:1811.08782 (2018).

M. Abadi et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software
available from tensorflow.org. 2015. URL: https://www.tensorflow.org/|

C. Beck et al. “Deep splitting method for parabolic PDEs”. In: arXiv:1907.03452 (2019).

C. Beck, W. E; and A. Jentzen. “Machine Learning Approximation Algorithms for High-
Dimensional Fully Nonlinear Partial Differential Equations and Second-order Backward Stochas-
tic Differential Equations”. In: J. Nonlinear Sci. 29.4 (2019), pp. 1563-1619.

P. Cheridito et al. “Second-order backward stochastic differential equations and fully nonlinear
parabolic PDEs”. In: Communications on Pure and Applied Mathematics 60.7 (2007), pp. 1081—
1110.

Quentin Chan-Wai-Nam, Joseph Mikael, and Xavier Warin. “Machine learning for semi linear
PDEs”. In: Journal of Scientific Computing 79.3 (2019), pp. 1667-1712.

J. Darbon, G. Langlois, and T. Meng. “Overcoming the curse of dimensionality for some

Hamilton-Jacobi partial differential equations via neural network architectures”. In: arXiv:1910.09045

(2019).

W. E, J. Han, and A. Jentzen. “Deep learning-based numerical methods for high-dimensional
parabolic partial differential equations and backward stochastic differential equations”. In: Com-
munications in Mathematics and Statistics 5.4 (2017), pp. 349-380.

A. Fahim, N. Touzi, and X. Warin. “A probabilistic numerical method for fully nonlinear
parabolic PDEs”. In: The Annals of Applied Probability (2011), pp. 1322-1364.

18


https://www.tensorflow.org/

[HE18]

[HPW19]
[Hut+18]

[KB14]

[Pha09]
[Pin99]
[SS18]

[SZ99]

[Tan13]
[VSS18]
[Warl8]

[Zar01]

J. Han and A. Jentzen W. E. “Solving high-dimensional partial differential equations using deep
learning”. In: Proceedings of the National Academy of Sciences of the United States of America
115.34 (2018), pp. 8505-8510.

C. Huré, H. Pham, and X. Warin. “Deep backward schemes for high-dimensional nonlinear
PDEs”. In: arXiv:1902.01599, to appear in Mathematics of Computation (2019).

M. Hutzenthaler et al. “Overcoming the curse of dimensionality in the numerical approximation
of semilinear parabolic partial differential equations”. In: arXiv:1807.01212 (2018).

D. P. Kingma and J. Ba. Adam: A Method for Stochastic Optimization. Published as a conference
paper at the 3rd International Conference for Learning Representations, San Diego, 2015. 2014.
URL: http://arxiv.org/abs/1412.6980.

H. Pham. Continuous-time Stochastic Control and Optimization with Financial Applications.
Vol. 61. SMAP. Springer, 2009.

A. Pinkus. “Approximation theory of the MLP model in neural networks”. In: Acta numerica
8 (1999), pp. 143-195.

J. Sirignano and K. Spiliopoulos. “DGM: A deep learning algorithm for solving partial differ-
ential equations”. In: Journal of Computational Physics 375 (2018), pp. 1339-1364.

R. Schobel and J. Zhu. “Stochastic volatility with an Ornstein-Uhlenbeck process and exten-
sion”. In: Review of Finance 3.1 (1999), pp. 23—46.

X. Tan. “A splitting method for fully nonlinear degenerate parabolic PDEs”. In: Flectronic
Journal of Probability 18 (2013).

M. Sabate Vidales, D. Siska, and L. Szpruch. “Unbiased deep solvers for parametric PDEs”. In:
arXiv:1810.05094v2 (2018).

X. Warin. “Monte Carlo for high-dimensional degenerated Semi Linear and Full Non Linear
PDEs”. In: arXiw:1805.05078 (2018).

T. Zariphopoulou. “A solution approach to valuation with unhedgeable risks”. In: Finance and
Stochastics 5 (2001), pp. 61-82.

19


http://arxiv.org/abs/1412.6980

	Introduction
	The proposed deep backward scheme
	Feedforward neural network to approximate functions
	Forward-backward representation
	Algorithm

	Numerical results
	A non linearity in u Dx2 u
	A linear quadratic stochastic test case.
	Monge-Ampère equation
	Portfolio selection


