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Abstract—Stimulated by the emerging Internet of Things
(IoT) applications and their massive generated data, the cellular
providers are introducing various IoT functionalities into their
networks architecture. They should integrate intelligent and
autonomous mechanisms that are able to detect sudden and
anomalous behavior issues. In this paper, we present an adaptive
anomaly detection approach in cellular networks consisting
of two parts: the detection of overloaded base-stations using
machine learning algorithm (LSTM – Long Short-Term Memory)
and the deployment of drones as mobile base-stations that
support and back up the overloaded cells. The proposed approach
is validated using real dataset combined with semi-synthetic
eHealth dataset. Initially, The LSTM algorithm analyzes the
impact of eHealth applications on cellular networks and identifies
cells with peak demands. Then, drones are deployed to collect the
requested data from these cells. The obtained results show that
the use of drones improves the quality of service and provides a
better network performance.

Index Terms—Drone-assisted Cellular Networks, Anomaly De-
tection, Machine Learning.

I. INTRODUCTION

A large number of Internet of Things (IoT) applications
are emerging and making a significant change in human life.
eHealth [1]–[4], a promising IoT use case, aims at connect-
ing sensor devices to sense patients and surrounding data,
provide continuous patients’ monitoring, and improve health
outcomes. However, the massive number of wearable devices
and portable monitors generate an immense amount of data
that may be gathered and managed by cellular networks. The
additional eHealth data may overload the network and cause
some anomalies that require autonomic and pro-active tools.
Indeed, intelligent mechanisms must be integrated into the
architecture and may be based on machine learning techniques
that have the advantage of exploiting the plethora of data
generated by cellular networks.

Cellular connectivity is an important access methodology
for IoT because of the increased pervasiveness of mobile
broadband. The cellular operators are facing a major challenge
due to the big number of IoT applications and how to ensure
ubiquitous connectivity for various devices and users in a
flexible, reliable, and secure manner while increasing load on
network resources. This is one of the important specifications
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for the next-generation 5G cellular networks. One of the
proposed solutions is the use of Unmanned Aerial Vehicles
(UAVs), popularly known as drones, as flying base stations [5].
In particular, they are characterized by mobility, flexibility,
and adaptive altitude. Although drone-cell technology is an
emerging solution for network resource allocation and used to
support and back up the cellular network, it needs an optimized
method to deploy drones.

The literature has focused on anomaly detection and op-
timized drone-cell deployment. [6] proposes an unsupervised
clustering technique for fault detection and diagnostics in a
cellular network based on key performance indicators (KPIs).
[7] introduces CELLPAD, an anomaly detection framework
for KPI time-series data. CELLPAD detected anomalies using
machine-learning regression analysis and was tested on two
types of anomalies: sudden drops and correlation changes. [8]
proposes an online anomaly detection tool based on Support
Vector Regression machine learning method, while work in [9]
compared the Support Vector Machines prediction algorithm
with two other algorithms named Multi-Layer Perceptron and
Multi-Layer Perceptron with Weight Decay. [10] presents
a spatiotemporal mathematical model for IoT devices and
modeled the uplink channel stochastically.

Smart deployment of drone-cells has been studied in the
literature. For instance, [11] presents a dynamic reinforce-
ment learning solution for drone-cells networks based on
an enhanced joint action selection. [12] defines a clustering
approach for collecting data from IoT devices using UAVs.
The proposed scheme exploits the framework of optimal
transport theory in order to calculate the optimal trajectories
and locations of drone-cells. [13] introduces an optimal 3D
backhaul-aware placement approach of a drone-base-station.

In most of the existing schemes of drone-cells deployment,
energy consumption and the capacity of drones are ignored.
On the other hand, most of the proposed anomaly detection
solutions have been evaluated using simulated data to detect
the anomalies, which may affect the real performance and
require time especially when the networks become denser. In
this context, we propose a self-organized anomaly detection
scheme based on Long Short-Term Memory (LSTM) machine
learning algorithm followed with an optimized drone-cell
deployment. Indeed, we present a mathematical formulation of



maximizing the amount of gathered data to increase the cov-
erage of all network cells and taking into account constraints
of drones such as energy consumption and data collection
capacity. The objective of this scheme is to provide network
operators with an adaptive, complete and automatic solution
that detects outliers in the overloaded base-stations and deploy
drones in order to collect data from these cells. The proposed
solution is executed on a pre-analyzed semi-synthetic dataset
of eHealth cellular data in the context of a marathon event.

II. ADAPTIVE RANGE-BASED ANOMALY DETECTION

A. Data Set

In this study, we test our solution with data of the city
of Milan extracted from Call Detail Records (CDRs) datasets
published as part of the Big Data Challenge launched by
Telecom Italia in 2014 [14]. The surface of the city is of size
235m x 235m and is tessellated in 10.000 squares. The dataset
reports the subscribers’ communications activity including the
geographical location (cell ID), the time when it occurred,
the country code, incoming and outgoing calls, received and
sent text messages and data usage (Internet).From this dataset,
we extract the measurements aggregated in time slots of
ten minutes of the data usage of 6 cells during a marathon
organized in the SanSiro stadium. These cells are covering
the stadium, the parking area, and some metro stations. During
the marathon, we study the impact of additional eHealth data
on the network load. The gathered eHealth data is related
to Electrocardiography, Blood Saturation, Glucose Monitor,
Heartbeat, Temperature, etc. The additional eHealth data can
be transferred in real time mode or in store-and-forward mode.

B. Architecture & Goals

The anomaly detection solution is based on the LSTM
algorithm [15] (Section IV/B), which is a deep learning
approach that aims at making predictions using historical data
as a training set in order to estimate optimal values. Figure 1
depicts a global view of the proposed framework architecture.
The system takes the time-series data as input and then predicts
the normal values for cellular network load, while the outputs
are the predicted values for a periodical interval (every 10
minutes in our model).

Fig. 1: The Proposed Framework Architecture.

The proposed approach detects the outliers by checking the
deviations between the online data generated by user demands
and the predicted values. Then, it decides for each cell if it
contains normal instances or encloses anomalies. When cells’
overload is detected, the system deploys – in a dynamic and

proactive manner– drones as flying base-stations that assist
and back up the network.

C. Network Load Prediction

LSTM-based Prediction Model: Long Short-Term
Memory is a recurrent neural network composed of three
layers: Input Layer, Hidden Layer, and Output Layer [15]. It
incorporates memory blocks used to store the temporal state of
the network. Each memory block contains multiple cells that
have a recurrent connection among them and multiplicative
units, called gates involved to control the flow of information.
The cells learn over arbitrary time intervals depending on the
flow of information regulated by the gates. LSTM defines a
set of weights associated with cells used to filter information
when it is transferred through these cells and utilizes back-
propagation through time algorithm to train the network.

To apply LSTM in the proposed scheme, we first predict
the normal daily load on each cell by training the LSTM
model with the history and measured network load dataset.
Indeed, we consider a time-series data of length Z denoted
χ = {x(1), x(2), . . . , x(Z)}. Each point x(t) represents the
history of a cell load at time t which generates the vector
of matrices S = Z−by−Ts where an entry sti represents the
volume of traffic in cell i at time t and Ts is the total number of
time-slots. The traffic matrix prediction calculates the predictor
of X via the following formula: at

h
= wi χ + bs , where ah is

the activation function, bs is the learning vector, and wi is
the weight matrix. In this model, we stack 3 LSTM layers:
the first layer considers one input, the second layer is hidden
and contains 4 LSTM blocks, and finally the third layer is the
output layer and generates a single prediction value.

Network Anomaly Detection: The amount of data
generated by IoT devices in the marathon event may cause
sudden congestion to the cellular network and then decrease
its quality of service. Hence, the prediction system is applied to
calculate the normal load of each base station as a function of
the time, denoted by ψ(t). We define, based on this prediction
model, the minimum and the maximum acceptable threshold
values for the base stations load. Let ξ be the real-time
collected data generated by users’ demand within the cell.
This data is compared to the predicted values calculated by
the LSTM model. The comparison is performed by measuring
the variance between each point of both time-series datasets.
Anomalous time-interval is detected if ξ(t) is lower or higher
than the appropriate tolerance thresholds ψ(t) − Ξ or ψ(t) + Ξ
respectively. Formally: ∀ t: if ((ξ(t) < ψ(t) − Ξ) or (ξ(t) >
ψ(t) + Ξ)) then

• Generate an Anomaly Alert.
• Deploy drone(s) to backup the cellular network.

end
where: ξ(t) is the on-line IoT collected data, ψ(t) is the pre-
dicted network load at time t, and Ξ is the tolerance threshold.
The proposed model picks up the anomalies and then gives
feedback about the remaining normal instances to retrain the
prediction model (see Figure 1). Due to the additional eHealth
data generated by the participants in the marathon event, the



Fig. 2: Drone-assisted Network Model.

terrestrial base stations may fail to handle all connected users
because of the congestion within the cell or malfunction in
the infrastructure. For this reason, the proposed technique
allows network operators to detect anomalous network cells
and launches the deployment of drones with a mission of data
collecting in overloaded cells and consequently improve the
quality of service (QoS) of the network.

III. DRONE-ASSISTED CELLULAR NETWORKS

After detecting the overloaded cells, the framework per-
forms an optimized deployment of UAVs based on the eval-
uation of a multi-objective function. The main objective is to
maximize the amount of collected data considering the battery
level of drones.

A. System Model and Notations

We propose a centralized drone-assisted network model, as
shown in Figure 2, composed of a coordinator base station
and a set of drones. The coordinator collects the needed
information from the UAVs and manages its deployment by
calculating the global objective function. It identifies the set
of cells that should be assisted and the required amount of
data to be collected based on the prediction model. Initially,
all drones are located at the charging station(s) and ready to
fly based on the coordinator’s decision.

Let Cc = {1, 2, . . . ,C} denotes the set of congested cells
which are identified by the LSTM model. The horizontal
location of the cell j ∈ Cc with peak data demands is denoted
as Wj ∈ R2x1. The set of charging stations is presented by
S = {1, 2, . . . , N}. The location of the charging station i ∈ S
is denoted Pi

S
= (X i

S
,Y i

S
).

We differentiate three status of drones: serving, idle, or
charging. In the serving status: the drone moves to the de-
signed cell or returns back to the charging location (in case
of end of mission or battery runs out or all cells are assisted).
Hence, the state-of-charge (SoC) should be maintained within
the feasible range denoted [B, B] where B is the maximum

energy level and B is the lower bound that presents sufficient
residual energy for the drone to return to the charging station.

Let K denotes the number of drones, Bd,t is the battery level
of a drone d at time t. Tt is the required time for each drone
to fly and collect the requested data and Q̃ is the total space of
the drone to store its data. We assume that each drone moves
at a constant altitude H and we denote τ(t) ∈ R2x1 the drone’s
trajectory projected onto the horizontal plane and bounded by
0 ≤ t ≤ Tt . At any time t ∈ [0,Tt ], the distance dj(t) between
drones and the Cellj is given in Eq. 1.

dj(t) =
√

H2 + | |τ(t) −Wj | |
2; j ∈ Cell (1)

A comprehensive introduction to the most used notations in
the paper is listed in Table I.

B. Problem Formulation

The deployment of drones is formulated as a multi-objective
optimization problem aiming to maximize the amount of
collected data in congested cells while minimizing the energy
consumption of drones.

OBJECTIVE 1: The minimum energy consumption:
The drone energy consumption includes the energy dissipated
in data collection (the communication energy) and in-flying
(the propulsion energy) [16]. The communication energy de-
pends on the size of data to be gathered while the propulsion
energy depends on the drone flying speed as well as the
acceleration. Let Bk(Q(t)) be the energy consumption for
collecting data Q at time t by drone k. Therefore, Bk(Q(t)) is
given in Eq. 2.

Bk(Q(t)) =
Tt∑
t=0

Ek(Q(t)); ∀k ∈ K (2)

where Ek(Q(t)) is the energy consumed by the drone k to
receive data with size Q at time t.

TABLE I: List of notations.

Notation Description

K Set of drones
Bd, t Battery level of a drone d at time t
(X i

S
,Y i

S
) Location of a charging station i

Wj Location of a congested cell j
Cc Set of cells with peak data demands
S Set of charging stations
Tt Total time required for the UAV to collect data
H Altitude of the drone.
[B, B] State-of-charge (SoC) range.
Q̃ The maximum capacity of drones.
τd (t) The trajectory of UAV d.
V The drone speed
Bd

0 Initial battery level for drone d.
P(V ) Power consumption as a function of speed.
Dc (t) Collected data by terrestrial BS at time t.
Ndmax Maximum number of drones that can be deployed.
N c

d
Number of UAVs needed to collect data in cell c

ζc The amount of eHealth data to collect in cell c
ϕc
d
(t) Collected data by the UAV d at time t in cell c.

Qd (t) The size of the collected data by drone d at time t.



Given the drone’s trajectory τ(t), the total required energy
consumption for traveling with a constant speed, V , is ex-
pressed in Eq. 3:

Bk(Tt, τ(t)) =
∫ Tt

0
P(V) dt =

P(V)
V

τ(t); ∀k ∈ K (3)

where P(V) is the propulsion power consumption for flying
with the constant speed V (energy consumption as a function
of speed). Taking into account the propulsion energy and the
communication energy, the total energy consumption can be
formulated as shown in Eq. 4:

Bk(Tt, τ(t),Q(t)) = Bk(Q, t) + Bk(Tt, τ(t))

=

Tt∑
t=0
(Ek(Q, t)) +

∫ Tt

0
P(V) dt; ∀k ∈ K (4)

Hence, the the battery level of a drone k at time t is given as:

βk,t = Bk
0 − Bk(Tt, τ(t),Q(t)) (5)

where Bk
0 is the initial battery level of drone k.

Minimizing the total energy consumption while satisfying
the target communication throughput requirements can be
ensured by solving the following problem:

P(1) : Minimize
Tt,τ(t),Q(t)

Bk(Tt, τ(t),Q(t)) (6)

Subject to:

B ≤ Bk(Tt, τ(t),Q(t)); ∀t ∈ [0,Tt ] (7)

Qk(t) ≤ Q̃; ∀t ∈ [0,Tt ] (8)

τk(t) =
t∑

z=0
qk(z) (9)

Q(t) =
∑

c∈{C }

ϕck (t) (10)

where ϕc
k

is the gathered data by drone k in cell c at time t.
We use (10) when a drone collects data from several cells to
calculate the total amount of data. Similarly, (9) is also used to
calculate the whole trajectory if drone serves several cells. It
is the sum of displacements of drone which is denoted by qm,n
if the said flies between two positions m and n. Furthermore,
the distance between drone and the cell cj or the drone and the
charging station is calculated by Eq. 1, should be minimized.
Hence, the coordinator chooses the nearest charging station to
the cell to be served. Finally, (7) ensures that the designated
drone has sufficient energy to return to the charging station
while (8) determines that the collected data is lower than the
total capacity of the drone.

OBJECTIVE 2: The maximum cell coverage: Maximiz-
ing the network coverage involves maximizing the amount of
collected data by the terrestrial base-station and the deployed
drones in each overloaded cells. Consequently, this objective
is formulated for one cell c as shown in Eq. 11.

P(2) : Maximize
N c

d
,Tt,c∈C

∑
d∈{K }

Dc(t) + Nc
d × ϕ

c
k (t) (11)

Subject to:

Nc
d =

ζc

Q̃
(12)

Nc
d ≤ Ndmax (13)

Nc
d × ϕ

c
k (t) ≤ ζc; ∀t ∈ [0,Tt ] (14)

where Ndmax is the maximum number of drones that can be
used, Dc(t) is the capacity of the base-station of cell c at time
t, and ζc presents the amount of data that should be collected
in cell c. This parameter is calculated based on the output of
the LSTM model.

Constraint (12) imposes the number of drones needed for
data gathering for a given cell c that depends on the capacity
of the drone and the amount of requested data to collect in
this cell. Moreover, constraints (13) and (14) ensure that the
totality of gathered data and the required number of drones
depend on the quantity of data and the available number of
drones.

The Global Multi-Objective Function: The global opti-
mization problem is formulated as shown in Eq. 15:

Maximize
Tt,N

c
d

∑
c∈{C }

∑
k∈{K }

Dc(t) + Nc
d × ϕ

c
k (t) (15)

Subject to: (7), (8), (9), (10), (12), (13), and (14).
Due to the limited energy of drones, reducing the power

consumption in flying and in receiving data calculated by
Eqs. 2 and 3 respectively, increases the activity time (Tt ) of
each drone which can effectively affect the amount of collected
data over all cells in the network.

C. Drone-cell Management Algorithm

In the following, we detail the proposed algorithm for
drone-cell optimization deployment and management. Since
the approach is centralized, we need a coordinator that plays
the role of network orchestrator. In essence, the coordinator
determines the set of congested cells and calculates the amount
of data that drones should gather based on the prediction
model. Then, it executes the deployment algorithm and assigns
drones to cells. Finally, it collects the current status of drones
in terms of capacity and residual energy. In our work, this
coordinator is presented by the network operator (which can
be also a centralized entity in the network architecture). We
choose the coordinator to be a central network node such as
a macro-cell that is able to communicate with all drones and
base-stations and then calculates the trajectories of each drone.
Algorithm 1 provides a pseudo-code of the optimized drone’s
deployment. Initially, the coordinator executes the prediction
algorithm and locates the overloaded cells and their additional



Algorithm 1: Drone-cell deployment Algorithm.
Input: Position of UAVs and charging stations, Set of

drones K .
Output: UAV assignment, Amount of collected data.

STEP 0: SETUP
1 Cc := ∅; // Set of congested cells.
2 Pc := ∅; // Position of congested cells.

STEP 1: INITIALIZATION
3 Collect on-line data;
4 Compare collected data with predicted data;
5 Identify overloaded cells;
6 Cc = {Congestedcells};
7 Pc = {Positionso f Congestedcells};

STEP 2: DEPLOYMENT- NEAREST CELL
8 for (ci ∈ Cc) do
9 Compute the number of required drones Nc

d
(Eq. 12);

10 for (d ∈ K) do
11 Calculate the trajectory τ: Minimize the distance

using (1) and (9);
12 Assign d to ci;
13 Update the energy level and the capacity of d;
14 end
15 end

load. Then, it calculates the number of required drones to
collect the requested data based on previous equations and
constraints and then chooses the nearest cells to the charging
station in order to minimize the displacement distance. Hence,
maximizing the amount of collected data depends strongly on
the energy consumption of drones. Indeed, reducing the energy
consumption of drones involves maximizing the flying time of
drones and then maximizing the amount of data to collect.

Corresponding to the optimized assignment defined by the
coordinator, drones move from their initial positions to start
compensating users of the overloaded base-stations. Then, they
return back to the charging stations. The selection method
avoids assigning many drones to the cells with higher demand
and tries to share drones all over the network in order to
maximize the total quality of service.

IV. PERFORMANCE & EVALUATION

A. Performance Metrics

We consider real time-series datasets extracted from the
CDRs of Milan combined with semi-synthetic eHealth data
generated by demands of users during the marathon event.
We examine the data usage of 6 cells around the SanSiro,
and we deal with two types of eHealth application: Non-
Real Rime (NRT) and Real-Time (RT). The NRT data is used
in store-and-forward transmission mode and depends on the
storage capacity. It presents the stocked data in the smartphone
before sending it on the network. We apply the prediction
algorithm in order to detect cells with peak users’ demand.
Then, the coordinator manages the deployment in an optimized
way. The position of charging stations is defined based on

the tessellation of Milan city. Table II summarizes simulation
parameters.

TABLE II: Simulation parameters.

Parameter Value

Number of cells 6
Drone max capacity 2Gb
Drone speed 20 m/s
Drone Height 10 m
Drone max battery 100
Number max of drones 14 and 18
Number of charging stations 7

B. Simulation Results

In Figure 3, we fix the storage capacity for eHealth data
to 20% out of the total capacity storage of the smartphone
and we vary the percentage of eHealth users demand. We
can notice from Figure 3a that eHealth data does not have
a significant effect on the cellular network with 20% of
IoT users’ demand. This is because of the non-real time
applications, which presents 50% of the consumed data, is
not sent at the same time and does not correspond to the
usual peak hour. Figure 3b shows that when the users’ demand
increases to 50% and NRT data to 50%, an overrated peak
of data is obtained without affecting seriously the network
(around 6 PM). The anomaly is detected when the real-time
network load is upper than the maximum value of predicted
data. Finally, we notice from Figure 3c that online data
with 80% eHealth applications where 80% are NRT data are
impacting the cellular network. In essence, these additional
users’ demand causes three network peaks (around 9 AM, 1
PM, and 6 PM), but the most important load peak is at 6
PM where the global data traffic is nearly double compared
to the ordinary network measurements. Consequently, eHealth
data could have an important negative effect on the quality
of service and resource allocation in the network. For this
reason, the solution deploys drones in order to collect data
from detected overloaded cells.

To validate the drone-cell management approach, we con-
sider the previous results and make a zoom on the peak of 6
PM which corresponds to the marathon time. We consider cells
with the highest peaks of users’ demand. This scenario may
correspond to the marathon time, the arrival time of supporters
and their departure time after the marathon. For each detected
anomaly, the model calculates the quantity of requested data
and then assigns drones to cover congested cells. Figure 4
presents the preliminary results for the optimization problem
with 14 and 18 drones. Figure 4a illustrates the amount of
collected data as a function of the time. We notice that for
the first hour, all cells are fully covered and drones alternate
to serve the requested data according to their battery level.
However, with the high peak of demands, 14 drones are not
sufficient to cover all cells where more than 50% of requested
data is collected and 18 drones give a better quality of service
(more than 90% of requested data is gathered). This result
is demonstrated in Figure 4b that illustrates the number of



(a) (b) (c)

Fig. 3: Simulation results for storage capacity = 20%.

requested and available drones as a function of the time. It is
clear that the congested cells are not covered because of the
number of available drones is insufficient and is lower than
the requested number essentially in the case of 14 drones.
For example, in the second hour, the number of requested
drones is 7, however, the number of available drones is 4 in
the case of 14 drones (blue and red curves). Then, the number
increases when the first drones are charging which ameliorates
the amount of collected data and covers different cells.
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V. CONCLUSION

This paper studied the impact of the eHealth data on cellular
networks based on LSTM algorithm. We proposed an adaptive

range-based network anomaly detection that has been validated
with real network traces. The results showed that the proposed
model predicts and detects anomalies with high precision and
then data could seriously degrade the network performances.
Hence, we theoretically analyzed in the second part of this
work the drone-cell deployment in order to support macro-
cells when data rate demand is exploded. We presented a
multi-objective function to maximize the amount of collected
data taking battery life and the capacity of drones into con-
sideration. The proposed solution helps network operators to
efficiently manage their infrastructure.
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