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Abstract
Deep-sea fans have been proposed to act as carbon sinks, rapid deposition driving shallow methanogenesis to favor net storage
within the gas hydrate stability zone (GHSZ). Here, we present new evidence of widespread gas venting from the GHSZ on the
upper Amazon deep-sea fan, together with analyses of the first samples of gas hydrates recovered offshore NE Brazil. Multibeam
water column and seafloor imagery over an 18,000-km2 area of the upper Amazon fan reveal 53 water column gas plumes, rising
from venting features in water depths of 650–2600 m. Most gas vents (60%) are located along seafloor faults that record the
ongoing gravitational collapse of the fan above deep décollements, while others (40%) are located in water depths of 650–715 m
within the upper edge of the GHSZ. Gas compositions from hydrates recovered in vents at three locations on and north of the fan
indicate biogenic sources (dominantly methane with 2–15% of CO2; δ

13C from − 81.1 to − 77.3‰), whereas samples from vents
adjacent to the fan proper include possible thermogenic contributions (methane 95%, CO2 4%, and ethane 1%; δ13C – 59.2‰).
These results concur with previous findings that the upper edge of the GHSZ may be sensitive to temporal changes in water
temperatures, but further point to the importance of gas escape from within areas of gas hydrate stability. Our results suggest the
role of fluid migration along pathways created by faulting within rapidly deposited passive margin depocenters, which are
increasingly recognized to undergo gravitational collapse above décollements. Our findings add to evidence that gas can escape
from sediments to the sea in areas where gas hydrates are stable on passive margins, and suggest the need of further studies of the
dynamics of deep-sea depocenters in relation to carbon cycling.

Introduction

Sediment burial in submarine depocenters drives biogeo-
chemical processes that sequester organic carbon over geolog-
ical timescales, but also convert part of it into mobile hydro-
carbons, principally methane (Dickens et al. 2004). In the
deep sea, methane that migrates toward the seabed may be
stored in gas hydrates and/or authigenic carbonates (Arning
et al. 2013), or released to the oceans by seafloor venting
(Römer et al. 2014). Recent studies of continental slope

settings suggest seafloor gas venting to be a more widespread
phenomenon than previously recognized (Skarke et al. 2014).
While most vented gas may dissolve in the water column
(McGinnis et al. 2006), a portion may reach the atmosphere
(Solomon et al. 2009). The latter possibility is of interest in
relation to carbon stable isotopic evidence that methane emis-
sions are 60–110% greater than current global estimates
(Schwietzke et al. 2016). An improved understanding of the
occurrence and mechanisms of deep-sea gas venting is thus of
importance for our understanding of global carbon cycling in
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the context of ongoing climate-driven changes (Biastoch et al.
2011), of mass transfers between sediments and the ocean
(Lamaitre et al. 2014), and of marine environmental and eco-
system dynamics (Hovland et al. 2012, and references
therein).

Seafloor gas venting has been investigated in a variety of
deep-sea settings worldwide, all associated with known or
inferred occurrences of gas hydrates (Hovland et al. 2012).
Gas plumes have been observed to align along the edge of
the regional gas hydrate stability zone (GHSZ) in several
areas, suggesting the climate-driven dissociation of gas hy-
drates (Westbrook et al. 2009; Skarke et al. 2014; Hautala et
al. 201; Johnson et al. 2015). However, gas venting also
takes place at greater water depths within the GHSZ (Olu-
Le Roy et al. 2007; Praeg et al. 2014; Johnson et al. 2015;
Andreassen et al. 2017). Gas venting from the GHSZ has
been explained in terms of mechanisms to elevate or modify
the phase boundary (see Liu and Flemings 2007; Haacke et
al. 2009), or alternatively by the creation of fluid migration
pathways along faults or fractures (e.g., Hornbach et al.
2007; Riedel et al. 2010), or by seafloor erosion (Skarke et
al. 2014). Deep structural pathways are recognized to be
important for fluid migration through the GHSZ on conver-
gent margins, and there is evidence that they also play a role
on passive margins, notably where Cenozoic depocenters
experience gravitational collapse above detachment sur-
faces (Rowan et al. 2004).

The Amazon River has one of the world’s highest sediment
discharges (Damuth and Kumar 1975) and is the largest sup-
plier of terrestrial organic carbon to the oceans (31–55 ×
1012 g carbon per year; Richey et al. 1980). It culminates in
one of the world’s largest deep-sea fans, a Neogene
depocenter within which loading drives ongoing gravitational
collapse (Reis et al. 2010, 2016). The presence of gas hydrates
in the Amazon deep-sea fan has been inferred from observa-
tions of a discontinuous bottom simulating reflector (BSR;
Manley and Flood 1988; Tanaka et al. 2003; Berryman et al.
2015) and from pore water freshening in ODP 155 leg cores
taken between 2400–4100 m depth below seafloor (Fig. 1;
Piper et al. 1997). Here, we present the first evidence of gas
release to the water column from the Amazon fan, using
multibeam echosounder (MBES) imagery acquired across an
area of 18,000 km2, in water depths of 250–3500 m (Fig. 1),
which also allows us to map the distribution of gas flares in
relation to seafloor vents and structures. We also present geo-
chemical analyses of the first gas hydrate samples recovered
from the NE continental margin of South America. Our find-
ings provide new insights into the interaction of climate-
driven changes and/or seasonal changes in water temperature
in gas hydrate stability with gravitational tectonics on large
deep-sea fans and their contribution to the global carbon cycle,
and will help to guide future research investigations on global
climate change, geohazards, and energy resources.

Geological setting

The Amazon fan extends 700 km seawards from the continen-
tal shelf to water depths of over 4000 m in the Demerara
Abyssal Plain, occupying an area of 330,000 km2 (Fig. 1).
The fan is a depocenter up to 10 km thick that has built out
rapidly since the Late Miocene in response to sedimentary
supply linked to Andean uplift (Figueiredo et al. 2009).
Loading is driving the gravitational collapse of the fan above
deep décollements, expressed at seabed in paired extensional–
compressional belts on the shelf and upper slope above water
depths of 2000 m, including thrust-folds up to 500 m in sea-
floor relief (Silva et al. 2009; Reis et al. 2010, 2016). The
upper slope is also the source area of giant mass-transport
deposits (MTDs) that characterize the Neogene stratigraphic
succession of the Amazon fan (Reis et al. 2010, 2016; Silva et
al. 2016). The triggering of giant MTDs has been linked to
climate-driven variations in sedimentation rate and/or gas hy-
drate stability during sea level changes, based on drilling re-
sults from four examples on the middle fan emplaced within
the last 45 ka (Piper et al. 1997; Maslin et al. 1998, 2005).
More recently, the emplacement of MTDs throughout the
Neogene has been linked to tectonic activity within the upper
slope compressional belt (Reis et al. 2016).

Data and methods

Seafloor features and water column gas flares were identified
using Kongsberg EM122 12-kHz multibeam echosounder da-
ta acquired in 2012–2013 (horizontal grid size 30 × 30 m),
visualized using QPS Fledermaus software, including the
Midwater module. Subsurface structures were examined using
two sets of multichannel seismic data, acquired for hydrocar-
bon exploration (made available by the Brazilian National
Petroleum Agency - ANP) and interpreted using IHS
Kingdom Suite software: (i) ca. 20,000 km of 2D seismic
profiles acquired during the 1980s and 1990s by different
companies using different air-gun acquisition arrays, with

Fig. 1 (a) Locationmap showing the upper Amazon fan study area (black
polygon) and the multibeam echo sounder survey area in inset. Black
hexagons show the location of (one or more) plumes; stars represent
sites where gas hydrates were recovered in cores. White dots show the
location of water column (XBT or CTD) measurements. Labels 2A, 2B,
2C, 2E, and 2F are viewpoints for Fig. 2(A, B, C, E, and F, respectively).
Line D–D’ indicates the position of the seismic line in Fig. 2D. Red dots
indicate sites drilled during ODP Leg 155 (Piper et al. 1997). The isobath
line of – 600 m (in red) represents the approximate depth of the edge of
themethane hydrate stability zone in the area. The two scale bars refer to
the location map (lower bar) and multibeam echo sounder survey area
in inset (upper bar). (b) Graphic representation of water column tem-
peratures from XBT and CTD relative to the equilibrium field for
pure methane hydrate in seawater (dashed line, from Dickens and
Quinby-Hunt 1994)
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record lengths of up to 10 s, frequency range between ~ 8–
60 Hz (dominant frequency at ~ 40 kHz), and vertical resolu-
tion of ~ 10m; (ii) 3D blocks covering a total area of
3800 km2, record length of 8 s; frequency range between 12
and 100 Hz (dominant frequency at 80 kHz); vertical resolu-
tion of ~ 5 m).

Water column temperatures were obtained during the
multibeam echo sounder survey for determination of the
sound velocity using 10XBT (expendable bathythermograph)
measurements and one CTD (conductivity, temperature,
depth) measurement (Fig. 1). The temperature vs. depth pro-
files generated by the XBT and CTD were also used to calcu-
late the limits of the methane hydrate stability zone (MHSZ) in
the area, applying the Dickens and Quinby-Hunt (1994) equi-
librium equation for pure methane hydrates in seawater.
Different gas compositions (e.g., a mixture of carbon dioxide
and methane, or heavier hydrocarbons) will dislocate the cal-
culated limit of GHSZ to shallower depths (upslope). The
XBT and CTD data showed a significant variation in temper-
atures for the same depth (ca. 1.7 °C) and, therefore, we esti-
mated the edge of the GHSZ for a depth interval. Our time-
limited temperature measurements may not cover the full
range of natural variability of water temperatures in the area
and, therefore, the estimated depth range is approximated.

Piston cores up to 6 m long were obtained from selected
sites in 2015 using the R/V Teknik Perdana. Transparent core
liners were used to allow visual identification of gas hydrates
on deck. Gas hydrates observed in three cores were immedi-
ately sampled using a spatula and placed in IsoJar containers
at room temperature. Headspace gas composition within
Isojars were determined using a GC-2014 Shimadzu gas chro-
matograph equipped with a VP-Plot Alumina/KCl capillary
column. Stable isotopes of carbon were analyzed using a
Thermo Fisher Scientific gas chromatograph coupled to a
DELTA-V Plus mass spectrometer via an IsoLink and
ConFlo IV interface. Isotopic data is reported using the delta
notation (δ13C) in parts per thousand (‰) with ratios relative
to the international standard Vienna Pee Dee Belemnite (V-
PDB).

Results

Seafloor seeps and water column gas plumes

Analyses of MBES data reveal 53 hydroacoustic anomalies
within the study area, interpreted as gas plumes that rise sub-
vertically from the seafloor to 85–1720 m in the water column
(Figs. 1 and 2). Observations from seepage sites worldwide
show that such anomalies may be formed of several individual
bubble streams, located meters to tens of meters apart (Römer
et al. 2012, 2016). In the Amazon study area, the gas plumes
are associated with different seafloor signatures that allow us

to distinguish four types of seeps (Fig. 2). Type I seeps are
observed in water depths of 650–715 m (Fig. 2(A)), where a
high density of plumes (23 in total) is observed in three main
clusters, each associated with a seafloor mound 10–20m high,
similar to plumes of types II and III described below.

Type II seeps show a clear spatial relationship with seafloor
lineaments observed on MBES imagery (Fig. 2(B and C)),
which seismic profiles show correspond to structures related
to the compressional thrust-fold belt of the upper Amazon fan
(Fig. 2(D)). A total of 17 seeps are observed in water depths of
1000–1800 m and are associated with seafloor mounds 10–
20 m high located on or a few hundred meters from the line-
aments (Fig. 2(C)). Type III seeps occurring at seven sites in
the same area as Type II are also associated with seafloor
mounds 10–20 m high (Fig. 2(E)) but are not clearly associ-
ated with seafloor lineaments. Type IV seeps correspond to six
sites observed north of the Amazon fan proper, within slope-
confined canyons in water depths between 1000 and 2600 m
(Fig. 2(F)).

Considering all observed seeps, there is a clear correlation
between water depth and the height of gas plumes (Fig. 3).
Interestingly, we observe that the top of the gas plumes does
not necessarily coincide with the top of the MHSZ (Fig. 3).
Type I plumes (< 715 m water depth) are less than 350 m high
and rise a few tens to hundreds of meters above the top of the
MHSZ at 550–620 m water depth (Fig. 1). Type II–IV plumes
(water depths > 1000 m) are not observed to rise above the
MHSZ (Fig. 3).

Gas hydrates

The composition of venting gases was examined using sam-
ples of hydrates recovered from three sites. Two samples
(GH2 and GH3) are from the Amazon fan proper; the third
(GH1) is from a site on the canyonised continental slope some
50 km to the west (Fig. 1). The two samples from the Amazon
fan proper both consist of small hydrate nodules (1–10 mm
diameter) dispersed in a muddy matrix (Fig. 4(A)), and can be
described as Bnodular type^ (Malone 1985). The gas hydrate
nodules occur in association with authigenic carbonate nod-
ules (millimeter to centimeter size), as well as fragments of a
possible chemosynthesis-based community (shells, tube
worms; Fig. 4(B)). The gas contained in the hydrates is pre-
dominantly methane (85–98%), with variable amounts of CO2

(2–15%), and trace amounts of ethane (Table 1). Methane
δ13C values range from − 81.1 to − 77.3‰ (Table 1).

In contrast, the gas hydrates recovered west of the Amazon
fan from a site on the canyonised continental slope consist of
pieces up to 10 cm in length that can be described as Bmassive
type^ (Malone 1985). Gas analyses show methane to domi-
nate (95%), followed by CO2 (4%) and ethane (1%; Table 1).
The methane has a δ13C value of − 59.2‰ (Table 1).
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Discussions

The results presented above allow us to identify two mecha-
nisms that promote ongoing gas seepage from the Amazon fan
over Plio-Quaternary timescales. One is the dissociation of gas
hydrates along the edge of their stability zone (Fig. 5), inferred

to be the cause of 40% of the seeps mapped in our study. Such
a process has been recognized on other continental margins
and may be driven by warming of ocean bottom waters over
post-glacial or anthropogenic timescales (Skarke et al. 2014;
Hautala et al. 2014; Johnson et al. 2015) and/or by seasonal
variations in bottom water temperatures (Berndt et al. 2014).
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Fig. 3 Plots showing a linear
correlation between: (a) water
depth and the height of gas
plumes, and (b) depth of the top
of plumes versus seafloor depth
(the gray area represents the depth
range of the methane hydrate
stability zone for pure methane
hydrate in equilibrium with
seawater in the study area, cf.
Dickens et al. 1994; see Fig. 1
inset)

Fig. 2 Multibeam echo sounder imagery of sea floor seeps associated
with water column gas plumes: (a) cluster near the upper limit of the
methane hydrate stability zone (the dashed line corresponds
approximately to the calculated limit of the stability zone at 620 m
water depth—type I seeps); (b) plume associated to the fold and thrust
belt outcropping on the seafloor (type II seep); (c) aligned along a
geological structure on the sea floor (dashed line corresponds to the

trace of the seismic line in 2D—type II seeps); (d) seismic profile
crossing the fault (arrows) shown in 3C (dashed line), and a detail of
the profile showing the bottom simulating reflector (yellow line) and
the structure as a deep fault (red line); (e) type III seeps associated with
sea floor mounds; (f) type IV seeps within canyons north of the Amazon
fan. See Fig. 1 for locations of the images
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A second mechanism is methane migration through the
MHSZ to the seafloor along structural pathways, inferred to
account for 60% of the seeps that we map on the upper
Amazon fan (Fig. 5). We infer this process to have operated
throughout gravitational collapse of the fan, which has been
underway at least since the Pliocene (Reis et al. 2016).

The type I seeps lie in water depths of 650–715 m, near the
upper limit or Bfeather edge^ of the methane hydrate stability
zone (MHSZ), which our measurements of water column tem-
peratures suggest to lie in water depths of 560–620 m, assum-
ing pure methane hydrate in equilibrium with seawater (Fig.
1). A wider depth range (e.g., 520–680 m) results if water
temperature measurements from the World Ocean Data Base
(WODB; Boyer et al. 2013) are used to calculate the limits of
the methane hydrate stability zone. This suggests that the dis-
tribution of type I seeps may be related to the dissociation of
gas hydrates near the edge of their stability field (Hautala et al.
2014). Gas hydrates in such a setting are sensitive to changes
in pressure and bottom water temperatures, even if the latter
are small (< 1 °C) and of short duration (< 1 year; Berndt et al.
2014). Warming of bottom waters since the last glacial max-
imum, including in response to present-day climate change,
has been proposed as the main cause of gas hydrate dissocia-
tion at the upper edge of the stability zone in several basins

around the world (Westbrook et al. 2009; Skarke et al. 2014;
Hautala et al. 2014). During last glacial maximum (LGM),
colder bottom water temperatures in these depths imply the
stability zone to have been shallower/thicker, so that the type 1
seeps lie in an area in which thinning may have liberated free
gas accumulated within gas hydrates. Venting implies that free
gas is migrating along pathways through the thin GHSZ,
which might have been formed by the overpressures created
during dissociation of gas hydrates (Stranne et al. 2017). The
liberation of free gas in sediments owing to slow dissociation
of gas hydrates since the LGM has been modeled for other
areas (Foucher et al. 2009; Stranne et al. 2016). Alternatively,
the dissociation of gas hydrates at the edge of the gas hydrate
stability zone could be caused by seasonal variations in bot-
tom water temperatures (not necessarily related to climate
change), promoting the periodic formation and dissociation
(with methane venting) of near seafloor gas hydrates (Berndt
et al. 2014).

The depth range of type II and III seeps and associated
bottom water temperatures (3.5–5 °C) lies well within the
stability zone of methane hydrates, indicating that neither
are related to phase boundary changes driven by ocean
warming. The spatial relationship between type II seeps
and gravity-driven structures at the seafloor, which in depth
correspond to transfer and thrust faults (Fig. 2(D)), indicates
that the gravitational collapse of the Amazon fan creates
active pathways for deep gas migration through the GHSZ
until the seafloor. A more detailed study is underway to
investigate whether type III seeps may be connected with
gas migration through buried structures. The origin of gas in
the area of lower sedimentation rate adjacent to the Amazon
fan (type IV seeps) is unclear, but could either be deep-
sourced and brought to the surface via faults, or shallow-
sourced and leaking in response to erosional processes such
as canyon/gully incisions, and/or mass wasting, which can

Fig. 4 Photographs of sediments
recovered in piston cores from the
Amazon deep-sea fan, showing
(a) nodule of gas hydrate (arrow)
in sediments (sample GH3; see
Fig. 1 for location), and (b)
carbonate concretion with shells
(black arrows) and tubeworm
(white arrow) fragments found
together with GH3 gas hydrate
sample

Table 1 Chemical and isotopic composition of gases trapped in 3 gas
hydrate samples recovered in piston cores of three sites (GH1, GH2, and
GH3) in the Amazon fan. See Fig. 1 for site location

Sample CH4 (ppm) C2H6 (ppm) CO2 (ppm) CO (ppm) δ13C (CH4)

GH1 299,319.6 3629.43 12,492.2 361.49 − 59.2‰

GH2-A 83,521.8 2.8 13,938.6 398.08 − 81.1‰

GH2-B 11,361.99 N.D. 8803.98 367.76 − 80.9‰

GH3 231,072.28 100.56 5405.29 390.17 − 77.3‰
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physically cut gas hydrate deposits or accumulations of free
gas in subjacent sediments (Skarke et al. 2014).

Our observation that there is a linear, positive correlation
between water depth and the height of gas plumes, and that
bubbles become totally dissolved and/or unresolvable by
echosounding techniques before reaching the top of the
MHSZ (seep types II, III, and IV), is indicative that coating
of bubbles by a protective hydrate skin exerts influence
(Rehder et al. 2002), but it is not the single dominant control
of the permanence of gas flares in the water. The variability of
plume heights in the same water depth, both within and above
the MHSZ, may suggest that other controls like pressure
(depth), temperature, original bubble size, and/or gas compo-
sition may exert important controls too (McGinnis et al. 2006;
Waite et al. 2017).

The molecular and stable carbon isotope compositions of
methane trapped in hydrates in the two sites in the Amazon
fan (sites GH2 and GH3; Fig. 1 and Table 1) indicate a dom-
inant biogenic origin. This is consistent with results from dis-
seminated and nodular gas hydrates sampled in other basins
worldwide, particularly in areas of high sedimentation rates
and large organic matter accumulations, such as other deep-

sea fan structures (Miller et al. 2015). Gas hydrates in the
adjacent continental slope (site GH1; Fig. 1 and Table 1),
however, show different molecular and stable carbon isotopic
compositions. Although a biogenic origin is still indicated, the
presence of heavier hydrocarbon (ethane) and depletion in the
12C isotope in the methane gas suggests a possible thermo-
genic contribution, distinct from the biogenic character of the
two samples from the Amazon fan proper. This result supports
the idea that deep-sea fans such as the Amazon are loci for the
accumulation of large quantities of organic matter (Schlünz et
al. 1999) that, in turn, provide the source for biogenic methane
production (Arning et al. 2013), which may mask thermogen-
ic signatures in gas seeps at the seafloor.

The Amazon and other large deep-sea fans have been sug-
gested to act as net carbon sinks, in which rapid deposition and
shallow methanogenesis favor carbon storage within methane
hydrates, and as authigenic carbonates (Arning et al. 2013).
Our results show that part of the organic carbon stored within
the Amazon fan is being released by methane venting through
the seafloor to the ocean (Fig. 5). Modeling of biogenic meth-
ane formation in Amazon fan sediments at ODP sites at water
depths between 3000–4000 m (see Fig. 1 for location)

Fig. 5 Schematic diagram showing the Amazon discharge of sediment
and organic matter from the continent to the deep sea. Part of the organic
matter deposited in the deep-sea fan will be altered to methane by mi-
crobes, which will, in turn, migrate upward to be trapped as free gas, gas
hydrates and authigenic carbonates. However, another part will seep from
the seafloor, either along the edge of the gas hydrate stability zone in
response to, for instance, bottom water warming, or along structural

pathways including extensive and compressive fault systems formed by
gravitational collapse of deep-sea fans. For reference, the total mass of
carbon stored in sediments of the Amazon fan from Late Miocene to
Recent is equivalent to several times the quantity stored at present-day
in the Amazon Forest (carbon budgets presented in this figure are from
Richey et al. 1980; Schlünz et al. 1999; Brienen et al. 2015)
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indicates that methanogenesis occurs at burial depths greater
than 10 m down to hundreds of meters below the sea floor
(Arning et al. 2013), possibly mobilizing carbon stored thou-
sands to hundreds of thousands of years ago. This ongoing
process of methanogenesis could be the source for the venting
sites described here or, alternatively, venting gas could be
sourced by deeper (and older) methane reservoirs.

More generally, our work demonstrates that large deep-sea
fans like the Amazon are complex systems that play an im-
portant role in the accumulation of organic carbon. On one
hand, they sequester significant amounts of organic carbon,
which is, in the case of the Amazon fan (e.g., 62 × 1016 g
carbon deposited only during the last 20 k.y.; Schlünz et al.
1999), equivalent to several times the quantity stored at pres-
ent day in the Amazon Forest (150–200 × 1015 g carbon;
Brienen et al. 2015). On the other hand, they are characterized
by long-term geological dynamics (e.g., gravitational col-
lapse) and shorter-term sensitivity to climate changes and/or
seasonal variations in bottom water temperatures (e.g., gas
hydrate instability) that favor the release of part of this carbon
to the oceans. Gravitational collapse of depocenters above
shale or salt detachment surfaces is increasingly recognized
in passive margin settings as a long-term (millions of years)
component of their evolution (Rowan et al. 2004; Boyd et al.
2011; Tassy et al. 2015). It has been argued that most methane
emitted from seafloor seeps will not normally reach the atmo-
sphere, owing to dissolution and oxidation in the water col-
umn (McGinnis et al. 2006; Mau et al. 2007), but it has been
proposed that catastrophic slope failure may allow massive
methane release from gas hydrates (Maslin et al. 2004;
Maslin et al. 2005). The dynamics of carbon cycling in
deep-sea fans are still poorly understood, so the nature and
impact of methane emissions from these systems remain spec-
ulative and may be significantly underestimated (Römer et al.
2012; Skarke et al. 2014).

Conclusions

Our study documented for the first time the occurrence of wide-
spread gas seeps, both as seafloor structures and acoustic anom-
alies in the water column, in the Amazon deep-sea fan and
adjacent continental slope area. The observed gas flares lie in
two main settings: (1) near the limit of the gas hydrate stability
zone (40% of the observed features), possibly related to the
dissociation of gas hydrates owing to warming of ocean bottom
waters, over post-glacial or anthropogenic timescales, and/or
seasonal variations in bottom water temperatures; and (2) along
the trace of seafloor faults (60% of the observed features) mark-
ing deeper structures related to the gravitational collapse of the
fan. The latter shows that gas can migrate through the gas
hydrate stability zone to reach the deep oceans, and suggests
that this process is facilitated by the gravitational collapse of

passive margin depocentres. Gas in the continental slope area
adjacent to the Amazon fan possibly reaches the seafloor via
faults, or is shallow-sourced and leaking in response to erosion-
al processes such as canyon/gully incisions, and/or mass
wasting, which can physically cut gas hydrate deposits or ac-
cumulations of free gas in subjacent sediments.

Our results also include analyses of the first gas hydrate
samples recovered from the NE continental margin of South
America. The molecular and isotopic compositions of gas
trapped in hydrates in sediments of the Amazon fan proper
are consistent with a biogenic origin (dominantly methane with
2–15% of CO2; δ

13C from − 81.1 to − 77.3‰), whereas those
on the adjacent continental slope to a possible thermogenic
contribution to the gas mix (methane 95%, CO2 4%, and ethane
1%; δ13C – 59.2‰). These results are consistent with the gen-
eration of large amounts of mobile biogenic methane within the
Amazon fan, which may be diluting contributions from deeper
thermogenic sources as observed on the adjacent slope.

This paper demonstrated the potential of deep-sea fans for
studies of gas hydrate systems as an interaction between ex-
ternally driven climate changes and the internal dynamics of
passive margin depocenters. We suggest a systematic study of
large deep-sea fans on the world’s continental margins to re-
fine the global methane emission and gas hydrate inventories,
and improve our understanding of the natural versus anthro-
pogenic drivers of climate change.
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