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Abstract 

The evaluation of important pharmacokinetic properties such as hydrophobicity using High 

Throughput Screening (HTS) methods is a major issue in drug discovery. In this article, we 

present the measurement of the Chromatographic Hydrophobicity Index (CHI) on a subset of 

the French chemical library, the “Chimiothèque Nationale” (CN). The data was used in QSPR 

modelling in order to annotate the CN. An algorithm is proposed to detect problematic 

molecules with large prediction errors, called outliers. In order to find an explanation for these 

large discrepancies between predicted and experimental values, these compounds were 

reanalysed experimentally. As the first selected outliers indeed had experimental problems, 

including hydrolysis or sheer absence of expected structure, we herewith propose the use of 

QSPR as a support tool for quality control of screening data and encourage the cooperation 

between experimental and theoretical teams to improve results. The corrected data was used 

to produce a model, which is freely available on our web server http://infochim.u-

strasbg.fr/webserv/VSEngine.html 

http://infochim.u-strasbg.fr/webserv/VSEngine.html
http://infochim.u-strasbg.fr/webserv/VSEngine.html
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1 Introduction  

Since the advent of robotized biological testing in the nineties, access to large, diverse and 

original compound collections has become a major issue in drug discovery. However, 

handling of such collections raises important logistical and technical challenges – in particular 

since compound originality, a prerequisite for patentability, is by definition not the hallmark 

of standard, well-conditioned commercial collections accessible to everyone. Extensive 

analytical assessment of purchased compound collections is therefore a time-consuming and 

cost-intensive key issue, for its automation may only go as far as automated recording 

followed by error-prone machine interpretation of analysis results. Time and resources for in-

depths structural analysis is lacking – therefore, standard purity measures are necessary, but 

hardly sufficient
1, 2

. In standard Liquid Chromatography – Mass Spectroscopy (LC-MS) 

analysis, purity is taken as granted if an LC peak of expected mass is “predominant”. 

However, the tacit assumptions that (a) the correct mass actually stands for the expected 

isomer and (b) that the sensitivity of the detector is the same for the main compound and the 

potential impurities, are virtually never checked. In practice, in-depth structural analysis is 

postponed to the hit reconfirmation stage, for allegedly active molecules only. 

In this context, academic compound collections such as the Chimiothèque Nationale (CN), the 

French national chemical library regrouping original compounds issued from nation-wide 

academic research, is a valuable asset in terms of originality and diversity, but a logistical 

nightmare. Compounds are issued from different laboratories, conditioned according to 

different operating rules and stored under variable conditions before being sent to the central 

repository. The CN therefore requires quality control. A “Projet Interdisciplinaire de 

Recherche” (PIR) has been conceived as a showcase project to illustrate the use of this 

collection in (High) Throughput Screening (HTS) tests, highlight and fix various pitfalls due 

to the peculiar nature of this collection. PIR was aimed at annotating the CN in respect to 

hydrophobicity, solubility and acidity by using a diverse subset of 640 molecules, named the 

“Chimiothèque Nationale Essentielle” (CNE) as a representative core of the CN. It was not 

tailored for drug design, and therefore includes reactive and non-druglike molecules as well. 

The CNE molecules were then cherry-picked and submitted to standard Quality Control (QC) 

based on LC-MS purity check at the Integrative Chemical Biology Platform of Strasbourg 

(PCBIS).  

Parallelized and rapid measuring of the envisaged physico-chemical properties was carried 

out at the TechMed
ILL

 Platform in Strasbourg. Hydrophobicity – the first measured property, 

and the one concerned by this article – is an important property for medicinal chemists
3
. It is 

widely used as a criterion for acceptable drug solubility and permeability
4
. It has been shown 

to be related to ADME/T properties for over a century
5
. It has classically been evaluated by 

the octanol-water partition coefficient LogPo/w after the proposal of Hansch and Fujita
6
 and 

measured by the shake-flask method. However, this method is time-consuming and a modern 

HTS method using HPLC originally developed by GlaxoSmithKline researchers
7, 8

 has been 

used to assess the CNE, the Chromatographic Hydrophobicity Index (CHI). 

In reverse phase HPLC, the partition between a hydro-organic mobile phase and a C-18 

stationary phase is governed by hydrophobicity. The organic solvent percentage in mobile 
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phase necessary for elution is referred to as the Isocratic Chromatographic Hydrophobicity 

Index (ICHI) which is thus a good alternative to LogPo/w measures
9
. However, this measure 

requires testing several mobile phases with different organic solvent percentages, thus being 

time and resources consuming. This is why an alternative method based on a fast gradient was 

developed. The measured retention time in such columns are linearly correlated to ICHI
7
 and 

to logPo/w
8
. The method uses a linear calibration generated from the retention times obtained 

for a set of 10 standard compounds with known ICHI values. For any new compound, the 

retention time transformed by this calibration gives a number which is referred to as the CHI. 

This method is cost-effective and very economical in terms of compound requirement and 

solvent. To conclude, CHI is a measure of retention of the test compound on a fast gradient C-

18 column.  

It shall be noted that for compounds whose retention is not significant, a negative CHI value 

will be returned meaning very low hydrophobicity. For compounds that are not easily washed 

off the column, a CHI value of >100 is obtained signifying very high hydrophobicity. But the 

linear relation between the CHI and ICHI is observed only between 18.4 and 96.4 (the most 

extreme calibration values). It is important to note that this CHI range covers that of 

molecules that cross intestinal and brain barriers spontaneously. Molecules with CHI < 0 or > 

100 are not useful in drug discovery programs. 

Chemoinformaticians exploited the measured CHI data to build associated Quantitative 

Structure-Property Relationship (QSPR) models on the basis of the CNE diverse training set. 

The aim was to build useful models in order to annotate all the other academic molecules of 

the CN by their predicted properties, and also to enable chemists to make predictions for 

novel structures, via a publicly accessible QSPR prediction web server. QSPRs are 

mathematical models fitted on the data which return an estimate of the expected property on 

the basis of molecular descriptors serving to numerically encode the features present in the 

chemical structure. Parameter fitting is done such as to ensure that, for each training 

compound (of known property Y), the model will return a predicted Ypred very close to Y 

(following the classical least-squares principle). The molecular descriptors used in this study 

are the ISIDA property-labelled fragment counts
10

. Fitting was performed using mainly 

Support Vector Machines (SVM)
11

, because of the robustness of the produced models. Other 

machine learning methods were also tried out.  

The main insights gained from this work come from the systematic failures observed in 

modelling. We define outliers as compounds for which their calculated property value Ypred 

could never be brought in agreement with the observed Y, irrespectively of the employed 

model building strategy. This is in line with the classical definition of an outlier as an 

observation which is numerically distant from the rest of the data
12

. We propose a method for 

their systematic annotation and then to submit them to in-depth experimental scrutiny. Since 

the observed discrepancies between Y and Ypred were much higher than the expected models 

imprecisions, and yet independent on modelling premises it was hypothesized that this could 

be due to real differences in molecular structures: the actual molecule returning the measured 

Y might not correspond to the nominal structure for which Ypred was estimated. We 

identified three periods during which a chemical alteration might have occurred: (a) since the 
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CNE QC, during storage, (b) before the CNE QC, without being detected at that stage or (c) 

during the actual hydrophobicity measurement, due to reaction with the aqueous buffer. 

Systematic analysis of outliers actually revealed the above hypothesis to be basically correct. 

This signifies that a properly built QSPR model (minimizing modelling artefacts such as 

overfitting) is robust enough to highlight experimental errors. Building a QSPR model in 

parallel to experimental assessment of a library is not a costly undertaking, and may 

effectively pinpoint to potential experimental pitfalls, focussing the need for in-depth further 

analysis to the potentially “pathological” items. This could be an important first step towards 

the use of QSPR approaches for regulatory purposes, instead of experimental measurements, 

as envisaged by the REACH project
13

. 

This paper is organised in order to follow the chronology of the different experimental and 

modelling steps within the study. First the experimental protocol and results of the CHI 

measurements is presented (see §2), followed by an outline of the computational procedures 

(§3) the outlier management section (see §4). Outlier management contains the initial building 

of the models, the modelling protocol for the identification of the outliers (§4.1), their 

experimental validation (§4.2) and a presentation of the results with a discussion (§4.3). 

Finally, the consensus model (see §5), build after removal of outliers and doubtful molecules 

from the set is presented, followed by a conclusion section. 

2 CHI measurements 

The 640 CNE compounds were received in 8 microplates containing 10 mM DMSO stock 

solutions. CHI measurements were done on a Gilson HPLC system with a photodiode array 

detector, an autosampler and a Valco injector. Data acquisition and processing were 

performed with Trilution LC V2.0 software. Measurements were carried out at 20 ± 2 °C. A 5 

µm Luna C18(2) column (50 x 4.6) purchased from Phenomenex was used. The mobile phase 

flow rate was 2 mL/min and the following program was applied for the elution: 0-0.2 min, 0% 

B; 0.2-2.7 min, 0-100% B; 2.7-3.2 min, 100% B; 3.2-3.4 min, 100-0% B and 3.4-6.1 min, 0% 

B. Solvent A was 50 mM pH 7.4 ammonium acetate in water and solvent B was HPLC grade 

acetonitrile (Sigma-Aldrich CHROMASOLV). The detection wavelengths were 254 and 230 

nm.  

First, a solution with 10 reference compounds with known ICHI values (see Supporting 

Information 1.) was injected onto the HPLC to generate a calibration line from their retention 

times (see Figure 1). The concentration of the mixture was 0.2 mg/mL for each compound and 

the injected volume was 3 µL. A typical chromatogram of the standard solution is represented 

in Figure 2. The test compounds were analysed on the same system. The 10 mM DMSO stock 

solutions were diluted to 200 µM in acetonitrile / 50 mM ammonium acetate pH 7.4 1/1 v/v. 

The linear regression equation of the calibration line was used to convert retention time of the 

test compounds to CHI values (CHI 1 in Table 1). 

*Insert Figures 1 and 2 here* 
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The experimental procedure for CHI measurement was applied to all 640 molecules of CNE 

and several experimental complications arose (see Figure 3). CHI values of 418 compounds 

were measured without any complications. The protocol is based on UV-Vis detection; 

therefore, compounds lacking chromophore moieties cannot be detected by this method, 

which was the case for 10% of the molecules. In addition, nothing has been detected for 4% 

of the molecule for unknown and probably undefined reasons (presumably compound 

insolubility or unstable in DMSO, degradation in test buffer). Several peaks were detected for 

36 compounds (6%) indicating impurity or degradation. Hence, matching a peak to the 

molecule drawn in the database is difficult. It was assumed that the most intense peak 

corresponds to it. Compounds that gave peaks with low intensity were considered but with 

caution because it demonstrates a solubility problem. Finally, CHI values were measured for 

545 molecules and complications were annotated in the database. 

*Insert Figure 3 here* 

3 Computational procedure 

The computational workflow used in this work is given on Figure 4.  Steps 1-5 are describes 

in Section 3 whereas steps 6-8 are reported in Section 5. 

*Insert Figure 4 here* 

Compound Standardization.  The molecules were standardized by removing salts, stripping 

off hydrogens from the molecular graph, choosing a standard representation for groups such 

as nitro or imidazole, and generating major tautomer as well as major micro-species at 

pH=7.4 with ChemAxon’s Calculator plugin
14

.  

Descriptors Calculation. ISIDA property-labelled descriptors
10

, a type of fragment count 

descriptors, were calculated. Sequences, extended augmented atoms and triplets were 

computed on the molecular graph which has been “coloured” with one of the following 

properties: atomic symbols, pharmacophoric flagging, electrostatic potentials or force field 

typing. The length of fragments varied for the minimum from 2 to 4 and for the maximum 

from 4 to 8. Further variants were then introduced for some of these, by toggling additional 

options: switching to “Atom pairs” mode, enabling “all path exploration” and the explicit 

representation of the formal charge. A total of 2772 descriptor pools were eventually 

generated. 
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Machine Learning Techniques. SVM was chosen as the reference machine learning because 

of its stability mainly due to its particular error function.  The Libsvm 3.12 package
11

 was 

used for the generation of epsilon-SVM regression models with a linear kernel. Epsilon was 

set equal to the random experimental error estimated at 2 CHI units. The cost was tested for 

28 different values ranging from 0.1 to 100. Model building included both operational 

parameters fitting (as required by the libsvm approach) and, most important, required cross-

validation techniques
15

 to avoid overfitting. The final model selection criterion therefore was 

the 5-fold cross-validated root-mean-squared error (5CV-RMSE) (See Supporting 

Information 2. for details on statistical parameters).  

PLS and SQS regression models issued from selected pools of descriptors were also built for 

the comparison purposes. 

Model Selection.  Totally, 2772*28= 77616 individual models (each corresponding to 

particular descriptor pool and a particular value of cost parameter) have been obtained for a 

given dataset. Several “best” models has been selected according to 5CV-RMSE. All selected 

models were used for consensus predictions on the external test set: for each molecule, CHI 

value was calculated as an arithmetic average of predictions made by selected individual 

models.  

Outlier identification protocol. In this section we discuss identification of recurrent outliers 

observed in different modelling strategies. The term “outlier” designates, in the following, a 

compound for which the predicted value returned by a model having used this molecule for 

learning strongly diverges from the experimental value.  

The list of outliers – submitted to in-depth analysis in order to attempt reconfirmation of these 

experimental values that could not be explained by modelling – was gathered using an 

eliminate-and-refit protocol on the basis of N best models. At each step of the prediction for a 

given data point is considered anomalous if its calculations error at the fitting stage is higher 

than a threshold Cout. This threshold is computed as twice the highest 5CV-RMSE found in 

the set of N values from each SVM model: Cout=2×max(5CV-RMSE). The outlier list was 

iteratively built, as follows: 

1. The molecule with the highest number of anomalous estimates is chosen, based on the 

current value of Cout. In the event of a tie, the molecule with the highest absolute mean 

prediction error is chosen. 

2. The corresponding compound is removed from the modelling dataset and the N models 

are refitted. The operational parameters are not re-optimized. 

3. The experimentally measured CHI value in discrepancy with the prediction is challenged, 

by a thorough re-analysis of the compound (see §4.2), with four possible outcomes:  

a) the initial CHI value is proven wrong, and a correct estimate is found instead,  

b) the initial CHI value is proven wrong, and the renewed attempt to measure the 

property fails,  

c) the initial CHI value is reconfirmed, but structural analysis shows that the actual 

compound corresponding to the detected peak is not the nominal structure from the 

electronic database, 
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d) both the initial CHI value and compound structure are reconfirmed – thus, this is a 

modelling problem. 

4. The procedure is repeated from step 1 until no more of the apparently irreconcilable 

experiment-prediction discrepancies can be attributed to measurement problems (cases a, 

b, c listed above).  

 

The choice of using fitted values is more logical than using 5CV-predicted values as model 

“output” to compare to the experimental value. Indeed, discrepancies between 5-CV-predicted 

values and experiment are more likely to occur, especially for species at the edge or outside 

the applicability domain
16

. If the model has already learned from a molecule, it should be able 

to predict it. However, if the fitted value of a molecule is in discrepancy with the measured 

data, this indicates that the molecule goes against what the model learned from other 

molecules. The stepwise manner of this protocol for picking out outliers instead of selecting 

several on the same model ensures that the presence of the biggest outlier does not 

significantly skew the calculated values for other compounds. When eliminating one molecule 

from the training set, the model is refitted and changes. Thus, it cannot be assumed that the 

molecule with the biggest error on the rebuild model is the same as the second biggest in the 

initial model. Besides, the fact that a compound appears as outlier for several models is a 

concept of paramount importance to this analysis because it permits to converge towards 

problematic molecules identified by different points of views. 

4 Outlier detection, validation and analysis 

4.1 Outlier detection 

10 models out of 77616 built on the parent set of 545 compounds were selected according to 

5CV-RMSE. The best of them involves atom-centric fragments coloured by atomic symbols 

with a range of 2 to 4 atoms and with the use of formal charges and with a SVM cost of 0.5. It 

has a train-RMSE of 11.2 and a 5CV-RMSE of 19.6. The obtained models show several 

recurrent outliers (see Figure ). 

 

*Insert Figure 5 here* 

  

The CNE set is the biggest collection of CHI values found in literature. It is a very reliable 

source of data, as it was measured by the same scientist, with the same equipment, in the same 

conditions (room temperature, solutions used). Thus, the hypothesis that the data cannot be 

modelled due to multiple protocol incoherencies was discarded. A closer analysis of the 

structure of those molecules showed that certain contained potentially reactive groups, leading 

us to foresee that problems may concern certain experimentally measured values, even 

though, in most cases, no peculiar complications were noted during these measurements. 
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In order to check if relatively poor model performance is due to including into training set the 

molecules for which some experimental problems were detected (blue portion of the pie in 

Figure 3), the modelling was performed on the set of 418 molecules measured without any 

complications (green portion of the pie in Figure 3). We didn’t observe any significant 

improvement of performance, thus it was expected that reported experimental problems were 

not indicative of data limiting the quality of the models, as outliers would. 

If experimental annotation was not sufficient to discard suspicious data, the question was to 

which extent are QSPR models able to highlight problems in a set of data issued from an HTS 

experiment? On the one hand, it is interesting to see how many of those with known 

experimental problems are perceived as outliers. Are outliers with no apparent experimental 

problems affected by issues that were not observable during the CHI measurement protocol? 

To answer these questions, the eliminate-and-refit protocol described in §3 has been applied 

for 10 best SVM models (see the models parameters in Supporting Information 3). This lead 

to detection 24 outliers listed in Table 1. Unsurprisingly, outliers detected at fitting stage also 

behave erratically during 5CV (see Figure ). 

 

*Insert Table 1 here*                            

 

To ensure the outliers did not contain unique features which would make them fundamentally 

different from the others in the training, 1-SVM
17

 using a linear kernel was applied at varying 

ν parameter. The outlier distribution is homogeneous within the dataset. The percentage 

coverage within the outliers corresponds to the percentage coverage within the dataset. If 

these outliers differed structurally from the other molecules within the set, they would never 

be within the dense area defined by the 1-SVM.  

 

4.2 Experimental reassessment of outliers 

The experimental check of compounds annotated as outliers were done by the TechMed
ILL

 

Plateform. CHI of the compounds identified as outliers were measured a second time (CHI 2 

in Table 1) and solutions were submitted to mass spectrometry re-characterisation in order to 

explain differences found between experimental and predicted CHI values. Fresh DMSO 

stock solutions were prepared from powders except for 4 compounds for which powder was 

not available (indicated by a * in Table 1). The powder should contain less impurities and 

eventual chemical degradation are less likely to occur than in the stock solution.  

Firstly, these solutions were used to determine the CHI values again by the same procedure 

explained previously (see Erreur ! Source du renvoi introuvable.). It permits to check 

whether the stock solutions distributed by the CN had problems. Secondly, a LC-MS 

characterisation was done to confirm or invalidate the presence of the expected compound 

(see MS column in Table 1), as described by its theoretical structure in the database. Any 
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error in this drawn structure will induce an error in the QSPR estimate as the descriptors 

calculated will not correspond to the actual measured structure. A LCMS-8030 Triple 

Quadrupole Liquid Chromatograph Mass Spectrometer was used for these quality control 

measurements. Ionization of compounds was done with an electrospray source. Both single-

ion monitoring and scan modes were used. The first mode was applied in order to control if 

the compounds in solution match with the given structures. The second mode allowed 

identification of other compounds present in the solution, such as impurities or products of 

degradation. As mass spectrometers do not support high flow rates and high salt concentration 

in mobile phase, thus, it was impossible to reproduce the same experimental conditions of 

CHI measurements. Data acquisition and processing were performed with Labsolutions V5.0 

software. Measurements were carried out at 25 °C. A 1.7 µm kinetex C18 column (50 x 2.1) 

purchased from Phenomenex was used. The mobile phase flow rate was fixed at 0.5 mL/min 

and the following program was applied for the elution: 0-0.2 min, 0% B; 0.2-3 min, 0-100% 

B; 3-3.30 min, 100% B; 3.2-3.32 min, 100-0% B and 3.32-6 min, 0% B. Solvent A consisted 

of 5 mM pH 7.4 ammonium acetate in water and solvent B was HPLC grade acetonitrile. 

Injection volume was 1 µL. The nitrogen nebulizing gas flow was set at 1.5 L/min and the 

drying gas flow at 15 mL/min. 4500 V were used for the interface voltage. The temperature of 

the block heater was maintained at 400 °C and the one of the desolvation line at 250 °C. 

Table 1 summarizes the results where:  

 CHI 1 is the first CHI value obtained with DMSO solutions in plates received from 

the central repository. The whole set was measured with UV-Vis detection and 

used for the first modeling.  

 CHIpred stands for CHI Average Prediction and corresponds to the average 

prediction over the 10 best SVM models in the iterative procedure; 

 CHI 2 is the second CHI value obtained with fresh solutions prepared from 

powders (except for those marked with a *) and measured for the 24 outliers (with 

LC-UV); 

 MS indicates whether the presence of the theoretical structure was confirmed by 

mass spectrometry (indicated by Y) or invalidated (indicated by N) 

4.3 Outlier analysis 

The first 21 outliers from the list (see Table 1) were experimentally confirmed to be 

consequences of various experimental problems and artefacts, many of which escaped direct 

observation at the initial high-throughput measurement stage. The reassessment was extended 

to three additional compounds beyond this list of 21 outliers, in order to check the proposed 

outlier selection criteria.  

Identified problems include chemical degradation which could be identified for 6 compounds: 

one lactone (outlier 16), two anhydrides (outlier 5 and 10) and three esters (outlier 3, 8 and 

12) were hydrolysed and the resulting degradation was found in MS. Out of the 21 

compounds, only 6 had an experimental comment indicating eventual measurement 

complications: 3 had precipitated in the buffer or in the DMSO stock solution, 1 had several 
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peaks, 1 had a large peak and 1 had a peak of low intensity. In total, 15 compounds had 

experimental problems where no measurement complications had been detected.  

In order to discuss the results, different compounds have been regrouped into 6 categories: 

Hydrolysed compound, solutions containing several products, structure not confirmed by MS, 

no correspondence between the different CHI measurements and no experimental problems. 

Hydrolysed compounds: Outlier 3, 5, 8, 10, 12, 16. In all these cases, the MS spectrum of the 

hydrolysed molecule is found, proving the chemical degradation. Such reactions are generally 

considered as slow
18

 at pH=7.4. However, water impurities may be contained in the DMSO 

stock solution due to its hygroscopic nature and thus, reaction may occur before placing the 

compound in the buffer solution. For outlier 8 and 12, it seems the degradation is fast enough 

to occur during the second measurement and thus, two peaks are found during the second 

measurement of CHI. In both cases, it can be assumed that the lowest value corresponds to the 

acid and the higher value to the drawn structure. In the case of outlier 5 and 10, powder was 

not available to remake a fresh solution. It seems CHI measurements correspond in both cases 

to the hydrolysed compound. In the case of outlier 3, it can be assumed that the first measured 

value (CHI=6.7) corresponds to the acid. In the case of the lactone (outlier 16), the compound 

is not observed and only the hydrolysed molecule is detected by MS. It can thus be assumed 

that the CHI values correspond to it.  

Solutions containing several products: Outlier 4, 6, 7, 9, 11, 14, 15, 20. The compounds are 

detected by MS but with contaminants, indicating a possible degradation or impurity. Outliers 

4 and 11, both have benzyl bromides which may be hydrolysed
19

 or degraded. In the case of 

outlier 11, the problem is likely related to a low solubility of the compound and, hence, an 

impurity is measured in LC-UV-Vis with a more intense peak. In the case of outlier 6, the 

theoretical structure seems to correspond to the CHI value of 99.8. In the case of outlier 15, 

the expected compound is confirmed by LC-MS but has no chromophore to be detected in 

LC-UV-Vis. Thus, the measured CHI value probably corresponds to an impurity or a 

counterion coming out at the void time.   

Theoretical structure not confirmed by MS: Outlier 1, 2, 17, 19. The compounds are not 

present during the experiment. It is impossible to conclude what may have happened and what 

is actually measured during the LC-UV experiment with the given information. Possibly, the 

compound was not soluble or the given powder did not contain the indicated compound due to 

a human error. In the case of outlier 17, a substructure of the theoretical structure is found in 

MS. This could have been an input or synthesis error. In the case of outlier 2, the absence may 

be related to the low solubility of the compound (measured as 2 μM in pH 7.4 buffer). 

No correspondence between different CHI measurements: Outlier 13, 18, 21. The compounds 

are identified by MS but no matching of the CHI values can be found and no other 

compounds are detected. Possibly some wells in the given microplates may have contained a 

wrong solution in the first measurement or the compounds were degraded during the storage 

and these reactions are not fast enough to be observed during the second measurement, when 

redoing the stock solutions. In the case of outlier 13 and 21, the predicted values are 



11 

 

qualitatively in better accordance to the second measurements. In the case of outlier 18, it is 

questionable whether the compound is not hydrolysed or degraded. 

No experimental problems: Outlier 22, 23, 24. The compounds are detected in the expected 

ranges of retention times by LC-MS and both CHI measurements match. It seems these 

molecules are not well predicted and the discrepancy may origin from the limits of the 

modelling. We note that the outliers 22 and 24 are above the highest calibration value 

(valerophenone CHI=96.4). 

Extreme values of CHI 

CHI is derived from the ICHI, which corresponds to the percentage of acetonitrile needed to 

achieve an equal distribution between the two phases. It is calibrated on a set of compounds 

for which the ICHI is known and the ICHI is effectively bounded between 0 and 100. 

However, as the CHI is a retention time converted to an ICHI scale, it can have values outside 

of the range 0-100.  

Several outliers confirmed to have experimental problems have a negative value and it was 

observed that their CHI correspond to the void time of the column, thus, no actual 

measurement of the molecule’s hydrophobicity is done. It can only be concluded these have a 

very low hydrophobicity. In the remaining molecules of the database, three such cases with 

values below 0 are found (structures are provided in Supporting Information 4.) and were thus 

discarded from the final modelling dataset. 

The 57 cases above 100 CHI units have been kept (excluding outlier 9) as these CHI value 

convey physicochemical meaningful differences between the compounds. Indeed, a retention 

time can be unambiguously measured: no metrological problem is expected. For this range of 

CHI, it can be assumed that a compound with a lower CHI than another has indeed a lower 

hydrophobicity. However, the assumption of a linear relationship to the isocratic 

chromatographic hydrophobicity index and to LogD
8
 is obviously wrong. 

Outlier dependence on the modelling protocol 

The sensitivity of the outlier list with respect to the machine learning technique was assessed 

by ranking compounds according to the average errors reported by alternative Partial Least 

Square (PLS) regression models obtained with Weka 3.7.6
20

 and respectively Stochastic 

QSAR Sampler (SQS)
21

 models. The PLS models were generated with varying number of 

components from 2 to 20 with a step of 2. SQS models were built on 8 descriptor spaces 

known for their good predictive proficiency in SVM fitting. 10 PLS models used were 

selected on the criteria of equivalent statistics to best model, low number of components and 

different type of descriptors. The eliminate-and-refit approach was also used on PLS.  

The other machine learning methods are also able to find most of these outliers, picked on the 

basis of SVM models. These were primarily run to cross-check whether outlier detection 

would be strongly impacted by the choice of machine learning protocols. This is not the case. 

The outlier lists obtained using PLS or SQS were largely consistent with the one obtained 

with SVM. 



12 

 

5 Final consensus model 

The compounds experimentally confirmed to have problems (21 cmpds, see Table 1), 

compounds with CHI values below 0 (3cmpds) and all compounds with several peaks (36 

cmpds) were removed from the initial set. The “cleaned” dataset of 485 compounds has been 

used to rebuild SVM models, re-exploring descriptor spaces and parameters. An external 5CV 

procedure was applied by splitting the initial set of molecules 5 times into 5 different folds. 

Best models were selected on the criteria of a 5CV RMSE better than a cut-off of 16. Only 

one model per descriptor space was kept. A y-randomisation strategy
22

 performed 20 times 

confirmed the significance of the selected models. In total, 81 models with 5CV-RMSE 

ranging from 14.5 to 16 are included in the consensus model (see Supporting Information 7. 

for details). 

It was observed that the best descriptor spaces were covering small fragments. The best 

descriptor space is an atom-centric fragmentation coloured by atomic symbols with a range of 

2 to 3 atoms and with the use of formal charges. This might be related to the diversity of the 

molecules, which do not allow the extraction of more complex description or to the additive 

character of hydrophobicity
23

. 

An external test set of 195 molecules from the literature 
7, 8, 24-26

 was used to evaluate the 

generalization of the consensus model. Care was taken to have the most similar experimental 

conditions: 

 The pH varies from 7 to 7.4. 

 A reversed-phase C18 column with a gradient of acetonitrile/buffered water was used 

in all cases. 

 Calibration was slightly different in two cases
7, 26

, hence, an equation was established 

to convert the values. 

 Compounds were detected by UV-Vis in most cases, and by mass spectroscopy
25

 for 6 

molecules. 

The model reasonably performs on the external test set with a RMSE of 16.4 and a 

determination coefficient R
2
det of 0.6 (see Supporting Information 5. for details). It is not 

surprising to obtain worse results on the external test set than expected from cross-validation 

experiments. The main difference is that the former dataset is issued from the literature 

whereas the latter is issued from the same laboratory. For data coming from literature, it is not 

possible to exclude some variation in the experimental setup, the least of it being that the 

calibration parameters of the CHI vary from one article to the other. The compounds 

measured by MS also notably differ from the other errors (see Supporting Information 5. for 

details). 

This model was used to annotate the CN and is freely available online: http://infochim.u-

strasbg.fr/webserv/VSEngine.html (see Supporting Information 6. for instructions). 

http://infochim.u-strasbg.fr/webserv/VSEngine.html
http://infochim.u-strasbg.fr/webserv/VSEngine.html
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6 Conclusion 

To conclude, we suggest the use of QSPR modelling to control the quality of HTS 

experiments. In this article, we present the largest homogeneous dataset of experimentally 

measured CHI values. We also propose an algorithm to list, based on QSPR modelling, 

outliers that are likely to represent cases of severe and hidden experimental error. With this 

algorithm, we were able to pinpoint experimental problems for 21 compounds. These 

problems could not be detected during the experimental screening and they represented about 

4% of the database. The final model was produced using reliable data and is publically 

available. The model was used to annotate the whole CN. 

It is our belief that removal of outliers should not be done automatically (typical strategy 

in QSAR/QSPR) and outliers should bring the chemists to reflect on their work. Their proper 

analysis demands a synergy between experimental screening teams and chemoinformatics 

modelling teams. The cost of a QSPR study is negligible compared to a screening campaign. 

The discrepancies observed between the QSPR estimates and the screening results are useful 

to detect experimental problems otherwise invisible. Such interplay could be a useful addition 

to regulatory tests such as those mentioned in REACH.  
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Figure 1. Calibration of the HPLC column: Relationship between retention times and CHI 

values 

 

 

 

 

 

 

 

 

 

 

Figure 2. Typical chromatogram of the standard solution 
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Figure 3. Experimental status of CHI measurements on 640 molecules: in green, no problems 

detected, in red failures to determine the CHI value and in blue measurements accompanied 

by observed side phenomena that may signal artefacts, all while nevertheless allowing some 

CHI value to be recorded.  

 

 

 

 

Figure 4. Computational workflow used in this work. 
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Figure 5. Experimental vs. predicted CHI assessed at the fitting stage (a) and in 5-fold cross-

validation (b) for the best SVM model (see section 4). The numbers indicate the outliers 

detected in the eliminate-and-refit protocol and listed in Table 1. 
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11 Tables 

 

Table 1. Outliers list and experimental results 

Nb Theoretical Structure Comments CHI 1 CHIpred CHI 2 MS 

1 

 

Desired compound 

presence is confirmed by 

MS but this product is not 

detected by UV. Indeed, for 

both CHI measurements, 

only one peak is detected at 

the void time, which 

corresponds to a CHI value 

of -34. The compound not 

retained by the column is 

not identified. 

-33.7 56.4 -33.7 Y 

2 

 

The desired compound is 

not observed by MS. It is 

probably insoluble in the 

buffer. The UV peaks 

detected for CHI 

measurements refer to an 

unknown product.  

12.1 88.5 9.6 N 

3 

 

The acid resulting from the 

hydrolysis of the ester is 

detected by MS. The low 

value obtained for CHI1 

experiment is explained by 

this hydrolysis. The second 

CHI measurement with a 

fresh solution allows 

detecting the expected 

ester.  

6.7 82.2 108.9 Y 

4 

 

The well used for CHI1 

measurement contains the 

desired compound but at a 

very low concentration 

confirmed by a small MS 

response and not detectable 

by UV. A contaminant with 

a low hydrophobicity is 

observed by MS. CHI2 

experiment allows 

detecting the desired 

compound. 

16.8 76.5 
86.4 

and 80 
Y 
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5
*
 

 

Although the desired 

compound is detected by 

MS with a small response, 

the major product in the 

well is the diacid resulting 

from the hydrolysis of the 

anhydride. 

-21.0 38.4 -24.6 Y 

6 

 

The desired compound is 

detected by MS but as a 

minor product in the 

solution used for CHI1 

experiment. A contaminant 

is found. The second 

measurement CHI2 allows 

detecting the expected 

compound as the major 

product. 

30.2 84.7 

99.8 

and 

smalle

r peak 

at 

34.1 

Y 

7 

 

The desired compound is 

detected by MS but as a 

minor product. The UV 

peaks detected for CHI 

measurements refer to an 

unknown product. 

38.0 89.4 36.8 Y 

8 

 

The desired compound is 

detected by MS with a very 

small response. The 

corresponding 

concentration is probably 

not detectable by UV. Two 

other products are 

observed. The diacid 

resulting from the 

hydrolysis of the esters is 

detected. 

37.5 87.9 

33.6 

and 

58.7 

 

Y 

9 

 

The desired compound is 

detected by MS but as a 

minor product in the 

solution used for CHI1 

experiment. A contaminant 

is found. The second 

measurement CHI2 allows 

detecting the expected 

compound as the major 

product. 

108.2 67.5 

71 

and 

101.9 

Y 

10* 

 

Although the desired 

compound is detected by 

MS with a small response, 

the major product in the 

well is the diacid resulting 

from the hydrolysis of the 

acid anhydride. 

12.6 53.4 11.2 Y 
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11 

 

The desired compound is 

observed by MS but with a 

very low response. It is 

probably insoluble in the 

buffer. The UV peaks 

detected for CHI 

measurements refer to an 

unknown product. 

48.9 91.9 49.1 Y 

12 

 

The desired compound is 

detected by MS but as a 

minor product in the 

solution used for CHI1 

experiment. The acid 

resulting from the 

hydrolysis of the ester is 

detected by MS. The 

second measurement CHI2 

allows detecting the 

expected compound as the 

major product. 

10.6 47.1 

10.1 

and 

42.1 

Y 

13 

 

The desired compound’s 

presence is confirmed by 

MS. The first and the 

second CHI measurements 

do not match. 

50.5 89.84 114.4 Y 

14 

 

The desired compound’s 

presence is confirmed by 

MS but not detected by 

UV. Indeed, for both CHI 

measurements, only one 

peak is detected at the void 

time, which corresponds to 

a CHI value of -34. This 

compound not retained by 

the column is not identified. 

CHI2 experiment allows 

detecting the desired 

compound. 

-33.7 26.3 

-33.7 

and 

20.2 

Y 

15* 

 

The presence of the desired 

compound is confirmed by 

MS. As it does not contain 

any chromophore, it cannot 

be detected by UV. The 

peak detected at the void 

time for CHI measurements 

corresponds to a CHI value 

of -34. The compound not 

retained by the column is 

not identified. 

-34.3 18.1 -33.7 Y 

16 

 

The desired compound is 

not observed and the acid 

resulting from the 

hydrolysis of the lactone is 

25.6 59.1 24.5 N 
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detected by MS. The low 

value obtained for CHI1 

experiment is explained by 

this hydrolysis. 

17 

 

The desired compound is 

not detected by MS while 

the substructure without the 

C(CF3)OH is observed. 

20.3 49.5 27.1 N 

18 

 

The presence of the desired 

compound is confirmed by 

MS. The first and the 

second CHI measurements 

do not match. 

6.1 39.7 -28.9 Y 

19 

 

The desired compound is 

not detected by MS. Both 

CHI measurements give 

identical results but do not 

correspond to the expected 

product. 

-20.5 12.0 -24.6 N 

20* 

 

Compound’s presence is 

confirmed by MS but as it 

does not contain any 

chromophore, it cannot be 

detected by UV. The UV 

peak detected for CHI2 

measurement refers to an 

unknown product. 

-5.9 25.1 27.7  Y 

21 

 

The presence of the desired 

compound is confirmed by 

MS. The first and the 

second CHI measurement 

do not match. 

66.2 97.7 121.65 Y 

22 

 

No problem detected. 121.7 94.0 116.3 Y 

                                                                                                     

23 

 

No problem detected. 19.5 47.1 22.4 Y 



25 

 

24 

 

No problem detected. 105.5 80.0 101.4 Y 

 


