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HIGHLIGHTS: 34 

Calls of male rock ptarmigans show individual vocal signatures. 35 

These signatures allow acoustic censusing of the number of males present in an area. 36 

Acoustic sampling is more accurate than point-count protocol. 37 

 38 

ABSTRACT: 39 

The cost-effectiveness and reduced human effort employed in setting up acoustic monitoring 40 

in the field makes bioacoustics an appealing option for wildlife monitoring. This is especially 41 

true for secretive vocal species living in remote places. However, acoustic monitoring still 42 

raises questions regarding its reliability when compared to other, human-driven methods. In 43 

this study we compare different approaches to count rock ptarmigan males, an alpine bird 44 

species which lives at high altitudes. The monitoring of rock ptarmigan populations is 45 

traditionally conducted using a point-count protocol, with human observers counting singing 46 

males from a set of different points. We assessed the (1) feasibility and (2) reliability of an 47 

alternative counting method based on acoustic recordings followed by signal analysis and a 48 

dedicated statistical approach to estimate the abundance of males. We then (3) compared 49 

the results obtained with this bioacoustics monitoring method with those obtained through the 50 

point-count protocol approach over three consecutive years. Acoustic analysis demonstrated 51 

that rock ptarmigan vocalizations exhibit an individual stereotypy that can be used to 52 

estimate the abundance of males. Simulations, using subsets of our recording dataset, 53 

demonstrated that the clustering methods used to discriminate between males based on their 54 

vocalizations are sensitive to both the number of recorded signals, as well as the number of 55 

individuals to be discriminated. Despite these limitations, we highlight the reliability of the 56 

bioacoustics approach, showing that it avoids both observer bias and double counting, 57 

contrary to the point-count protocol where this may occur and impair the data reliability. 58 

Overall, our study suggests that bioacoustics monitoring should be used in addition to 59 

traditional counting methods to obtain a more accurate estimate of rock ptarmigan 60 

abundance within Alpine environments. 61 

 62 

 63 



 3 

Keywords: 64 

acoustic monitoring; rock ptarmigan; point-count protocol; long-term study; individual 65 
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1. Introduction 68 

Acoustic monitoring is becoming an effective means to assess wildlife diversity, resulting in 69 

minimal impact to the environment (Towsey et al., 2014; Sueur and Farina, 2015). 70 

Importantly, it enables to focus on species used as bioindicators as well as of patrimonial or 71 

economic concern. The use of acoustic monitoring is usually motivated by the difficulty in 72 

observing the species because of its secretive behavior or the difficulty in accessing its 73 

habitat (Hoodless et al., 2008; Vögeli et al., 2008; Marques et al., 2009; Buxton and Jones, 74 

2012; Dugan et al., 2013; Marques et al., 2013; Andreassen et al., 2014; Ulloa, 2016). Levels 75 

of investigation range from the simple assessment of species’ presence/absence to more 76 

complex studies that aim at determining the number of individuals present on an area. 77 

Depending on the species, these approaches may require the discrimination of individuals 78 

(Terry et al., 2005; Pollard et al., 2010), which is only possible when vocalizations contain 79 

individual vocal signatures based on morpho-physical, genetics and/or learning abilities 80 

(Kroodsma, 1982; Tibbetts et Dale, 2007; Catchpole et al., 2008; Taylor and Reby, 2010; 81 

Nowicki and Searcy, 2014; Tamura et al., 2018). 82 

Although acoustic monitoring is promising, it still raises several potential issues: high cost of 83 

monitoring material, design of monitoring protocols, analysis of long-duration recorded 84 

signals, weather conditions impacting the quality of the data, needs of bioacoustics experts 85 

for data analysis, and sensitivity to the density of the species (Budka et al., 2015; Linhart and 86 

Šȧlek, 2017). To the best of our knowledge, acoustic monitoring has not yet replaced other 87 

protocols. Point-counts protocols (Lancia et al., 2005) are still largely used to provide 88 

estimates of the number of individuals. However, these conventional, human-operated 89 

methods are exposed to biases due to inter-individual differences between observers, 90 

unpredictability of field conditions, and biological parameters such as species abundance 91 

(Tyre et al., 2003; Bart et al., 2004; Lotz and Allen, 2007; Elphick, 2008; Fitzpatrick, 2009). 92 

Moreover, individuals of species emitting long-range signals can be counted by several 93 

observers simultaneously, leading to double counting and abundance overestimation. 94 

Besides, human presence can disturb birds’ behavior making them stop singing and leading 95 

to population underestimation. 96 

While previous works have explored the technical feasibility of acoustic monitoring based on 97 

vocal individual signature (Terry and McGregor, 2002; Hartwig, 2005; Grava et al., 2008; 98 

Policht et al., 2009; Adi et al., 2010; Feng et al., 2014; Budka et al., 2015, 2018; Peri, 2018a) 99 

most field applications were based on sounds recorded from already known individuals 100 

(O’Farrell and Gannon, 1999; Peake and McGregor, 2001; Vögeli et al., 2008; Digby et al., 101 

2013; Peri, 2018b). To the best of our knowledge, there is no published study investigating 102 
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the generalization and reliability of an acoustic monitoring approach based on individual 103 

vocal signatures aimed at estimating the number of individuals in real field conditions. 104 

Focusing on the rock ptarmigan Lagopus muta in France, the present paper reports a multi-105 

year study aimed at assessing the potential interests, as well as the caveats, of acoustic 106 

monitoring by comparing performances of this approach with a traditional point-count 107 

methodology. 108 

The rock ptarmigan is a bird species that inhabits the northern parts of Eurasia and North 109 

America. In France, its range is restricted to sub-alpine and alpine habitats (altitude > 1800 110 

m) of the Pyrenees and the Alps Mountain ranges (Sale and Potapov, 2013). This species is 111 

secretive and difficult to access. It is highly adapted to its environment, has mimetic plumage 112 

and vocalizes at dawn and dusk (MacDonald, 1970). Population abundances are decreasing 113 

in both the Alps (Imperio et al., 2013; Furrer et al., 2016; Martinoli et al., 2017) and the 114 

Pyrenees, where they are threatened by both climate change and habitat transformation 115 

(Revermann et al., 2012; Bech et al., 2013). Due to these extreme environmental and 116 

selective pressures, rock ptarmigan is often considered as a bioindicator of the ecosystem 117 

health, a sentinel and umbrella species for biodiversity conservation of the alpine 118 

environments (Sandercock et al., 2005; Hanser and Knick, 2011; Henden et al., 2017). 119 

During the mating season (May-June), males display courtship rituals, which often includes 120 

simple, pulsatile vocalizations as well as a peculiar “singing in flight” behavior before dawn 121 

(MacDonald, 1970). The flight is hyperbolic, and vocalization starts when the bird reaches 122 

the point of highest altitude. Point-count protocols rely on this acoustic behavior to evaluate 123 

the number of males after they have established their breeding territories (Bossert, 1977). 124 

Although vocalizations are loud and easily heard by an observer, low visibility, birds’ mobility, 125 

frequent harsh weather conditions and other constraints associated with the alpine 126 

environment are likely to increase the possibility of double counting and overestimation of the 127 

monitored population. Conversely, this may also impair song perception by observers 128 

(Andreev, 1971). The use of an acoustic monitoring technique could provide a feasible 129 

alternative as a response to these difficulties and potential biases. Despite these constraints, 130 

rock ptarmigan presents several advantages in terms of monitoring. Vocalizations are easily 131 

recognizable, population densities are generally low (around 5 males/km2), and males are 132 

mostly located in stable territories which facilitates their localization and recording. 133 

The present study proposes (1) to assess the individual vocal signature embedded in rock 134 

ptarmigan males’ calls, (2) to test the feasibility and reliability of a bioacoustic monitoring 135 

approach over several years, and (3) to compare the results obtained using this approach to 136 

those obtained with a traditional point-count protocol and long-term field observations. 137 
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 138 

2. Material and Methods 139 

We performed this study in 2015, 2016 and 2017, at the ski resort of Flaine (French Alps, 140 

Haute-Savoie, 45°59'32.8"N 6°43'44.2"E; altitude: 1600-2500 m).  141 

 142 

2.1 Counting of singing males 143 

We used three different methods to evaluate males’ abundance: a point-count protocol, long-144 

term observations and acoustic monitoring. The latter was followed by signal processing and 145 

statistical analysis. 146 

 147 

Point-count protocol 148 

The counting area was delimited empirically to cover roughly 100 hectares (Fig.1). Previous 149 

field observations and literature reviews had suggested that male ptarmigans could be heard 150 

at distances of 500-1000 m (Watson, 1965; Bossert, 1977; Marty and Mossoll-Torres, 2012). 151 

We selected three counting points, approximately 500 m apart from one another to maximize 152 

the listening area (Fig.1). These counting points were located at precisely the same positions 153 

over the three-year period of study. The counting procedure followed that proposed by 154 

Léonard (1995), which was based on the work of Bossert (1977). Three experienced 155 

observers, with previous knowledge of the field (TMC, FS, BMJ; 1 per counting point), 156 

accompanied by volunteers, were placed at each point. As ptarmigan males mainly display 157 

their acoustic signal early in the morning, the observation periods started at 4.30 a.m. and 158 

ended at 5.30 a.m. The observers were positioned 15 min before the beginning of the 159 

observation period. Throughout the observation period, each observer noted on an 160 

observation form (with a drawn map of the area) the timing, the number and the approximate 161 

estimated locations of the vocalizing ptarmigans. At the end of the observation period, BMJ 162 

collected all observers’ forms. 163 

To estimate the total number of males in the area, we counted 1 male for each group of 164 

neighboring vocalizations indicated on the maps (each group had to be clearly separated 165 

from the others; see Fig. 1). Each male was confirmed by cross-checking the observers’ 166 

data. To avoid double-counting by two different observers, vocalizations localized nearby and 167 

heard at approximately the same time (interval < 20 sec.), were considered identical. We 168 

considered the total number of males unambiguously localized as the minimum total number 169 

of males. To take into account ambiguous localizations (e.g. when one observer noted two 170 

birds on the same location while another observer noted a single one) we defined a 171 
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maximum total number of birds by adding these ambiguous males to the minimum total 172 

number. We thus defined an estimated interval (min-max) of the total number of males. This 173 

procedure was repeated on several consecutive days namely: June 3rd and 4th in 2015 and 174 

2016; June 6th, 7th, 9th in 2017. 175 

 176 

Long-term observations and acoustic recordings 177 

After the point-counting days, two bioacousticians (TMC and FS) remained in the field for a 178 

period of one month to observe and record all the birds present in the area (recording 179 

material: Sennheiser MKH70 shotgun microphones connected to Marantz PMD 660 180 

recorders; sampling rate: 48000 Hz). This was an important long-term observation effort 181 

aimed at ensuring a thorough knowledge and identification of each bird present within the 182 

area, which may have been acoustically recorded during the point-count protocol. The 183 

resulting number of males spotted by this technique therefore represented the expected 184 

maximum value that could be deduced using the other methods. 185 

Despite this effort however, we were only able to record birds during 7, 9, and 15 days in 186 

2015, 2016 and 2017 respectively, primarily due to the harsh weather conditions. We used 187 

two different strategies in order to build up our bank of recordings: 188 

1) Recording of non-identified birds before sunrise (4.30 a.m. - 6 a.m.), i.e. during the time 189 

slot corresponding to the spontaneous singing activity peak. Due to the low ambient 190 

luminosity, the recorded males could not be visually observed and identified. The recording 191 

data sets were thus named: “unknown datasets”. Each day, both bioacousticians recorded 192 

from different locations within the study area to sample a maximum number of males. 193 

2) Recording of identified birds (6 a.m. – around 10 a.m.). In 2017, we equipped 5 males 194 

present on the area with GPS solar tags (e-obs GmbH, Grünwald, Germany), and used 195 

these tags to pinpoint the males with their individual UHF (Ultra High Frequency) 196 

radiofrequencies. One male had already been equipped with a VHF (Very High Frequency) 197 

radio-emitter collar since 2015. Two additional males were identified using visual cues only. 198 

Both had mated with females and remained within stable and well-defined territories. The 199 

combination of direct observations and GPS localizations greatly minimized the risk of mis-200 

identifying or confounding males during recordings. A ninth male had its territory on a 201 

neighboring summit (3 km away). As this male was alone on this site and easy to identify, it 202 

was thus added to the recording database (total = 9 birds in 2017).  203 

The recording strategy was as follows: after sunrise, when the peak of males’ vocal activity 204 

ended, we played back calls from an individual recorded in another area to elicit the focus 205 
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male’s territorial response. This allowed us to record each focus male while double-checking 206 

for its individual identity. 207 

In the preceding years (2015 and 2016), we used the same approach although the results of 208 

the field effort were weaker:  209 

- June 2016: 5 males recorded. Two of the males were equipped with GPS tags and 3 other 210 

males were identified using visual observations only. 211 

- June 2015: 7 males recorded. One male was equipped with a VHF radiotransmitter 212 

necklace; 6 males were identified using visual observations only. 213 

The 2015, 2016 and 2017 recording data sets obtained with this method were named “known 214 

datasets”. 215 

 216 

2.2 Acoustic analysis of recorded signals 217 

Data bank of calls 218 

Rock ptarmigan vocalizations are sequences of pulse trains, with energy spread over a 219 

frequency spectrum ranging from 900 to 3700 Hz. There are two major types of calls, namely 220 

short and long calls. These differ by the number of successive pulse trains, namely 3 and 4 221 

respectively (MacDonald, 1970; Watson, 1965). For the present study, we focused on the 222 

short calls, which are the most frequently recorded (Fig. 2). Our annual data bank of calls 223 

consisted of the following: 224 

- 2015: 183 short calls, of which 100 were of sufficient quality (in terms of signal-to-225 

noise ratio) to be analyzed (“unknown” dataset: 75 calls; “known” dataset: 25 calls, 226 

3.6 ± 2.4 calls/male, min = 1 call, max = 8 calls).  227 

- 2016: 249 short calls, with 98 of sufficient quality (“unknown” dataset: 66; “known” 228 

dataset: 32 calls, 6.4 ± 2.3 calls/male, min = 4 calls, max = 10 calls). 229 

- 2017: 180 short calls, with 133 of sufficient quality (“unknown” dataset: 52 calls; 230 

“known” dataset: 81 calls, 7.1 ± 3.9 calls/male, min = 3 calls, max = 24 calls).  231 

 232 

 233 

Automatic detection of group of pulses 234 

Due to harsh weather conditions (wind and rain), recorded signals were frequently corrupted 235 

by noise. Before performing the automatic detection of pulses, we first filtered the signals 236 

with a 950-2700 Hz bandpass filter, and then processed a wavelet continuous transform 237 



 9 

(WaveleComp R package, Roesch and Schmidbauer, 2018) to optimize the signal-to-noise 238 

ratio (see Supplementary Material for details). 239 

After denoising, amplitude pulses were detected using a customized script (Seewave R 240 

package, Sueur et al., 2008). The absolute amplitude of the signal was first smoothed using 241 

a Daniell kernel (length = 100). The time position of the pulses was then identified using an 242 

amplitude threshold fixed at 3 % of the maximum amplitude of the considered signal. 243 

Pulses were gathered in “groups” (G1, G2, G3, see Fig. 2) by automatically measuring 244 

intervals between pulses (Fig. 2c) and computing the ratios between two successive intervals 245 

(Fig. 2d). Ratios superior to 1.7 characterized boundaries between groups of pulses (Sil1 and 246 

Sil2; see Fig. 2b). 247 

 248 

Measurement of acoustic parameters 249 

We measured 12 acoustic parameters from groups of pulses G1 and G2 (see list in Table 1). 250 

We chose to ignore the G3 group, as the signal-to-noise ratio of this part of the call was 251 

usually very weak (this was mostly due to males flying away from the recorder while singing). 252 

   253 

 254 

The mean acceleration (Acc.G1) was calculated as follows: 255 

��� = 	 1
� − 2		

1

��
� −	

1

��

��
� −	��
�
���

���
 

Where n is number of pulses in G1; Pr is the pulse rate and t is the time of occurrence of the 256 

pulse’s maximum amplitude.  257 

The normalized Pairwise Variability Index (nPVI) is an index commonly used in phonetic 258 

studies (Grabe and Low 2002) to illustrate the variability between consecutive pairs of 259 

intervals:  260 

�
�� = 100 ×	∑ | ���	�	�����( !�	�	 !���)
#

|������ . 261 

We used continuous wavelet transformation to calculate the peak frequency parameters 262 

(Fq1.G1 and Fq2.G1). Since pulse locations in the signal had already been calculated, each 263 

pulse was isolated from the original sound, filtered with an 800 Hz -3000 Hz passband filter. 264 

For each pulse, wavelet power spectrum was then calculated. The two scales with the 265 

maximum power were then selected. The scales were further multiplied by the Fourier factor 266 
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6 / (2π) to obtain the classical Fourier periods (Aguiar-Conraria and Soares, 2011) with the 267 

corresponding frequencies. The median of each peak frequency was then calculated across 268 

the entire pulse train. Overall, medians were preferred to means since they are more 269 

conservative and less influenced by possible outliers resulting from analytical errors (e.g. due 270 

to rain drops occurring within a pulse group). 271 

 272 

2.3. Acoustic space and individual vocal signatures 273 

In order to build a functional tool allowing the acoustic discrimination between rock ptarmigan 274 

males, we proceeded as follows: 1) we built a 4-D acoustic space with a dedicated 275 

discriminant analysis which optimized separation between males using the 2017 “known” 276 

dataset (reference dataset); 2) we used this acoustic space to perform an unsupervised 277 

clustering analysis using the reference dataset for tuning the clustering hyperparameters; 3) 278 

we applied the workflow (centering, projection in the acoustic space and then tuned 279 

clustering) on the 2015, 2016 and 2017 complete data sets to further estimate the number of 280 

males present each year. 281 

 282 

Acoustic space definition 283 

We analyzed the differences between calls from the individuals of the 2017 “known” dataset 284 

(9 identified males) using powered partial least squares discriminant analysis (PPLS-DA, 285 

Liland and Indahl, 2009; “pls” R package, Mevik et al., 2016). PPLS-DA enables more 286 

accurate analysis of a small sample size with a high number of acoustic parameters, better 287 

than the linear discriminant analysis signatures (Hervé et al., 2018), commonly used in 288 

studies on animal vocalizations. PPLS-DA calculates new variables as combinations of all 289 

centered acoustic variables, leading to a new acoustic space optimizing the discrimination 290 

between individuals. The number of dimensions was chosen by model cross validation 291 

(Szymańska et al., 2012). The mean classification error rate was established after 100 model 292 

cross validations for each number of dimensions (varying between 2 to 11, Fig. 3). We 293 

followed an analog method of the elbow method (Cattell, 1966) to assess the optimal number 294 

of dimensions and we considered the first four PPLS-DA variables, which define a 4-D 295 

acoustic space and explained 36.52 % of the variability (see Results and Fig. 4). 296 

 297 

 298 

We tested the statistical significance of our PPLS-DA model with a procedure implemented in 299 

the RVAideMemoire package (Westerhuis et al. 2008; Hervé, 2018). The PPLS-DA 300 
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significance validation is composed of two steps. Firstly, a set of discriminant functions is 301 

obtained from a training data set and secondly, these functions are used to test the 302 

classification on a validation set. The measure of standard error is obtained by analyzing the 303 

correct assignment percentage of 999 random selections of the original data set, which have 304 

been divided into a fitting and testing set. 305 

 306 

Clustering analysis and bootstrap reliability testing 307 

We used an unsupervised classification method (high dimensional data clustering, HDDC, 308 

Bouveyron et al., 2007) to estimate the number of individual males present within the 309 

datasets. HDDC has already been applied on acoustic data with some success (Ulloa, 2018). 310 

HDDA is known to be consistent and reliable with unbalanced datasets because it is based 311 

on gaussian mixture models (Fraley and Raftery, 2002). It is more parsimonious and flexible 312 

than gaussian mixture modelling by adding a noise term within the model covariance 313 

parametrization. The mixture model aims at identifying the meaningful variables for each 314 

cluster and is fitted with the E-M algorithm. The number of mixture components of the model 315 

maximizing the Bayesian information Criterion (BIC, Shwarz, 1978) is set as the number of 316 

clusters. The E-M algorithm is sensible to the selected random points during its initialization. 317 

Thus, we ran the clustering algorithm several times in order to obtain a reliable value for the 318 

number of clusters. 319 

The 2017 ‘known’ reference dataset was used for tuning the HDDC hyperparameters (K = 9 320 

clusters in 2017; the covariance model M; the threshold t used to parametrize the dimension 321 

of each cluster; see R package HDclassif, Bergé et al., 2012 for details). Each call was 322 

represented by its 4 acoustic dimensions previously calculated through PPLS-DA.  We tested 323 

10 values of t namely: 0.000001, 0.00001, 0.0001, 0.01, 0.03, 0.05, 0.07, 0.1, 0.15, 0.2 324 

(adapted from Ulloa, 2018) and the 14 possible models of covariance parametrization. Each 325 

association of t and M value were tested.  326 

The clustering algorithm was run 100 times for each association. For each run, we measured 327 

the similarity between the clustering output and the clustering membership with the adjusted 328 

Rand Index (ARI, Hubert and Arabie, 1985; package mclust, Scrucca et al., 2016). The ARI 329 

ranges from -1 to 1 and is an indicator of the concordance of two classifications for the same 330 

dataset: when ARI = -1, the classifications are totally opposed, or different. When ARI = 0, 331 

the classifications are considered random; when ARI = 1, they are identical. The mean ARI 332 

was then calculated for the 100 values and the tuning parameters associated with the 333 

highest mean were selected. The maximum mean adjusted Rand Index (ARI = 0.91) was 334 
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found for the simplest covariance model (“abqd”) and a threshold value of 0.1 was assigned. 335 

We thus used these tuning parameters. 336 

Once M and t fitted with our data, the reliability of the clustering process was further tested 337 

using sub-sets of the 2017 reference ‘known’ dataset. Subsets were built by randomly 338 

sampling several various males (random sampling of 1 to 9 males; 900 subsets; 100 339 

trials/subset) or a various total number of calls (random sampling of 20 to 81 calls; 6200 340 

subsets; 100 trials/subset). We tested models with K values ranging from 1 to 20.  341 

 342 

2.4 Comparison between counting methods 343 

To assess the number of males through the acoustic analysis of calls, we performed the 344 

clustering analysis on each year separately, using the entire datasets obtained by pooling 345 

“known” and “unknown” calls (100 trials/year). The male of 2017 that was geographically 346 

isolated was however excluded because it was located outside the point-counting area. We 347 

calculated the 4 dimensions of each call using the PPLS-DA functions previously defined 348 

with the 2017 “known” dataset for each year separately. Each acoustic dataset was centered 349 

before its projection in the 2017 acoustic space by subtracting the means of each acoustic 350 

variable calculated on the 2017 “known” dataset. 351 

The number of males (i.e. the number of acoustic clusters) estimated for each year through 352 

the clustering analysis was then compared with the number of males estimated through the 353 

two other counting methods, i.e. 1) the point-count protocol and 2) the long-term observation. 354 

All the acoustic and statistical analysis was performed on R version 3.5.0 (R core team, 355 

2018). 356 

 357 

3. Results 358 

3.1 Acoustic discrimination between males and definition of the acoustic space 359 

The PPLS-DA identified significant acoustic differences between ptarmigan males, with 4 360 

significant functions that allowed maximizing individual separation (Fig. 4, mean classification 361 

rate = 79 %; min-max classification rate per individual = 0 – 100 %; p = 0.001). Table 2 362 

shows the correlation between each of the 4 components, the acoustic variables and shows 363 

that all parameter types (pulse number, pulse rate, durations, frequency parameters) 364 

contribute towards separating the males. 365 

 366 

 367 
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 368 

 369 

3.2 Reliability of High Dimensional Data Clustering 370 

To test the reliability of HDDC, we compared the median number of males obtained through 371 

resampled HDDC with the actual number of males of each sub-data set. As displayed in Fig. 372 

5, HDDC gives a reliable estimate of the number of recorded males if this number does not 373 

exceed 5 individuals. HDDC underestimates the number of recorded males when 6 or more 374 

individuals were included in the sub-dataset. It also underestimates the number of recorded 375 

males, when the number of vocalizations in the sub-datasets are sampled, and consistently 376 

predicts 7 clusters (i.e. 7 individuals) for sub-datasets composed of a minimum of 33 377 

vocalizations (i.e. 41 % of the total number of calls) (Fig. 5b). 378 

 379 

3.3 Comparison of counting methods’ reliability 380 

In 2017 and 2016, the most congruent results were given by the acoustic monitoring and 381 

long-term observation. In both years, the point-count protocol resulted in a lower estimation 382 

than the two other counting methods. Still, the long-term results were reached by the point-383 

count intervals for at least one day per year. Estimation through the point-count protocol 384 

appears to be highly dependent on the day of observation (this is particularly obvious in 385 

2017, with an estimate of 5-8 males on the first day versus 4-5 males on the second day).  386 

The 2015 results differed significantly from those of 2016 and 2017, with an apparent under-387 

estimation of the number of males through the acoustic monitoring method compared to 388 

long-term observations. However, the distribution is widespread and looks bimodal, with the 389 

second mode (6 clusters) being close to the actual number of males (7 individuals). This can 390 

be clearly seen in Fig. 6 which displays the number of males estimated by each counting 391 

method (point-count protocol, long-term observation, acoustic monitoring). 392 

    393 

4. Discussion 394 

4.1 Does the acoustic space built from recordings encompass the vocal variability of rock 395 

ptarmigan males? 396 

The relative inconsistency of individual males’ vocal signature might limit the bioacoustics 397 

approach. Although the mean PPLS-DA classification rate of recorded calls was around 398 

80%, individual rates differed greatly among males (from 0% to 100%). Moreover, the 399 

discriminant functions used to build the acoustic space explained only 36% of the total 400 
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acoustic variability of calls. A significant proportion of the variability remains out of reach, 401 

suggesting that individual identity is not the only factor driving the calls’ structure. Rock 402 

ptarmigan’ vocalizations are sequences of stereotyped pulses with few frequency 403 

modulations. The acoustic variation between individuals may thus be reduced when 404 

compared to other bird species with more complex signals. Ptarmigan are non-oscine birds 405 

(Kroodsma et al., 1982; Slater, 1989), and their vocalizations thus lack then the individual 406 

variability that could have been induced by song learning. Inter-individual differences in 407 

ptarmigan acoustic signals mostly result from differences in their genetic background and 408 

their physiological conditions. It is known that ptarmigan males are highly philopatric and 409 

closely related genetically in the Alps at large scale (Caizergues et al., 2003). In addition to 410 

this, a genetic study of a closely related species, the red grouse (Lagopus lagopus scoticus), 411 

showed that males were highly related at local scales (Piertney et al., 1998). The genetic 412 

variability between rock ptarmigan males is thus rather low. Moreover, the highly variable 413 

alpine weather conditions should promote great annual variations in food availability, 414 

especially due to snow cover and the timing of snow melt (Körner, 2003; Edwards, 2007; 415 

Jonas, 2008). Thus, males’ physiological state might be different both between individuals 416 

(e.g. depending on the individual food intake in each territory) and from year to year within 417 

individuals (depending on the availability of resources). The variability from year to year is of 418 

special concern as vocalizations from the same male could be very different each year, thus 419 

impairing recapturing males over consecutive years using acoustics only. For this reason, we 420 

considered each year independently within the present study. 421 

Our analysis demonstrates that, despite these potential limitations and thanks to their low 422 

densities in France (few males present on the same area), it is possible to rely on individual 423 

vocal signatures to identify local rock ptarmigan males (Linhart and Šȧlek, 2017) and, 424 

ultimately, to count them. The first requirement is to include only high-quality recordings in 425 

the analysis step (recordings are regularly corrupted by background noise, mostly induced by 426 

wind). Besides, analysis should be mainly performed on the temporal acoustics parameters, 427 

since these are less influenced by noise than the frequency cues. These conservative 428 

choices and the fact that, by design, PPLS-DA optimizes the separation between males and 429 

not the explained variability, can partly explain the low percentage found. Nevertheless, we 430 

were still able to separate the males well enough for our purpose. 431 

 432 

4.2 High dimensional data clustering 433 

A second potential limitation of the bioacoustics method may arise in cases where some 434 

males are represented by only a few recordings, resulting in unbalanced recording datasets. 435 
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HDDC is a model-based clustering, fitted by maximizing log-likelihood estimation (MLE), 436 

itself based on the probabilities of clusters membership. The likelihood will tend to favour 437 

clusters forming large and homogenous groups of points (Fraley and Raftery, 1998). When 438 

the recording dataset is strongly unbalanced between males, individuals with few 439 

vocalizations can be confounded (i.e. included in the same cluster) with other males that 440 

show close vocalization characteristics. One of the males was overrepresented in the 2017 441 

“known” dataset and its calls formed a cluster that incorporated vocalizations from some 442 

other males. This resulted in an underestimated total number of individuals. After removing 443 

this male from the dataset (for comparing between methods), the number of estimated 444 

clusters was higher and more reliable.  Unbalanced situations are more likely to arise when 445 

the recording effort is mitigated, as was the case in 2015. This caused HDDC to under-446 

perform, resulting in an underestimation of the number of males present in the observation 447 

area. Such a difference can be explained when looking at the call’s clusters obtained through 448 

the HDDC method for each year, using both ‘known’ and ‘unknown’ data sets (Fig. 7). In 449 

2015, the vocalizations were mostly from unknown emitters. As a result, clusters strongly 450 

overlapped each other. Conversely, 2016 and 2017 vocalizations are more clearly separated 451 

into homogenous groups. The recording sampling effort must then be homogeneous over the 452 

whole study area and cautiously planned to optimize the representativity of recording banks 453 

(Heupel et al., 2006). 454 

 455 

 456 

4.3 Sampling effort and balance 457 

An adequate acoustic dataset needs a major field effort, due to frequent harsh weather 458 

conditions and difficulties associated with approaching males’ territories. Despite these 459 

constraints, comparable results were found between bioacoustics and long-term methods. 460 

Long-term observations seem the most reliable approach, although not feasible on a regular 461 

schedule given the required workforce. However, most of the vocalizations were obtained 462 

using playbacks and males were recorded directly within their territories (“known” datasets). 463 

Marginal males were included (Fig. 1) as we assumed that they could be heard and could fly 464 

inside the study area. The area of interest was therefore slightly larger than the area covered 465 

by the point-count protocol. This increased the probability of male detection during the 466 

acoustic monitoring compared to the point-count protocol. Conversely, point-count monitoring 467 

appears to be less accurate, with a greater variability of males’ abundance estimations 468 

between counting days. 469 
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The reduced reliability of the point-count census is not surprising, given that observers focus 470 

generally on only one observation day. We extended the counting period for a few days to 471 

show the variability of this method in this study. Weather conditions (e.g. wind speed) and 472 

variation in males’ motivation to vocalize may impair the detectability of males. Moreover, the 473 

number of males present in the area fluctuates through the season and between observation 474 

days. In contrary to northern latitudes (Unander and Steen, 1985; Cotter, 1999), ptarmigan 475 

males differ in their arrival dates depending on their mating status. Mated males return to 476 

their territory in late summer / autumn, while single males arrive only in spring of the 477 

subsequent year. Snow cover plays an important role in the availability of territories and 478 

reproductive success of the species (Novoa et al., 2008) by delaying the males’ arrival (one 479 

of the 2015 males equipped with VHF was not present in 2016 –a year during which snow 480 

covered its territory- but arrived in late June in 2017, when the snow cover of its territory 481 

started to dissipate).  482 

Point-count census is a “one-shot” process: it estimates the number of males at a given day 483 

whereas bioacoustics and long-term observation estimations are obtained over larger time 484 

periods. The point-count protocol is therefore not able to capture changes throughout the 485 

mating season. In practice, only long-term monitoring using direct observations or acoustic 486 

recordings could overcome this variability. 487 

In addition, our study was able to test the reliability of the census method based on the 488 

number of individuals and the number of signals taken into consideration. We showed that a 489 

minimum number of sampled vocalizations were necessary (approximately 33 vocalizations 490 

for 9 individuals, Fig. 5B) to ensure a consistent assessment of males’ number. Although the 491 

efficiency of the clustering method is density dependent, this is on a smaller scale than those 492 

of classical counting methods (Budka et al., 2015; Linhart and Šȧlek, 2017). To apply our 493 

analysis methodology across populations in different locations, we would probably need to 494 

consider a range of higher signal diversities. The generalization of our study would thus need 495 

to train our statistical model (PPLS-DA) with recordings from identified males, from other rock 496 

ptarmigan populations, to encompass greater signal variability and to avoid staying at local 497 

scale variability. 498 

 499 

4.4 Is bioacoustics monitoring a good solution for rock ptarmigan population monitoring? 500 

The choice of a monitoring method is the result of a balance between the scale of the study 501 

and the expected results. At a fixed cost, the same number of automatic recorders allow to 502 

gather precise information regarding males’ abundance and locations within a restricted area 503 

or could provide simple presence/absence survey of a wider region. Besides, the 504 
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bioacoustics approach could enable the censusing of more areas without requiring an 505 

increase of the number of observers and/or days of observation. This may be particularly 506 

advantageous in large and remote mountain massifs where rock ptarmigan habitats can be 507 

situated in remote areas. 508 

 509 
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Tables 

 

Category  Acoustic parameter   Mean ± sd  Min  Max 

Pulse 

number 

Number of pulses in G1 Pln.G1 
15.88 ± 

3.51 
8.0 25.0 

Number of pulses in G2 Pln.G2 2.47 ± 0.55 2.0 4 

Temporal 

G1 duration (sec) Dur.G1 0.31 ± 0.06 0.18 0.47 

G2 duration (sec) Dur.G2 
0.031 ± 

0.009 
0.016 0.054 

Duration between G1 and G2 

(sec) 
Sil1 0.38 ± 0.03 0.33 0.48 

Duration between G2 and G3 

(sec) 
Sil2 0.09 ± 0.02 0.048 0.14 

Pulse rate 

Pulse rate Median in G1 (sec) Plr.G1 
0.021 ± 

0.0031 
0.0145 0.028 

Pulse rate median in G2 

(sec) 
Plr.G2 

0.022 ± 

0.0034 
0.0147 0.031 

Mean acceleration in G1 Acc.G1 
22.51 ± 

24.32 
-31.22 130.59 

nPVI in G1 nPVI.G1 5.42 ± 3.98 1.56 28.76 

nPVI in G2 nPVI.G2 4.16 ± 6.34  0 20.84 

Frequency 

Median of the first peak 

frequency in G1 (Hz) 
Fq1.G1 1.12 ± 0.06 0.97 1.30 

Median of the second peak 

frequency G1 (Hz) 
Fq2.G1 2.25 ± 0.11 1.93 2.50 

 

Table 1.  Acoustic parameters describing the acoustic structure of the male ptarmigan call. 

 

Acoustic variables  Comp 1  Comp 2  Comp 3  Comp 4  

Pln.G1 0.86 0.16 0.30 0.061 

Pln.G2 0.69 0.24 0.40 0.051 

Dur.G1 0.80 0.44 0.15 0.11 



Dur.G2 0.58 0.17 0.18 0.013 

Sil1  -0.45 0.42 0.53 0.22 

Sil2  0.22 0.36 0.71 0.25 

Plr.G1 0.48 0.29 0.63 0.22 

Plr.G2 0.53 0.26 0.43 0.097 

nPVI.G1 0.058 0.48 0.023 0.030 

nPVI.G2 0.46 0.26 -0.19 0.49 

Acc.G1  0.079 0.13 0.35 -0.45 

Fq1.G1 0.34 0.69 0.47 0.020 

Fq2. G1 0.76 -0.43 0.049 0.21 

 

Table 2.  Correlation between acoustic variable and PPLS-DA components 

 




