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Abstract

We consider a model of competitive opinion formation in which three persuaders characterized by (possibly

unequal) persuasion impacts try to influence opinions in a society of individuals embedded in a social network.

Two of the persuaders have the extreme and opposite opinions, and the third one has the centrist opinion. Each

persuader chooses one individual to target, i.e., he forms a link with the chosen individual in order to spread

his own “point of view” in the society and to get the average long run opinion as close as possible to his own

opinion. We examine the opinion convergence and consensus reaching in the society. Also the case when

the persuaders choose several targets for diffusion of information is discussed. We study the existence and

characterization of pure strategy Nash equilibria in the game played by the persuaders with equal impacts. This

characterization depends on influenceability and centrality of the targets. We discuss the effect of the centrist

persuader on the consensus and symmetric equilibria, compared to the framework with only two persuaders

having the extreme opinions. When the persuasion impacts are unequal with one persuader having a sufficiently

large impact, the game has only equilibria in mixed strategies.

Keywords: social network, opinion formation, consensus, targeting, extreme persuader, centrist persuader

JEL: D85, D72, C72

1. Introduction

Social networks play a central role in most of our everyday activities, communicating and exchanging in-

formation, sharing knowledge, research and development, advertisement, among many others. A process that

can perfectly be modeled by social networks is the one of opinion formation. The opinions result from in-

teractions with other individuals that hold views on given issues. In the seminal model on opinion formation
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introduced by DeGroot (1974), individuals update their opinions by taking weighted averages of their “neigh-

bours”, i.e., people that they are connected to in the network. An accompanying question being particularly

important, e.g., in lobbying, political campaigning, marketing, or counter-terrorism, is how to identify optimal

targets to achieve social impact. Indeed, the reliance on others to form opinions lies at the heart of advertising

(Bimpikis et al. (2016)), efforts to make people aware of different issues, preventing criminal social groups and

organizations (Ballester et al. (2006)), or attempts of capturing votes in elections. In economics such models

are used to study competition between firms and product differentiation. In political science, they are applied

for determining equilibrium outcomes of electoral competitions.

We consider a game of competitive opinion formation in a society played by three competing persuaders

that have different opinions on a certain issue. The society consists of individuals having their own opinions on

that issue and updating them like in DeGroot (1974), i.e., by taking weighted averages of individuals’ opinions

that they listen to. The opinion is a real number between 0 and 1, and can be interpreted as the intensity of the

opinion “yes”. Our point of departure for the present paper is Grabisch et al. (2018) who extend the DeGroot

model by introducing two persuaders (called external players in their paper) with the extreme opinions 0 and 1.

In the present paper, we introduce a third persuader which has the centrist opinion 1
2 . Each persuader chooses

one individual to target. Targeting in this setting means forming a link with that individual in order to make

the average opinion in the society as close as possible to the persuader’s own opinion. The persuaders are

characterized by (possibly unequal) persuasion impacts. The higher the impact of a persuader targeting an

individual, the more this individual takes the persuader’s opinion into account when updating his own opinion.

The main objective of the present work is to study the effects of entering the additional centrist persuader

into competition between the two extremist persuaders. First, we examine the opinion convergence and con-

sensus reaching in the society targeted by the three persuaders. Is it possible to obtain a limit opinion vector?

Can the society reach a consensus meaning that every individual has the same opinion? If so, how does such a

consensus look like? More specifically, how does the presence of the centrist persuader change the convergence

and consensus reaching in the society? In order to consider competition between the three persuaders, we define

a noncooperative game played by the persuaders with strategies being target individuals and study the existence

and characterization of pure strategy Nash equilibria. Grabisch et al. (2018) obtain a constant sum game where

players have opposite interests. Our extended game cannot be considered as a constant sum game anymore,

and hence we derive new expressions for the payoffs, appropriate for the extended setting. A number of new

questions arises. How can the centrist persuader affect optimal strategies of the extreme persuaders determined

in Grabisch et al. (2018)? How do characteristics of the key (i.e., targeted) individuals change when the third

persuader enters into the play? Which network structures appear to be consistent with the equilibrium in pure

strategies?
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The extension of Grabisch et al. (2018) by introducing the third persuader with the centrist opinion has a

number of consequences on consensus reaching in the society and Nash equilibria of the noncooperative game

played by the persuaders. The presence of the centrist persuader preserves opinion convergence but changes

the long run opinions of the society and the consensus. When the three persuaders choose the same target,

a consensus exists and is determined by the three persuasion impacts. If the impact of the centrist persuader

is vanishing, we recover the consensus with only two extreme persuaders. When the impact of one of the

persuaders is much larger than these of the others, the consensus approaches the opinion of the high-impact

persuader. Moreover, when all three persuaders target the same individual, the presence of the centrist one

improves the situation of the weaker extreme persuader in the sense that consensus moves closer to the opinion

of the smaller-impact persuader. Although in the paper we focus on the one-target framework, we also briefly

discuss the case when the persuaders can target more than one individual. When the number of targets is the

same, the convergence result is preserved, and when additionally the persuaders target the same individuals, the

consensus result remains valid, independently of the common number of targets.

By using some notions and definitions given in Grabisch et al. (2018), we characterize equilibria in our

three-persuader setting. The two key concepts are centrality (also called influence or intermediacy) and influ-

enceability. An individual is more central than another individual if his influence on others reaches the network

before the influence of the another individual. Influenceability of an individual means that he listens less to

others, and hence it can be easier to influence him by an additional opinion. We focus our analysis on the

case with equal impacts and find that both centrality and relative influenceability are important, and the target

individuals are completely characterized by these two notions. More precisely, conditions for the existence of

symmetric Nash equilibria of the game played by the three equal-impact persuaders is that the relative influ-

ence of a potential target must be at least twice higher than the one of any other individual in the network.

Strong-impact persuaders must take into account the presence of the new centrist one. When comparing the

results to Grabisch et al. (2018), the persuaders are demanding higher centrality from their potential targets to

compensate the impact of the new persuader. However, when the persuaders have weak impact, the conditions

for Nash equilibria are the same as for the case with only two extreme persuaders. If the persuasion impacts are

unequal and one persuader’s impact is sufficiently large, then the game has only equilibria in mixed strategies.

Besides symmetric equilibria, we also examine non-symmetric Nash equilibria. In particular, we deliver some

necessary conditions for the existence of a non-symmetric equilibrium when the persuaders are equally strong.

Moreover, we present many numerical examples that illustrate our results.

The leading assumption of the paper that each persuader targets only one individual covers many real-life

situations with one target who is a kind of outstanding and influencing master. It is a well-known practice when

a celebrity (actor/actress, sportsman/sportswoman, singer, model, showman, etc.) becomes an ambassador or
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a “face” of the brand. In this way, companies take into consideration the activity of the potential advertiser,

his or her popularity, and the number of followers in social media. A good example is Ambassador Marketing

that is a form of “word of mouth” marketing, where a person with specific influence or expertise participates

in a brand’s marketing strategy, by presenting the brand in a way that encourages the audience to purchase a

product. Usually the ambassador leverages his or her own popularity on social media platforms to drive the

value.

The introduction of the centrist persuader with a specific position that involves balance, neutrality, and

equal combination of the extreme positions makes the theoretical framework richer. It can give a more realistic

explanation of the political issues, where ordering election candidates on a line and the presence of a centrist

candidate is a quite usual assumption. A good example comes from the last French Presidential Elections with

the current President seen as centrist. Also some economic spectrum can be covered by our modeling, where

three parties can be seen as three main firms that differ from each other by production, work, and distribution.

They can compete over marketing campaigns, product adoption, firm allocations, etc. While the framework of

the persuaders with extreme and centrist opinions can find many real-life applications, an extension to many

more persuaders does not seem so appealing in reality. There are numerous examples with a small number

of persuaders, in particular with three persuaders, e.g., when well-known people use only iOS/Linux/Android

software, drive German/British/Japanese cars, wear American/Italian/French brands, etc.

Our model can be applied to mobile operators. In most of the countries, the market of firms that provide

mobile services is restricted to three or four large companies. In particular, they can be divided into three

categories: company A with excellent coverage and high quality services (it settles high prices compared to

competitors, but offers the best connectivity, strongest reliability, and highest average speeds across both urban

and rural areas), company B (for average price, it gives unlimited talk, text and data with a very high speed,

but company’s rural coverage is substandard), and company C (low-cost provider, i.e., it settles low price with

weak network coverage and its services are not so good as its competitors’ products). Following our model,

companies A, B and C can be seen as of three different categories: 1 stands for the best and expensive product,
1
2 is seen as average and affordable, and 0 reflects non-reliable and cheap services. The example exhibits

several specific features relevant to our model. The number of consumers is finite, i.e., restricted by network

coverage zone and long-term users. Also, people interacting with each other decide which company to choose.

Their decision is mostly driven by the recommendations and opinions of their friends. Moreover, the market is

saturated, i.e., almost every person is already a customer of at least one mobile company. Hence, competitors

target a small number of potential consumers, and therefore targeting the same agent is a common practice.

Consider Adidas, Nike and Puma, which are three main football equipment manufacturers. Following

our model, we can assume that Adidas and Nike are extreme persuaders since they are in daily battle with
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each other, and Puma can be seen as the centrist persuader. Each of these brands has representatives from the

football world: Adidas has a contract with Lionel Messi, Nike – with Cristiano Ronaldo, and Puma – with

Antoine Griezmann. In real-world examples, usually important persuaders do not target the same “face” of the

brand. We notice a similar feature in our theoretical investigations, as there is no symmetric equilibrium in a

perfectly symmetric network with three equally strong persuaders.

In the paper, we assume that the network is fully observed. While this assumption somehow restrict the

model applicability to large size networks, it is quite realistic for smaller networks, where the relationships

between individuals are easily observed. For instance, this can be the case in committees and smaller institutions

whose members work together for a longer period and establish trust relations that become known to everybody.

The paper is organized as follows. The model is introduced in Section 2. Section 3 concerns the opinion

convergence and consensus reaching. In Section 4 we define the noncooperative game played by the persuaders

and present the equilibrium analysis. More precisely, we determine the equilibrium conditions for the case

when the persuasion impacts are the same and briefly discuss the case of the unequal persuasion impacts. The

related literature is surveyed in Section 5. Section 6 presents concluding remarks. The Appendices in Section

7 present proofs of the main results (Appendix 7.1), a discussion of the case when the persuaders target more

than one individual (Appendix 7.2), where we briefly discuss the convergence and consensus reaching in such

a multi-target extended framework, and an elaboration on targeting different individuals (Appendix 7.3).

2. The framework and preliminaries

The model with three persuaders. The society consists of a set N = {1, ..., n} of individuals who discuss a

certain issue. Each individual i ∈ N has an initial opinion on the issue, given by a real number xi(0) ∈ [0, 1]

which can be interpreted as the intensity of i’s personal opinion “yes” in time 0. The individuals interact with

each other, that is, are embedded in a social network, and consequently update their opinions at discrete time

t ∈ N. The society is observed by three persuaders A, B and C who have the fixed opinions 1, 1
2 and 0,

respectively. Each of them chooses one individual in N to form a link with in order to influence the formation

of opinions in the society. The individuals targeted by A, B and C are denoted by sA, sB and sC , respectively.

The persuaders are characterized by possibly unequal (positive) persuasion impacts λ, γ and µ, respectively, to

adjust influence in the society. When persuader A targets the individual sA, a share λ of the attention of that

individual is redirected to A. The same adjustment of influence holds for sB and sC being targeted by B and C,

with impacts γ and µ, respectively. Table 1 presents the characteristics of the three persuaders.

It is assumed that in the absence of the persuaders, the individuals would update their opinion by using

5



Persuader Fixed opinion Impact Strategy

A 1 λ > 0 sA

B 1
2 γ > 0 sB

C 0 µ > 0 sC

Table 1: Characteristics of the persuaders

weighted averages of their neighbours’ opinions (DeGroot (1974)), that is, according to the rule:

xN(t) = WxN(t − 1) = W txN(0) (2.1)

where W = [wik]i,k∈N is the interaction or influence matrix being row stochastic, i.e.,
∑n

k=1 wik = 1 for every

i ∈ N, wik denotes the weight or trust that individual i assigns to the current opinion of individual k in forming

his own opinion in the next period, and xN(t) = [x1(t), · · · , xn(t)]′ is the opinion (column) vector at time step t.2

A directed graph G on N is associated to the matrix W such that there is an arc (i, k) from i to k meaning

that i listens to k if and only if wik >0. We also refer to individual k as a neighbour of i. A walk from node i

to node k is a sequence of nodes (i1 = i, i2, · · · , i j−1, i j = k) such that wimim+1 > 0 (i.e., there is an arc (im, im+1))

for each m ∈ {1, · · · , j − 1}. A cycle around i is a walk from i to i which does not pass through i between the

starting and ending nodes.3 A path is a walk such that neither a node nor an arc appears more than once in the

sequence. To be consistent with the DeGroot framework (DeGroot (1974)) we assume that the social network

defined by the adjacency matrix W is connected, i.e., for every pair of individuals i, k ∈ N there exists a path

from i to k.

In the presence of the persuaders who choose the targets s = (sA, sB, sC), the n × n matrix of influence W is

extended to a (n + 3) × (n + 3) matrix Mλ,γ,µ(s) such that:

Mλ,γ,µ(s) =



1 0 0 0

0 1 0 0

0 0 1 0

∆λ,γ,µ(s)Eλ,γ,µ(s) ∆λ,γ,µ(s)W


(2.2)

which similarly to Grabisch et al. (2018) accounts for two effects:

1. the weight renormalization in the presence of the persuaders, given by the weight renormalization matrix

2Transposition of column vectors is denoted by ′, and therefore x′N(t) is a row vector.
3This definition of a cycle differs from the usual one, which does not allow repetition of any node between the starting and ending

nodes.
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∆λ,γ,µ(s) which is a diagonal matrix with diagonal elements equal to

d1

d1 + λδ1,sA + γδ1,sB + µδ1,sC

, · · · ,
dn

dn + λδn,sA + γδn,sB + µδn,sC

(2.3)

with di being the number of outgoing links of i ∈ N, δi,s j = 1 if i = s j for all i ∈ N, s j ∈ {sA, sB, sC} and

0 otherwise;

2. the strategic influence given by the matrix

Eλ,γ,µ(s) =

[
λ

dsA

esA

γ

dsB

esB

µ

dsC

esC

]
(2.4)

where ei denotes the unit vector with coordinate 1 at i.

In the influence matrix Mλ,γ,µ(s) the first three rows correspond to the weights of the persuaders A, B and C:

since they do not listen to the individuals in the society, they put weight 1 for themselves and 0 otherwise. The

next n rows correspond to the new weights of the individuals in N adjusted to the extended framework. The in-

dividuals targeted by the persuaders redistribute their trust among their neighbours and the targeting persuaders:

the weights put for the persuaders depend on the persuaders’ impacts and are given by ∆λ,γ,µ(s)Eλ,γ,µ(s), while

the new weights put for the other individuals are ∆λ,γ,µ(s)W instead of W.

In this paper we consider the behaviour of opinions in the society in the long run. The vector of opinions

is extended to x(t) = [1 1
2 0 xN(t)]′ where the first three coordinates correspond to the fixed opinions of the

persuaders. The opinion updating rule is now determined by

x(t + 1) = Mλ,γ,µ(s)x(t) = (Mλ,γ,µ(s))t+1x(0) (2.5)

which leads to the evolution law for the opinions of the individuals in N given by

xN(t + 1) = ∆λ,γ,µ(s)Eλ,γ,µ(s)


1
1
2

0

 + ∆λ,γ,µ(s)WxN(t) (2.6)

In the next sections we will provide the consensus and equilibrium analysis in the extended framework.

First, let us illustrate the introduced matrices by the following example.

Example 1. We consider a society with five individuals who communicate with each other and put weights
(trust) on the opinions of individuals they are listening to. Figure 1 shows the society in terms of a directed
graph where, for example, individual 1 listens to individuals 2, 4, and 5, and trusts most to the opinion of
individual 2 (since the weights are 3/4, 1/8 and 1/8, respectively). At the same time individuals 2, 3 and 4
are listening to individual 1 and, moreover, individual 3 trusts the opinion of individual 1 as much as that of
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5

1

2

34

1/4 1/3

1/5

1/3

1/3

1/4

1/4

1/4

3/4

1/8

1/8

1/2

1/2
1/5

1/5

1/5

1/5

Figure 1: Directed graph representing the society described in Example 1

individual 5 (individual 3 has w31=w35). All the assigned trust weights of individuals are given in the adjacency
matrix W.

W =


0 3

4 0 1
8

1
8

1
3

1
3

1
3 0 0

1
2 0 0 0 1

2
1
5

1
5

1
5

1
5

1
5

0 1
4

1
4

1
4

1
4


Now assume that there is an intervention with three persuaders who want to influence the opinion formation

process in the society. Each of the persuaders chooses one target – one individual in the society.

Situation 1: First, we assume that the three persuaders are equally strong, λ = γ = µ = 1 and choose
the same target. Our goal here is to illustrate the result for the case, where all persuaders decide to choose
the same individual. The choice of the target is arbitrary. In the next section, after presenting our results on
opinion convergence and consensus reaching, we will elaborate on the fact if this choice matters in the long run.
Suppose that all persuaders target individual 2, i.e., sA = sB = sC = 2. Then the submatrices ∆λ,γ,µ(s)Eλ,γ,µ(s)
and ∆λ,γ,µ(s)W are the following:

∆λ,γ,µ(s)Eλ,γ,µ(s) =


0 0 0
1
6

1
6

1
6

0 0 0
0 0 0
0 0 0


∆λ,γ,µ(s)W =


0 3

4 0 1
8

1
8

1
6

1
6

1
6 0 0

1
2 0 0 0 1

2
1
5

1
5

1
5

1
5

1
5

0 1
4

1
4

1
4

1
4

 (2.7)

According to (2.2), the n × n matrix of influence W is extended and becomes (n + 3) × (n + 3) matrix Mλ,γ,µ(s):
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Mλ,γ,µ(s) =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 3

4 0 1
8

1
8

1
6

1
6

1
6

1
6

1
6

1
6 0 0

0 0 0 1
2 0 0 0 1

2
0 0 0 1

5
1
5

1
5

1
5

1
5

0 0 0 0 1
4

1
4

1
4

1
4


Comparing the two matrices we can notice that individual 2 redistributes his trust among his neighbours

and the targeting persuaders, such that we have the equally assigned weights between them. Other individuals
have unchanged weights.

Situation 2: Suppose now that the extreme persuaders target individual 2 while the centrist persuader targets
another individual, for instance, individual 4, i.e., sA = sC = 2 and sB = 4. Then we obtain:

∆λ,γ,µ(s)Eλ,γ,µ(s) =


0 0 0
1
5 0 1

5
0 0 0
0 1

6 0
0 0 0


∆λ,γ,µ(s)W =


0 3

4 0 1
8

1
8

1
5

1
5

1
5 0 0

1
2 0 0 0 1

2
1
6

1
6

1
6

1
6

1
6

0 1
4

1
4

1
4

1
4

 (2.8)

The extended matrix Mλ,γ,µ(s) can be constructed as in the previous case with the current ∆λ,γ,µ(s)Eλ,γ,µ(s) and
∆λ,γ,µ(s)W matrices. As seen in (2.8) individual 2 allocates the weights among five individuals: 3 neighbours
and 2 persuaders. At the same time, the weights of individual 4 are distributed by taking into account the central
persuader.

Situation 3: Assume now that sA = sC = 2, sB = 4, but the persuaders have different impacts λ, γ and µ.
Take, for instance, λ = 4, γ = 3 and µ = 8. We get:

∆λ,γ,µ(s)Eλ,γ,µ(s) =


0 0 0
4

15 0 8
15

0 0 0
0 3

8 0
0 0 0


∆λ,γ,µ(s)W =


0 3

4 0 1
8

1
8

1
15

1
15

1
15 0 0

1
2 0 0 0 1

2
1
8

1
8

1
8

1
8

1
8

0 1
4

1
4

1
4

1
4

 (2.9)

This case studies the asymmetric impacts of the persuaders. From the given matrices we can see that the impacts
have an essential role in forming the opinion of targeted agents. Consider individual 2 who puts 4

15 and 8
15 for

his persuaders. It makes sense, because as the impact parameters show persuader C is twice influenceable as
persuader A. Note, that the central persuader has increased his impact as well, and therefore the trust he was
given becomes almost 2.5 times higher than before.

When interpreting this 5-person society in terms of our mobile operators example given in the introduction,
we deal with 5 individuals who are discussing which mobile operator to join. They take differently into account
their friends’ opinions, i.e., the trust weights are not equal. The higher the weight the more likely the individual
adopts the same operator as his friend. In Situation 1, the attention of the target to the companies is divided
equally, as they target the same individual and influence him in the same manner. In Situation 2, companies
A and C decide for the same target while company B is targeting individual 4. Situation 3 is different from
the previous case and shows what happens when companies put different levels of effort to attract the cus-
tomers. Company B has the lowest impact, but by targeting alone an individual, it gets higher trust weight than
companies A and C that share the attention of individual 2.
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Influenceability and intermediacy. In this paper we consider an extension of the model of strategic influ-

ence with two external players having extreme opinions (Grabisch et al. (2018)) to a framework with three

persuaders, by adding a persuader with the centrist opinion. We recall some other crucial concepts used in the

initial model (Grabisch et al. (2018)) that will be related to the characterization of the targets. For any walk

p = (i1, ..., im) in G, we denote by w(p) its “weight” measured according to W, i.e.,

w(p) :=
m−1∏
j=1

wi j,i j+1 (2.10)

Moreover, for any two individuals i, k in the society N, let Ck
i denote the set of cycles around i that pass through

k, and Bk
i the set of walks that start from any node , i, end up in i, and go through k. Let

ck
i :=

∑
p∈Ck

i

w(p) bk
i :=

∑
p∈Bk

i

w(p) (2.11)

The quantity ck
i accounts for the self-feedback (echo) that individual i receives of his opinion through the

network. The larger ck
i is, the more individual k interferes with this self-reinforcement process and hence, the

lesser is the influence that can be exerted on i by a persuader. Furthermore, the quantity dick
i measures the

influenceability of individual i, given that k is targeted by another persuader, where di is i’s out-degree, i.e.,

the number of individuals that i listens to. This is a decreasing measure. The larger di is, the more opinions

individual i takes into account and the lesser/slower he can be influenced by an additional opinion. Hence, the

lower dick
i is, the more influenceable i is, i.e., the higher his influenceability is.

The quantity bk
i accounts for the centrality (influence, intermediacy) of k relatively to i, i.e., it measures the

extent to which k can interpose himself between i and other individuals, i.e., the extent to which the influence

of individual k reaches the network before this of i.

ck
i and bk

i have some probabilistic interpretations. If the influence travels across the network according to

the probabilities given by W, then ck
i is the probability for i to be reached by the influence of k before he receives

the self-feedback of his own opinion. Accordingly, bk
i is the sum of the probabilities for the n − 1 individuals

other than i to be reached by the influence of k before this of i.

3. Convergence of opinions and consensus reaching

Our first result concerns the convergence of opinions in the influence model with three persuaders. When

the society gets a new persuader, the one with the centrist position, the opinion convergence is preserved in the

society, i.e., opinions of the individuals do converge in long run. However, the long run opinions are obviously

different from the ones reached in a society with only two persuaders having the extreme positions. More

10



precisely, the following proposition holds:

Proposition 1. For any initial vector of opinions x(0) := [1 1
2 0 xN(0)]′, we have

lim
t→+∞

(Mλ,γ,µ(s))t
[
1 1

2 0 xN(0)
]′

=
[
1 1

2 0 xN(s)
]′

(3.1)

where

xN(s) = [I − ∆λ,γ,µ(s)W]−1∆λ,γ,µ(s)
(
λ

dsA

esA +
γ

2dsB

esB

)
(3.2)

In the model with two persuaders having the opinions 1 and 0, and the impacts λ and µ, respectively,

Grabisch et al. (2018) prove the convergence result with

xN(s) = [I − ∆λ,µ(s)W]−1 λ

dsA

∆λ,µ(s)esA

The presence of the centrist persuader leads to different xN(s) compared to the corresponding results in Gra-

bisch et al. (2018). The coefficient 1
2 comes from the vector of opinions where the first three coordinates are

fixed points of the persuaders. The additional component is related to the presence of the centrist persuader

with the impact γ, and 1
2 indicates his “ideal” opinion. Similarly to Grabisch et al. (2018), in our extended

framework with three persuaders the asymptotic opinions of the individuals are independent of their vector of

initial opinions. They are determined by the respective targets of the three persuaders, since xN(s) ∈ [0, 1]n

determined by (3.2) depends on the whole vector s and the persuasion impacts λ, γ, and µ.

The next issue concerns the effect of the centrist persuader on reaching a consensus among the society

members. In other words, can all individuals end up with the same opinion in long run, and if so, how does

their opinion look like? It appears that if the three persuaders choose the same target, then the long run opinion

in the society converges towards a consensus α ∈ [0, 1] among the individuals. The consensus is determined by

the three persuasion impacts.

Proposition 2. If sA = sB = sC , then the individuals in N reach a consensus α given by

α =
2λ + γ

2(λ + γ + µ)
(3.3)

In particular, if λ = µ, then the consensus is α = 1
2 .

We can draw a number of intuitive conclusions from Proposition 2. In the case when all three persuaders

target the same individual, the society reaches a consensus which depends on the persuaders’ impacts. In

particular, if the extreme persuaders have the equal impact λ = µ, then the individual who receives three

“types” of information from each of the persuaders, takes equally into account the opinions 0 and 1 of the

extreme persuaders. At the end, the consensus of 1
2 occurs in the society, independently of the impact of the

11



centrist persuader B. Moreover, note that λ ≥ µ is also the condition for α ≥ 1
2 , since in case of the same target

we have λ ≥ µ if and only if α ≥ 1
2 . Hence, when all persuaders target the same individual and the extreme

ones have unequal impacts, then the consensus is closer to the opinion of the stronger extreme persuader.

In the model Grabisch et al. (2018) with two extreme persuaders targeting the same individual, the society

reaches a consensus given by α = λ
λ+µ . We recover this result from (3.3) when the centrist persuader in the

extended model has the vanishing impact γ → 0. On the contrary, if the centrist persuader is much stronger

than the two extreme ones, i.e., if γ → +∞ and λ, µ ∈ R+, then the consensus is equal to 1
2 , the opinion of the

centrist persuader. Similarly, when λ → +∞ and γ, µ ∈ R+, the consensus is equal to 1 (A’s opinion), while

under µ→ +∞ and λ, γ ∈ R+, the consensus approaches 0 (C’s opinion). Furthermore, note that

2λ + γ

2(λ + γ + µ)
>

λ

λ + µ
if and only if λ < µ

This means that when all three persuaders target the same individual, independently of the impact of the centrist

persuader, his presence in the society always improves the situation of the weaker extreme persuader w.r.t. the

situation when the centrist persuader is absent. More precisely, the appearance of the centrist persuader has a

“balancing” effect and moves the consensus opinion closer to the ideal point of the persuader with the smaller

impact.

When persuaders A and C target the same individual, then the society ends up in a consensus, even if

the centrist persuader targets another individual and independently of his own impact, but only if the extreme

persuaders are equally strong. In this case, the consensus is equal to 1
2 . More precisely, the following holds

true.

Proposition 3. If sA = sC and λ = µ then the individuals in N reach a consensus α = 1
2 .

The individual targeted by persuaders A and C listens to both of them. He recounts his trust weights, and

since impacts are equal (λ = µ), spreads the opinion of 1
2 . At the same time, the individual targeted by persuader

B shares the same opinion. Consequently, the society reaches the consensus 1
2 , similarly as in the absence of

the centrist persuader. In other words, if the extreme persuaders are equally important and target the same

individual, then the appearance of the centrist persuader obviously does not change the consensus. We present

an illustrative example.

Example 1 (continued). Let us examine the convergence and consensus reaching in the society introduced in
Example 1.

Situation 1: Let sA = sB = sC = 2 and λ = γ = µ = 1. The vector xN(s) is obtained from (2.6), letting

12



xN(t + 1) = xN(t) = xN(s). The solution of

xN(s) =


0 0 0
1
6

1
6

1
6

0 0 0
0 0 0
0 0 0


[
1

1
2

0
]′

+


0 3

4 0 1
8

1
8

1
6

1
6

1
6 0 0

1
2 0 0 0 1

2
1
5

1
5

1
5

1
5

1
5

0 1
4

1
4

1
4

1
4


xN(s)

is xi(s) = 1
2 for i ∈ {1, 2, 3, 4, 5}, i.e., the society converges to a consensus α = 1

2 . Obviously, the solution is
consistent with Proposition 2. Note that, while the opinions in the long run do depend on the specific targets
as shown by Proposition 1, by virtue of Proposition 2 the society would reach the same consensus α = 1

2
independently of the target, if all persuaders are equally strong and choose the same individual.

Situation 2: In case when sA = sC = 2, sB = 4, we obtain the solution of

xN(s) =


0 0 0
1
5 0 1

5
0 0 0
0 1

6 0
0 0 0


[
1

1
2

0
]′

+


0 3

4 0 1
8

1
8

1
5

1
5

1
5 0 0

1
2 0 0 0 1

2
1
6

1
6

1
6

1
6

1
6

0 1
4

1
4

1
4

1
4


xN(s)

equal to xi(s) = 1
2 for i ∈ {1, 2, 3, 4, 5}. The payoffs of the persuaders are the same as in the previous case.

Consistently with Proposition 3, since λ = µ, the society reaches the consensus equal to α = 1
2 , despite the

fact that the impact of the centrist persuader is different from the one of the extreme persuaders. Similarly as
in the previous situation, the same consensus would be reached, if persuaders A and C remain having the same
impact and target another (but common) individual.

Situation 3: We have sA = sC = 2, sB = 4, but λ = 4, γ = 3 and µ = 8. The solution of

xN(s) =


0 0 0
4

15 0 8
15

0 0 0
0 3

8 0
0 0 0


[
1

1
2

0
]′

+


0 3

4 0 1
8

1
8

1
15

1
15

1
15 0 0

1
2 0 0 0 1

2
1
8

1
8

1
8

1
8

1
8

0 1
4

1
4

1
4

1
4


xN(s)

is equal to x1(s) = 0.3511, x2(s) = 0.3366, x3(s) = 0.3614, x4(s) = 0.4173, and x5(s) = 0.3718. Since the
impact µ of the third persuader is twice of the impact λ of the first one, the long run average opinion is biased
toward the first half of opinion domain. In other words, when λ , µ, we get the long run opinions convergence,
but there is no consensus xi(s) , xk(s) for some i, k ∈ N. In this situation, the choice of the specific target does
matter in the long run. In other words, while opinions of the individuals would always converge in the long
run as insured by Proposition 1, targeting another individual by unequally important persuaders could lead to
different long run opinions.

We come back to our example with mobile companies A, B and C. In situation 1 targeting the same individ-
ual and putting the same level of effort is suboptimal for the high-quality and low-cost companies, since in the
long run individuals decide for a product from the average company B. In situation 2, as shown in Proposition
3, even if the extreme companies A and C target independently from company B, they will still lose consumers
as long as both of them keep the equal impact. In the last situation where the high-quality company A, the
average company B and the low-cost operator C have the impacts 4, 3, and 8, respectively, individuals do not
unanimously agree to choose company B, but are heterogeneous in their opinions. They are more likely to
adopt products of companies B and C.
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4. Nash equilibrium of the model

Payoffs and the aggregate opinion. We consider a game Gλ,γ,µ played by the three persuaders, with their set

of strategies being N, i.e., the strategies of A, B and C are the targeted individuals sA, sB and sC , respectively.

Each persuader aims at bringing the asymptotic average opinion in the society as close as possible to his own

opinion (1 for persuader A, 1
2 for persuader B and 0 for persuader C), i.e., at minimizing the distance between

the asymptotic average opinion in the society and his own “ideal” point. In other words, our game-theoretic

model of competition between the persuaders is a system of minimization problems, where the persuaders’ goal

is to minimize their payoffs, given a strategy profile s = (sA, sB, sC) ∈ N × N × N defined in the following way:

πA
λ,γ,µ(sA, sB, sC) =

(
1 −

1
n

1′xN(s)
)2

πB
λ,γ,µ(sA, sB, sC) =

(
1
2
−

1
n

1′xN(s)
)2

πC
λ,γ,µ(sA, sB, sC) =

(
1
n

1′xN(s)
)2

(4.1)

where xN(s) is given by (3.2). For convenience, we introduce the notation

x̃N(s) := 1′xN(s) =
∑
i∈N

xi(s)

for the aggregate opinion formed in the society.4 The following results determine x̃N(s), i.e., equivalently, the

persuaders’ payoffs for some strategy profiles in terms of the persuaders’ impacts, the individuals’ centrality

and influenceability recalled in Section 2.

Theorem 1. The payoffs of persuaders A, B and C, given the strategy profile s = (sA, sB, sC) are as follows:

(i) If sA = sB = sC = i, i.e., if all three persuaders target the same individual i, then:

x̃N(i, i, i) =
n(2λ + γ)

2(λ + γ + µ)
(4.2)

(ii) If sA = sC = i and sB = k , i, i.e., if the two extreme persuaders target the same individual i and the
centrist one targets a different individual k, then:

x̃N(i, k, i) =
2λ(γbi

k + dkci
kn) + γ((λ + µ)bk

i + dick
i n)

2(γdick
i + (λ + µ)(dkci

k + γ))
(4.3)

4Note that the payoff function of each persuader rewards the average opinion that is close to the persuader’s own opinion without
taking into account the distribution of opinions. One could also consider the payoffs that depend on the distance to each individual’s
opinion, instead of their aggregate. Note that we have πA

λ,γ,µ(sA, sB, sC) = 1
n2

(∑
i∈N(1 − xi(s))

)2, πB
λ,γ,µ(sA, sB, sC) = 1

n2

(∑
i∈N( 1

2 − xi(s))
)2

,

and πC
λ,γ,µ(sA, sB, sC) = 1

n2

(∑
i∈N xi(s)

)2.
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(iii) If sA = k and sB = sC = i , k, i.e., if the persuader with the opinion 1 targets an individual k, while the
remaining persuaders target the same individual i but different from k, then:

x̃N(k, i, i) =
2λ((γ + µ)bk

i + dick
i n)) + γ(λbi

k + dkci
kn)

2(λdick
i + (γ + µ)(dkci

k + λ))
(4.4)

(iv) If sA = sB = i and sC = k , i, i.e., if the first two persuaders target i and the one with the opinion 0
targets a different individual k, then:

x̃N(i, i, k) =
(2λ + γ)(µbi

k + dkci
kn)

2(µdick
i + (λ + γ)(dkci

k + µ))
(4.5)

The first result (i) of Theorem 1 is consistent with Proposition 2. If the three persuaders target the same

individual i, then the aggregate opinion in the society depends fully on the persuaders’ impacts and is equal to

x̃N(i, i, i) =
n(2λ+γ)

2(λ+γ+µ) , where 2λ+γ
2(λ+γ+µ) is the consensus reached in the society. In this case, the payoffs are equal

to:

πA
λ (i, i, i) =

(
2µ + γ

2(λ + γ + µ)

)2

πB
λ (i, i, i) =

(
µ − λ

2(λ + γ + µ)

)2

πC
λ (i, i, i) =

(
2λ + γ

2(λ + γ + µ)

)2

(4.6)

In cases (ii), (iii) and (iv) of Theorem 1, i.e., when two persuaders target the same individual and the remaining

one chooses another individual, the aggregate opinion depends on the persuaders’ impacts as well as on the

intermediacy and influenceability of the targets. Moreover, the second result (ii) of Theorem 1 is consistent with

Proposition 3. If sA = sC = i, sB = k , i, and λ = µ, then the society reaches the consensus 1
2 ,independently of

the centrist persuader’s impact. Applying λ = µ to (4.3) gives the aggregate opinion x̃N(i, k, i) = n
2 .

While the concepts of intermediacy and influenceability, together with the persuasion impacts determine the

aggregate opinion when at least two persuaders target the same individual, these concepts are not sufficient for

determining the aggregate opinion x̃N(i, j, k) with i, j and k being all different. The case when the persuaders

target three different individuals is briefly mentioned in the Appendix 7.3. Later in this section we deliver

necessary conditions for a non-symmetric Nash equilibrium for the case of equal persuasion impacts. We also

present numerous examples.

To get more insights from the results of Theorem 1, let us discuss some properties of our model with

respect to the key parameters: the impact of persuaders, and the influence and influenceability of individuals in

the network.

Fact 1. Suppose that three persuaders are targeting the same individual, i.e., sA = sB = sC = i for some i ∈ N.
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The marginal effects of a change of the impact λ, γ, µ on the aggregate opinion are the following:

∂x̃N(i, i, i)
∂λ

> 0,
∂x̃N(i, i, i)

∂µ
< 0, and moreover

∂x̃N(i, i, i)
∂γ

T 0 ⇔ µ T λ (4.7)

From (4.2) we can conclude that, by increasing his impact λ, persuader A gets more attention from indi-

vidual i and therefore increases the aggregate opinion. While persuader A pulls the aggregate opinion to his

own opinion that equals 1, persuader C wants the aggregate opinion to be as low as possible such that it reaches

his ideal opinion 0. These observations confirm the first two inequalities in (4.7). Also the remaining result

in (4.7) has its natural interpretation. When the impacts of the extreme persuaders are equal, by increasing

or decreasing his own impact the centrist persuader has no effect on the aggregate opinion. However, when

persuader A is stronger than persuader C, the centrist persuader lowers the aggregate opinion by increasing γ.

On the contrary, B increases x̃N(i, i, i) by increasing his impact when persuader C is stronger than A. Hence, the

centrist persuader can be seen as a balancing “player”, not allowing the aggregate opinion move far away from

the center.

Fact 2. The marginal effects of a change of the intermediacy of one individual relatively to another individual
on the aggregate opinion are the following:

Let sA = sC = i and sB = k , i. Then
∂x̃N(i, k, i)

∂bi
k

T 0 ⇔ λ T µ, and
∂x̃N(i, k, i)

∂bk
i

T 0 ⇔ µ T λ (4.8)

Let sA = k and sB = sC = i , k. Then
∂x̃N(k, i, i)

∂bi
k

T 0 ⇔ γ T 2µ, and
∂x̃N(k, i, i)

∂bk
i

T 0 ⇔ 2µ T γ (4.9)

Let sA = sB = i and sC = k , i. Then
∂x̃N(i, i, k)

∂bi
k

> 0 and
∂x̃N(i, i, k)

∂bk
i

< 0 (4.10)

(4.8), (4.9) and (4.10) concern the effect of the influence (intermediacy) on the aggregate opinion. Note that

when two persuaders target the same individual i and the third one chooses another individual k, the relative

intermediacies of the two targets have an opposite effect on the aggregate opinion in the society. More precisely,

if the extreme persuaders have a common target i, then this effect depends on the relation between the impacts

of the extreme persuaders. When A is stronger than C, an increase of the intermediacy of i relatively to k (of

k relatively to i, respectively) increases (decreases, respectively) the aggregate opinion. The effect is opposite

when C is stronger than A, as stated in (4.8). The case (4.9) with B and C targeting the same individual i

and A choosing another individual k is analogous, i.e., the effects of a change of the intermediacies depend on

the impacts of B and C, except that the persuasion impact of B is now compared to the double impact of C.

Finally, as presented in (4.10), when A and B target the same individual i and C targets another individual k, the

aggregate opinion is increasing w.r.t. the intermediacy of i relatively to k, and decreasing w.r.t. to the influence

of k relatively to i.
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Fact 3. Suppose that three persuaders have the same impact, i.e., λ = γ = µ. The marginal effects of a change
of the individual’s influenceability on the aggregate opinion are the following:

If sA = sC = i and sB = k , i, then
∂x̃N(i, k, i)
∂(dick

i )
=
∂x̃N(i, k, i)
∂(dkci

k)
= 0 (4.11)

If sA = k and sB = sC = i , k, then
∂x̃N(k, i, i)
∂(dick

i )
> 0 and

∂x̃N(k, i, i)
∂(dkci

k)
< 0 (4.12)

If sA = sB = i and sC = k , i, then
∂x̃N(i, i, k)
∂(dick

i )
< 0 and

∂x̃N(i, i, k)
∂(dkci

k)
> 0 (4.13)

Fact 3 shows how the aggregate opinion changes with an increase/decrease of individuals’ influenceability.

As stated in (4.11), when the extreme persuaders target the same i and the centrist persuader targets a distinct

individual k, neither changing the influenceability of i nor of k has an effect on the aggregate opinion. Here,

the equal impact of the persuaders plays a crucial role, since it balances the influence of the extreme persuaders

and makes the centrist one indifferent between increasing and decreasing the influenceability of his own target.

An increase of dick
i , where i is targeted by persuaders B and C, makes i less attentive to his persuaders. As

a consequence, their overall influence in the network goes down and the aggregate influence rises in favor of

persuader A. As stated in (4.12), the effect of an increase of dkci
k on the aggregate opinion is the opposite, since

the target k of persuader A pays less attention to his persuader with the opinion 1. (4.13) can be interpreted by

using a similar argument for the situation with i being targeted by A and B, and k being the target of persuader

C with the opinion 0.

Equal persuasion impacts. We focus our analysis on pure strategy Nash equilibria in the case when all three

persuaders have the same impact, i.e., λ = γ = µ. We replace Gλ,γ,µ by the simplified notation Gλ for the

game, and πA
λ,γ,µ, πB

λ,γ,µ, πC
λ,γ,µ by πA

λ , πB
λ , πC

λ for the payoffs. From equations (4.1), (4.2) and (4.3) we get direct

conclusions of Theorem 1. Indeed, if λ = µ, then one has for all i, k ∈ N:

πA
λ (i, i, i) =

1
4
, πB

λ (i, i, i) = 0 πC
λ (i, i, i) =

1
4

(4.14)

πA
λ (i, k, i) =

1
4
, πB

λ (i, k, i) = 0, πC
λ (i, k, i) =

1
4

(4.15)

This means that the centrist persuader is indifferent between targeting individual i or individual k, because in

both cases the outcome is the same, and the average opinion is equal to his “ideal” opinion. Note that it is true

only when the two extreme persuaders have the equal impacts λ = µ.

First, we focus our analysis on symmetric Nash equilibria. The following result provides necessary and

sufficient conditions for (i, i, i) to be an equilibrium.
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Theorem 2. A profile of strategies (i, i, i) is an equilibrium of the game Gλ if and only if for all k ∈ N \ {i}

bi
k − 2bk

i ≥
n
λ

(
dick

i − dkci
k

)
(4.16)

The equilibrium condition depends both on the centrality and influenceability of the target i relative to any

other individual: (i, i, i) is an equilibrium if for all k , i, the difference between the influence (intermediacy) of

i over k and the double influence of k over i is not smaller than the difference between the influenceability of i

and the influenceability of k, scaled by the factor n
λ . In the model with only two extreme persuaders, Grabisch

et al. (2018) get a similar condition for (i, i) to be an equilibrium, but with the expression
(
bi

k − bk
i

)
on the

left hand side of the inequality. In the extended three-persuader model, the condition to reach the equilibrium

(i, i, i) requires more from the intermediacy of i over k than in the framework with only two extreme persuaders

(Grabisch et al. (2018)): i must be even more influential (central) among other individuals to compensate impact

of two other persuaders.

Condition (4.16) also shows what happens under different multiplier n
λ . As the number of individuals in the

society increases, the relative importance of intermediacy compared to influenceability goes down. Conversely,

the relative importance of intermediacy goes up with the level of λ, the impact of the persuaders.

When the persuaders have the same impact, pure Nash equilibria can exist in types of networks that are

structurally very different. Common feature of such networks is the presence of an individual or a group

of individuals with either high intermediacy or high influenceability. For the game with three competitive

persuaders there exist networks with symmetric Nash equilibria in pure strategies (e.g., star networks) and also

networks where no symmetric equilibria in pure strategies can be found (e.g., symmetric and circular networks).

We show it in the following examples.

Example 2. Consider a perfectly symmetric society, i.e., a network structure such that for all distinct i, k ∈ N,
di = dk, ck

i = ci
k, and bk

i = bi
k. While (i, i) was always an equilibrium in the model with only two extreme

persuaders, condition (4.16) does not hold in the extended framework, so that (i, i, i) is not an equilibrium of the
game Gλ in perfectly symmetric networks. It is not worth targeting i and sharing the attention of the individual
with two other persuaders, since there are other individuals with the same characteristics whose targeting can
lead to a better payoff.

Example 3. Condition (4.16) means that a network has to contain a very “powerful” individual in order to get
a symmetric equilibrium. We consider a star society, where one central individual is connected to any other
individual in the network, i.e., the structure given by di = n − 1 and dk = 1, with individual i being central and
all individuals k , i being peripheral. We have ci

k = 1, ck
i = 1

n−1 , bi
k = n − 1, bk

i = 1. Hence, (4.16) is always
satisfied in such star networks (unless the number of individuals in the society is less than 3).

Example 4. Consider a society interacted in a directed circle, where every individual listens to the next one,
and only to him. We have di = 1 for every i ∈ N. Moreover, for any k , i, ck

i = ci
k = 1, bi

k = l(k, i) and
bk

i = l(i, k), where l(k, i) and l(i, k) are the lengths of the (unique) shortest walk from k to i, and from i to k,
respectively. If λ = γ = µ then no symmetric equilibrium in pure strategies can exist in such a circular network,
similarly to the case with only two extreme persuaders.
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Example 5. Consider a society organized in a line network. Such a structure has two types of nodes: d1 =

dn = 1 and d j = 2 for each j , 1, n. Note that for each i ∈ N, di = dn+1−i, cn+1−i
i = ci

n+1−i and bn+1−i
i = bi

n+1−i.
If n is even, then (i, i, i) cannot be a Nash equilibrium, because condition (4.16) is not satisfied for k = n + 1− i.
Consider n odd. We can see from Example 3 that there exists a symmetric equilibrium for n = 3. Let n ≥ 5.
Note that by using the same argument as for n even, (i, i, i) cannot be a Nash equilibrium for i , n+1

2 . Consider
now i = n+1

2 and k = n−1
2 . We can show that bk

i = n−1
2 , bi

k = n+1
2 , and therefore bi

k − 2bk
i = 3−n

2 ≤ 0 for
n ≥ 3. Moreover, ck

i = ci
k = 1

2 . Hence, condition (4.16) is not satisfied, and therefore (i, i, i) cannot be a Nash
equilibrium for i = n+1

2 .

Let us consider the two polar cases where the impact of the persuaders is either infinitely large or infinitely

small with respect to the normalized influence within the network. We get the following result.

Proposition 4. (i) For distinct i, k ∈ N:

lim
λ→0

πA
λ (k, i, i) = lim

λ→0
πC
λ (i, i, k) =

 3dkci
k

2(dick
i + 2dkci

k)

2

lim
λ→0

πB
λ (i, k, i) = 0

so that (i, i, i) is an equilibrium of the game Gλ as λ→ 0 if and only if for all k ∈ N

dkci
k ≥ dick

i (4.17)

(ii) For distinct i, k ∈ N:

lim
λ→+∞

πA
λ (k, i, i) = lim

λ→+∞
πC
λ (i, i, k) =

3bi
k

4n

2

lim
λ→+∞

πB
λ (i, k, i) = 0

so that (i, i, i) is an equilibrium of the game Gλ as λ→ +∞ if and only if for all k ∈ N

bi
k ≥ 2bk

i (4.18)

The first part of Proposition 4 is interpreted in terms of influenceability, and the second part – in terms of

centrality. Hence, Proposition 4 says the following:

(i) The strategy profile (i, i, i) is a Nash equilibrium of the game Gλ for a vanishingly small level of impact

λ if and only if i is at least as influenceable as any other individual k ∈ N. When the persuaders are of the weak

impact, they should rather target highly influenceable individuals, i.e., i with the lower dick
i . Such i does not

listen to many other individuals and it is easier and quicker to convince him to follow a new opinion.

(ii) The strategy profile (i, i, i) is a Nash equilibrium of the game Gλ for an arbitrarily large level of impact λ

if and only if the relative influence of i is not smaller than the double relative influence of any other individual

k. When the level of impact increases, the persuaders should target highly central individuals.

When comparing Proposition 4 to the corresponding result in the presence of only two extreme persuaders

(Grabisch et al. (2018)), the optimal behavior of weak-impact persuaders are the same even with a growing
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number of individuals. However, strong-impact persuaders should take into account the presence of the new

centrist persuader, since we have the condition bi
k ≥ 2bk

i instead of bi
k ≥ bk

i (condition in the case of only two

extreme persuaders).

Next, let us consider the case of non-symmetric equilibria. In Proposition 5 we deliver necessary conditions

for a non-symmetric Nash equilibrium (i, j, k) with j < {i, k} when the persuaders are equally strong. More pre-

cisely, we determine a condition for the aggregate opinion x̃N(i, j, k) and conditions for the network structure

that can admit a non-symmetric equilibrium, expressed in terms of the targets’ intermediacy and influenceabil-

ity, the persuaders’ impact and the network size.

Proposition 5. Let λ = γ = µ. If (i, j, k) with j < {i, k} is a pure strategy Nash equilibrium of the game Gλ, then
x̃N(i, j, k) = n

2 , πA
λ (i, j, k) = πC

λ (i, j, k) = 1
4 , πB

λ (i, j, k) = 0 and, in particular, the following two conditions hold:

b j
k − 2bk

j ≤
n
λ

(
d jck

j − dkc j
k

)
(4.19)

b j
i − 2bi

j ≤
n
λ

(
d jci

j − dic
j
i

)
(4.20)

Note that when i = k, conditions (4.19) and (4.20) coincide and determine a necessary condition for the Nash

equilibrium (i, j, i).

According to Proposition 5, if (i, j, k) is a Nash equilibrium, then the difference between the intermediacy of

j over k (and over i, respectively) and the double intermediacy of k (and of i, respectively) over j is not greater

than the difference between the influenceability of j and the influenceability of k (and of i, respectively). From

Theorem 2 and Proposition 5 it follows that, in particular, if ( j, j, j) and (i, j, k) are both Nash equilibria of the

game, then we must have the equalities in (4.19) and (4.20).

Below we examine some small size societies and check if such non-symmetric Nash equilibria happen to

exist.

Example 2 (continued). Let us return to a perfectly symmetric society and consider its particular case, a so-
ciety with n = 3 organized by the complete (directed) network, where everybody listens equally to everybody.
Suppose that three persuaders with the impacts λ = γ = µ = 1 and the opinions 1, 1

2 and 0 enter the society. As
shown in Example 2, (i, i, i) is not an equilibrium of such Gλ. However, the game has twelve non-symmetric
Nash equilibria. These are all six strategy profiles (i, j, i) with i , j that lead to the consensus 1

2 , and six profiles
(i, j, k) with i , j , k and i , k for which x̃N(i, j, k) = 3

2 but the individual opinions are different from each
other. Note that for n = 4, i.e., when a society grows but remains structured by a similar (directed) complete
network, there is no symmetric Nash equilibrium, but the game does possess the non-symmetric Nash equilibria
of the same type.

Example 3 (continued). Consider now a society structured by a star with n = 3 and individual 2 being its
center, and with three persuaders having the impact λ = γ = µ = 1. The star listens equally to all peripheral
individuals and those listen only to the star. From Example 3 it follows that there exists a symmetric equilibrium
(2, 2, 2) in such a network, where every persuader targets the center of the star. It appears that apart from this
symmetric equilibrium, the game has sixteen non-symmetric Nash equilibria. More precisely, these are six
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profiles (i, j, i) with i , j, and six profiles (i, j, k) with i , j , k and i , k as in the complete network, but also
four other Nash equilibria in which two “neighbouring” persuaders target the center, i.e., the profiles (1, 2, 2),
(2, 2, 1), (2, 2, 3) and (3, 2, 2). Again, the equilibria (i, j, i) lead to the consensus 1

2 , while (i, j, k) are such that
x̃N(i, j, k) = 3

2 but do not lead to a consensus.
When such a society gains one more peripheral individual, obviously the game has always one symmetric

equilibrium (2, 2, 2), but only three non-symmetric Nash equilibria in which the extreme persuaders target the
center of the star and the centrist persuader chooses one of the periphery individual. In other words, the non-
symmetric equilibria are of the form (2, 1, 2), (2, 3, 2), and (2, 4, 2), and all pure strategy Nash equilibria lead to
the consensus 1

2 and x̃N(i, j, k) = 2.

Example 4 (continued). In Example 2 we have seen the game which does not have any symmetric equilibrium
but does admit non-symmetric Nash equilibria. It is also possible that both symmetric and non-symmetric Nash
equilibria exist as presented in Example 3. Now consider a four-individual society interacted in a directed
circle, where every individual listens to the next one, and only to him. As shown in Example 4, the game does
not possess any symmetric equilibrium, and one can show that in this case non-symmetric equilibria do not
exist either. Hence, this game does not have any pure strategy Nash equilibrium.

Example 5 (continued). In a society with four individuals organized in a line network, such that d1 = d4 = 1
and d2 = d3 = 2, symmetric Nash equilibria do not exist (see Example 5), but the game admits four non-
symmetric Nash equilibria: (2, 3, 2), (3, 2, 3), (2, 4, 2) and (3, 1, 3), all leading to the consensus 1

2 . In other
words, under equilibrium the extreme persuaders target one of the “middle” individuals while the centrist
persuader chooses either another “middle” individual or the “end” individual which is not the neighbour of the
extreme persuaders’ target.

Unequal persuasion impacts. Next we briefly discuss the case of unequal impacts of the persuaders. Accord-

ing to Theorem 1, at each symmetric strategy profile (i, i, i) the payoffs are given by (4.6) and the aggregate

opinion by (4.2). Assume that λ > γ > µ. It is clear that as the persuasion impact λ of A increases, the ag-

gregate opinion x̃N(i, i, i) gets closer to n. It means that all the influence in the network is going under control

of persuader A. In such a situation persuaders B and C have to conceal their intentions in order to keep their

fraction of influence among the individuals in the society. In this case, they are using mixed strategies.

As in the framework of Grabisch et al. (2018), if the impact levels γ, µ > 0 of persuaders B and C are

fixed and the impact λ of persuader A is sufficiently large, then the game Gλ,γ,µ has only equilibria in mixed

strategies.

When the impact of persuader A tends towards infinity, then:

lim
λ→+∞

x̃N(k, i, i) =
2
(
(γ + µ)bk

i + dick
i n

)
+ γbi

k

2(dick
i + γ + µ)

= n
( (γ + 2µ)

bk
i

n + γ + 2dick
i

2(dick
i + γ + µ)

)
(4.21)

When λ, µ are fixed and persuader B has the infinite impact γ, then:

lim
γ→+∞

x̃N(i, k, i) =
2λn − (λ − µ)bk

i + dick
i n

2(dick
i + λ + µ)

=
n
2

(2λ − (λ − µ)
bk

i
n + dick

i

dick
i + λ + µ

)
(4.22)
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and for persuader C with very large µ, when the impacts of A and C are fixed:

lim
µ→+∞

x̃N(i, i, k) =
(2λ + γ)n − (2λ + γ)bk

i

2(dick
i + λ + γ)

= n
( (2λ + γ)(1 −

bk
i

n )

2(dick
i + λ + γ)

)
(4.23)

(4.21), (4.22) and (4.23) determine the aggregate opinions when one of the persuaders dominates by ex-

erting infinite impact while the others have fixed impacts and target the same individual. We have
bk

i
n < 1.

Persuader A wants the aggregate opinion to be as close as possible to the total number of individuals in the

society, persuader B – as close as possible to n
2 , and persuader C aims at having the aggregate opinion as close

as possible to 0. It follows that for the persuader with very high impact the aggregate opinion becomes closer

to the n times the persuader’s opinion as dick
i increases. In all three cases the dominant persuader is better off

by not only targeting highly influential individuals but also by reducing the influence that his opponents have

on their target, i.e., by preventing the opponents’ target to escape from the influence of the dominant persuader.

Example 1 (continued). Next we consider pure strategy Nash equilibria in Example 1 with the society of five
individuals interacting according to the directed graph given by Figure 1.

When λ = γ = µ = 1, then (2, 2, 2) corresponding to the situation 1 examined earlier in the example is
a Nash equilibrium of the game. It appears to be the only symmetric Nash equilibrium of the form (i, i, i).
Apart from that, the game played by the equally strong companies has four Nash equilibria of the form (i, k, i)
for k , i, and these are the profiles (2, 1, 2), (2, 3, 2), (2, 4, 2) (corresponding to the analyzed situation 2) and
(2, 5, 2). There does not exist any Nash equilibrium (i, j, k) with i, j and k being all different and λ = γ = µ = 1.
In other words, under any pure strategy Nash equilibrium of the game, the extreme persuaders (mobile operators
A and C) target individual 2 and the centrist persuader (mobile operator B) targets any of the five individuals.
For all these Nash equilibrium profiles, the payoffs of the companies A, B and C are equal to 1

4 , 0 and 1
4 ,

respectively.
When λ = 4, γ = 3 and µ = 8 as assumed in the situation 3 examined before, the game has no pure strategy

Nash equilibrium.

Pure strategy Nash equilibria in random networks. We investigate numerically the existence of pure strat-

egy Nash equilibria in random networks, by testing empirically Erdös-Rényi random graphs and networks

generated by a preferential attachment. Our simulations are performed for the increasing size of the population

and connectivity. For the construction of Erdös-Rényi networks, we use n ∈ {4, 8, 12, 16, 20, 24, 28, 32, 36, 40}

and the connection probability p ∈ {0.09, 0.18, 0.27, 0.36, 0.45, 0.54, 0.65, 0.72, 0.81, 0.9}. For networks gener-

ated by the preferential attachment process, we have n ∈ {4, 8, 12, 16, 20, 24, 28, 32, 36, 40} and the mean degree

m ∈ {2, 4, 6, 8}. Furthermore, 1000 networks are generated by 10 independent draws.

Table 2 presents the percentage of the cases when we have pure strategy Nash equilibria with increasing λ.

When the impacts of all three persuaders are equal, we have the highest number of Nash equilibria. Moreover,

networks generated by the preferential attachment give the maximum number, while Erdös - Rényi networks

allow for no pure Nash equilibria. There is also a smooth fall of the Nash equilibrium percentage under the
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λ, γ, µ = 1, 1, 1 3, 1, 1 5, 1, 1 10, 1, 1

% of equilibria for Erdös-Rényi 0.87 0.57 0.39 0.00

% of equilibria for Preferential Attachment 1 0.35 0.18 0.00

Table 2: Percentage of pure strategy Nash equilibria for games with the growing level λ of persuader A’s impact

λ, γ, µ = 3, 1, 1 3, 3, 1 3, 5, 1 3, 10, 1

% of equilibria for Erdös-Rényi 0.57 0.33 0.26 0.00

% of equilibria for Preferential Attachment 0.35 0.21 0.12 0.00

Table 3: Percentage of pure strategy Nash equilibria for games with the growing level γ of persuader B’s impact

increasing impact of one persuader. Finally, in both networks the percentage reaches zero with λ being very

high compared to γ and µ.

Furthermore, we study the effect of the increasing impact of the centrist persuader. We consider the case

where the extreme persuaders also hold the asymmetric impacts. Table 3 shows that the fraction of pure strategy

Nash equilibria is significantly smaller than in the previous case. We still observe a decreasing trend of the

number of pure strategy Nash equilibria which vanishes with one persuader being much stronger compared to

the others.

The results give us the idea of how the game with three persuaders holding different impacts can evolve. The

empirical investigations support our theoretical results and confirm that the emergence of Nash equilibria in pure

strategies is possible with the equal impacts. However, the different network structures show that even for the

symmetric impacts, the emergence of pure strategy Nash equilibria can be under some conditions. Moreover,

the number of these equilibria decreases significantly when there is only one persuader getting stronger.

5. Related literature

There is a vast literature on social networks devoted to modeling and analyzing opinion formation and dif-

fusion; for surveys, see e.g. Acemoglu et al. (2011), Bramoullé et al. (2016), Jackson (2008). A society is

usually described as a network whose nodes represent the individuals and the edges represent their social rela-

tions. Each individual has an opinion on a certain issue. The opinion can be a binary variable (or vector) which

is a good description for a variety of situations (e.g., Clifford (1973), Förster et al. (2013), Glauber (1963)).

However, in some cases, e.g. concerning political issues, a continuous variable might be more appropriate for

representing an opinion (e.g., DeGroot (1974), Grabisch et al. (2011), Hegselmann et al. (2002)). The updating

of individuals’ opinions can be based on various rules, e.g., by taking into account opinions of neighbours.
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Moreover, independently of the opinion updating rule, different approaches to opinion diffusion in a society

can be used. For instance, diffusion of opinion can accelerate when opinion leaders or key players are engaged

(Borgatti et al. (2009)). Opinions can also be led by informed agents, since finding the opinion leaders needs

global knowledge about the topology of the network (Afshar et al. (2010)). A phenomenon closely related

to influence and opinion conformity is that of persuasion, which can attempt to influence a person’s beliefs,

attitudes, intentions, motivations, or behaviors; for surveys and different persuasion methods, see e.g. Cialdini

(2007), Gass et al. (2010). Our paper also contributes to the literature on consensus reaching, the topic studied

extensively in different scientific fields; see e.g., French (1981), and Herrera-Viedma et al. (2011) for a survey.

There are essentially two methods of modeling social learning through networks: Bayesian learning, where

agents use Bayes’ rule to assess the state of the world (e.g., Acemoglu et al. (2011), Bala et al. (1998), Gale et

al. (2003)) and non-Bayesian approach, like imitation models, where agents instead consider a weighted aver-

age of their neighbours’ opinions or actions in a previous period (e.g., DeGroot (1974), Golub et al. (2010));

see e.g. Acemoglu et al. (2011) for a survey. The DeGroot model is such an imitation framework: it involves

repeated communication, where people can keep talking to each other and taking weighted averages of infor-

mation that they get from their friends. There exist various extensions of DeGroot (1974), e.g., works with the

updating varying in time and circumstances (e.g., DeMarzo et al. (2003), Friedkin et al. (1990), Friedkin et al.

(1990), Krauze (2000)) and the misrepresenting own opinions (Büchel et al. (2015)).

The literature closely related to influence and opinion formation is the one concerning targeting. In com-

puter science literature usually an algorithmic perspective is used to study the target selection for the optimal

adoption and diffusion of innovation (e.g., Domingos et al. (2001), Kempe et al. (2003), Richardson et al.

(2002)). Also in economics and marketing there is a growing literature that concerns targeting in social net-

works. Tsakas (2017) studies the optimal targeting strategy in diffusion based on social imitation. Galeotti

et al. (2009) model networks in terms of degree distributions and study influence strategies in the presence

of local interaction. They consider two groups of agents, where the one group influences the another one, and

optimal influence strategies depend of the connectivity of targeted individuals. Yildiz et al. (2013) assume that

some agents are “stubborn”, i.e., their opinion is fixed at one of the two values. Also Acemoglu et al. (2013) and

Acemoglu et al. (2010) analyze an opinion dynamics model with two types of agents: regular, and stubborn or

forceful. The competition between firms aiming at maximizing product adoption by consumers located in a so-

cial network is also studied e.g. in Bimpikis et al. (2016) and Dubey et al. (2014). Galeotti et al. (2017) propose

a framework to examine optimal interventions, when individuals interact strategically with their neighbours.

They solve such intervention problems by exploiting the singular value decomposition of strategic interaction

matrices.

Opinion formation is crucial for the analysis of voting and political campaigns. In political science there is a
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well known theory of spatial allocation. Downs (1957) represents the relative positioning of political parties and

voters by using a spatial analogy built on the work of Hotelling (1929) that consists in representing the political

preferences on a linear scale from left to right. Tsakas et al. (2018) support formal results of Palfrey (1984) by

providing experimental evidence of the strategic polarization of two candidates in electoral competition in the

context of the unidimensional spatial model when third party entry is expected. Forsythe et al. (1996) consider

voters’ behaviour in three-candidate elections in a non-spatial context. Pajala et al. (2018) develop a voting

advice model to match voters with political candidates, that accounts for political power, media visibility, and

proximity of opinions. They apply their model to Parliamentary Elections in Finland. Lever (2010) analyzes

the strategic campaign spending in elections by using the network perspective. He considers a framework with

two persuaders (political parties, competing lobbies) who allocate resources to sway voters, and shows that the

unique pure strategy Nash equilibrium is such that the spending on each voter is proportional to his eigenvector

centrality.

The literature that links network centrality with economic outcomes is growing. Ballester et al. (2006)

and Candogan et al. (2012) characterize the Nash equilibrium with a player’s action being proportional to his

Bonacich centrality (Bonacich (1987)). The key player in Ballester et al. (2006) is identified by an inter-

centrality measure that takes into account both a player’s centrality and his contribution to the centrality of

others. Tsakas (2014) analyses targeting in the context of viral marketing and shows that the optimal targeting

strategy involves the individuals’ decay centrality. Also Banerjee et al. (2013) and Banerjee et al. (2017) study

the problem of identifying the most influential agents in a process of information transmission. They introduce

diffusion centrality which measures how extensively the information spreads from a given player. The best tar-

gets in Grabisch et al. (2018) are characterized by another (new) network centrality called intermediacy, which

is also the key concept in the present paper.

6. Conclusions

In this paper we studied a model of competitive opinion formation in a social network. Our point of

departure was the model of influence Grabisch et al. (2018) with two strategic players having opposite opinions

and targeting non-strategic agents in a network. We extended that framework by adding a “centrist persuader”

and focused on the effects of the presence of the third persuader on opinion convergence and consensus reaching

in the society, on conditions for Nash equilibria in the game played by the persuaders, and on characterizations

of targets in the extended model.

Due to the basic assumptions of the DeGroot model, opinion convergence is preserved, although obviously

the long run opinion in the society is different from the one reached in the presence of only two persuaders.

Furthermore, we showed that consensus can emerge in the society if the three persuaders target the same
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individual. The study reveals that in this case, if additionally the persuaders are of the equal impact, the centrist

persuader has no effect on the social opinion, but the outcome turns out to be the best and ideal for him. The

same “middle outcome” is already obtained when only the extreme persuaders target the same individual and

have the equal impact, independently of the behaviour and impact of the centrist persuader.

In the presence of the new (centrist) persuader, the game is not constant sum anymore, as it was the case in

Grabisch et al. (2018), and the payoffs are defined in a new way. Each persuader aims as having the average

opinion in the society as close as possible to his own opinion, and therefore the game is defined as a system of

minimization problems. Furthermore, we considered equilibria of the game. While Grabisch et al. (2018) focus

their analysis on the symmetric equilibria in the two-persuader framework, we additionally examined the non-

symmetric equilibria in the three-persuader model. Our illustrative examples showed that the existence of a pure

strategy Nash equilibrium does depend on the structure of the network. We showed that there exist influence

networks that admit equilibria in pure strategies, i.e., star networks. This type of networks have an individual

with outstanding characteristics that makes it possible to have a symmetric equilibria in pure strategies, but

also non-symmetric equilibria. Indeed, there exist structures that admit both symmetric and non-symmetric

equilibria. However, a network can have no symmetric equilibrium but can admit non-symmetric ones, and

it can also have no pure strategy Nash equilibrium. For example, there is no equilibrium in pure strategies

in circular networks. Similarly, no symmetric equilibrium in pure strategies exists in perfectly symmetric

networks, but such structures can admit non-symmetric equilibria.

In order to stress differences and similarities between the sample model and the extended framework, we

used Grabisch et al. (2018) as a baseline and our results are framed by using some notions and definitions intro-

duced in Grabisch et al. (2018). We showed that a symmetric equilibrium in pure strategies emerges when the

persuaders exert an equal impact. We gave a general condition for the existence of the symmetric equilibrium.

It is characterized by two features of the targets: their influenceability and centrality. In this respect, a differ-

ence between the result obtained in Grabisch et al. (2018) and the one in our framework is that in our model

the relative influence of a potential target has to be at least twice higher than the one of any other individual in

the network. In other words, the persuaders are demanding higher centrality from the individual they want to

target to compensate the impact of the additional persuader. Similarly to Grabisch et al. (2018) influenceability

gains importance versus centrality as the size of the network grows or the impact of the persuaders decreases.

In the case when the persuasion impacts are unequal, the high-impact persuader aims at ensuring preeminence

on the network by increasing his centrality and diminishing the influenceability of his opponents’ target. As

in Grabisch et al. (2018), the low-impact persuaders seek to keep a minimal level of influence by hiding their

target from the opponent’s impact, and therefore, they must use mixed strategies. When the persuasion impact

is very small, the growing number of influencers does not affect the persuaders’ targeting behavior, i.e., the
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weak persuaders keep the same strategy with the appearance of an additional influencer.

It would be interesting to develop several variations of the model. In the present paper, we assumed that the

persuaders target individuals simultaneously. One can investigate a framework in which targets are approached

sequentially. In such a case, strategies of the second/third mover would define the whole targeting plan for

each target of the persuaders moving before him. In the sequential version, one can also impose a restriction

that an individual can be targeted by only one persuader, which would reduce such sets of strategies for the

second/third mover.

In the present work, we focused on the opinion convergence and consensus reaching in the extended De-

Groot model with targeting by three persuaders. We also examined the conditions for the existence of pure

strategy Nash equilibria in the game played by the persuaders. In the follow up research, one can focus on

mixed strategies, in particular, for the case when no pure strategy Nash equilibrium exists.

Also the extension to the multi-target case would bring a number of new research questions. Each persuader

can have a budget, i.e., some amount of impact that he can possibly split among different targets. It would be

interesting to see under which conditions the persuader focuses on one target, despite the freedom to allocate his

budget among an arbitrary number of individuals. An optimal strategy would not only depend on the network

structure and the persuaders’ impacts, but also on the way how the persuaders allocate their budget.

7. Appendix

7.1. Appendix A

7.1.1. Proof of Proposition 1

We consider a society represented by a directed graph. Due to the assumption that the social network

defined by the adjacency matrix W is connected, the convergence of opinions in our targeting model with

three persuaders is a direct consequence of the DeGroot model. It means that the only essential classes, such

that no arc is going outside, are the persuaders {A}, {B}, and {C}. Consider a steady state vector xN such that

xN(t + 1) = xN(t) = xN(s). From (2.6) we have

xN(s) = ∆λ,γ,µ(s)Eλ,γ,µ(s)
[
1 1

2 0
]′

+ ∆λ,γ,µ(s)WxN(s)

[
I − ∆λ,γ,µ(s)W

]
xN(s) = ∆λ,γ,µ(s)Eλ,γ,µ(s)

[
1 1

2 0
]′

xN(s) =
[
I − ∆λ,γ,µ(s)W

]−1
∆λ,γ,µ(s)Eλ,γ,µ(s)

[
1 1

2 0
]′
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∆λ,γ,µ(s)Eλ,γ,µ(s)
[
1 1

2 0
]′

= ∆λ,γ,µ(s)
[
λ

dsA
esA

γ
dsB

esB
µ

dsC
esC

] 
1
1
2

0


Hence,

xN(s) =
[
I − ∆λ,γ,µ(s)W

]−1
∆λ,γ,µ(s)

(
λ

dsA

esA +
γ

2dsB

esB

)
[
I − ∆λ,γ,µ(s)W

]−1
is always invertible, and therefore the steady state vector xN(s) always exists.

7.1.2. Proof of Proposition 2

Let sA = sB = sC = i. Hence,

∆λ,γ,µ(s)Eλ,γ,µ(s) =



0 0 0
...

...
...

λ
di+λ+γ+µ

γ
di+λ+γ+µ

µ
di+λ+γ+µ

...
...

...

0 0 0


(7.1)

where 0 < λ
di+λ+γ+µ +

γ
di+λ+γ+µ +

µ
di+λ+γ+µ ≤ 1.

Note that the solution of xN(s) = ∆λ,γ,µ(s)Eλ,γ,µ(s)[1 1
2 0]′+∆λ,γ,µ(s)WxN(s) is unique. Let us check if a consensus

vector xN(s) = [α · · ·α]′ is a solution. We have for all rows j , i:

α = 0 + 1 · α = α

Since Mλ,γ,µ(s) is row-stochastic, for i-targeted individual we have:

α = λ
di+λ+γ+µ +

γ
2(di+λ+γ+µ) +

(
1 − λ

di+λ+γ+µ −
γ

di+λ+γ+µ −
µ

di+λ+γ+µ

)
α

α =
2λ+γ

2(di+λ+γ+µ)
di+λ+γ+µ
λ+γ+µ

α =
2λ+γ

2(λ+γ+µ)
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7.1.3. Proof of Proposition 3

Suppose sA = sC = i and sB = k , i. Then

∆λ,γ,µ(s)Eλ,γ,µ(s) =



0 0 0
...

...
...

λ
di+λ+µ 0 µ

di+λ+µ

0 γ
dk+γ 0

...
...

...

0 0 0


Since the solution of xN(s) = ∆λ,γ,µ(s)Eλ,γ,µ(s)[1 1

2 0]′ + ∆λ,γ,µ(s)WxN(s) is unique, similarly to the previous

result, we can check if a consensus vector xN(s) = [α · · ·α]′ is a solution. We have for all rows j , i and j , k:

α = 0 + 1 · α = α

Since Mλ,γ,µ(s) is row-stochastic, for i-targeted individual we get:

α = λ
di+λ+µ +

(
1 − λ

di+λ+µ −
µ

di+λ+µ

)
α

α = λ
di+λ+µ

di+λ+µ
λ+µ

α = λ
λ+µ

and for k individual – the target of the centrist persuader:

α =
γ

2(dk+γ) +
(
1 − γ

dk+γ

)
α

α =
γ

2(dk+γ)
dk+γ
γ

α = 1
2

7.1.4. Proof of Theorem 1

First, we recall from Grabisch et al. (2018) some additional notations and two lemmas (for the proofs of the

lemmas, see Grabisch et al. (2018)). Let C
k
i be the set of cycles around i that do not pass through k, B

k
i be the

set of walks starting from any individual , i that reach i before going through k, and let Fi,k be the set of direct

walks from i to k, i.e., the set of walks that start in i, end up in k and do not pass through i nor k in between.

Moreover, let:

ck
i :=

∑
p∈C

k
i

w(p), b
k
i :=

∑
p∈B

k
i

w(p), fik :=
∑

p∈Fi,k w(p) (7.2)
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We have ck
i + ck

i = 1 for all distinct i, k ∈ N. The corresponding set of walks and measures for k are denoted by

C
i
k, B

i
k, Fk,i, ci

k, b
i
k and fk,i.

Lemma 1. For all distinct i, k ∈ N, one has:

b
k
i + b

i
k = n − 2, bk

i + b
k
i = n − 1, bk

i + bi
k = n (7.3)

Let Γi be the set of cycles around i (i.e., walks that start and finish in i and do not pass through i in between) and

yi =
∑

p∈Γi w(p). Let Φi be the set of walks to i that have never passed through i before and φi :=
∑

p∈Φi w(p).

Lemma 2. For all i = 1, · · · , n, yi = 1 and φi = n − 1.

From Proposition 1 and (3.2):

xN(s) =
[
I − ∆λ,γ,µ(s)W

]−1
∆λ,γ,µ(s)

(
λ

dsA

esA +
γ

2dsB

esB

)

Using the results of Seneta (2006) about non-negative matrices:

Lemma 3. Let A be a finite n × n matrix such that limk→∞ Ak = 0. Then [I − A]−1 exists and

[I − A]−1 =

∞∑
k=0

Ak

with A0 = I,

we can modify the long run opinions in the following way:

xN(s) =

∞∑
m=0

(∆λ,γ,µ(s) ·W)m∆λ,γ,µ(s)
(
λ

dsA

esA +
γ

2dsB

esB

)
(7.4)

(i) If sA = sB = sC = i, i.e., if all three persuaders target the same individual i, then

xN(s) =

∞∑
m=0

(∆λ,γ,µ(s) ·W)m 2λ + γ

2(dsA + λ + γ + µ)

Pm
k,l is the set of walks of length m from k to l in the graph G associated to W. For any walk p = (i1, · · · , im),

w(p) denotes its weight measured according to W. vk(p) is the number of times the walk p passes through k

(without taking into account the departure node). We rewrite (7.4) as a sum representing the influence conveyed

through each walk of the network and where each passage through one of the targets is re-weighted in order to

account for the influence of the persuaders:

xN(s) =

∑
k∈N

∞∑
m=0

∑
p∈Pm

k,sA

w(p)
(

dsA

dsA + λ + γ + µ

)vsA (p)
 2λ + γ

2(dsA + λ + γ + µ)
(7.5)
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The payoff of a link to individual i depends on the degree to which he is influenceable (the number of outgoing

links) and his influence (the weighted and discounted number of walks that pass through the individual).

Assume that all three persuaders target i and let Πk
i be the set of walks ending in i and having gone k times

through i before. We decompose the set of walks ending in i according to their total number of passages in i,

and rewrite (7.5) as:

x̃N(i, i, i) =


∞∑

k=0

∑
p∈Πk

i

w(p)
(

di

di + λ + γ + µ

)k
 2λ + γ

2(di + λ + γ + µ)

A walk in Πk
i consists of k cycles around i and possibly a walk to i. We get:

∑
p∈Πk

i

w(p) = (yi)k(1 + φi)

and therefore

x̃N(i, i, i) =

 ∞∑
k=0

(
yi

di

di + λ + γ + µ

)k

(1 + φi)

 2λ + γ

2(di + λ + γ + µ)

Consequently, we have:

x̃N(i, i, i) =
(1 + φi)(2λ + γ)

2(di + λ + γ + µ − yidi)

Using Lemma 2, we get (4.2):

x̃N(i, i, i) =
n(2λ + γ)

2(λ + γ + µ)

Hence, given (4.1) the payoffs are:

πA
λ,γ,µ(i, i, i) =

(
2µ + γ

2(λ + γ + µ)

)2

πB
λ,γ,µ(i, i, i) =

(
µ − λ

2(λ + γ + µ)

)2

πC
λ,γ,µ(i, i, i) =

(
2λ + γ

2(λ + γ + µ)

)2

(7.6)

(ii) Next, we consider the case where persuaders A and C target i and persuader B targets k, i.e., we assume that

sA = sC = i and sB = k. Let us then denote (as in Grabisch et al. (2018)) by φk
i the sum of weights of the walks

to i with each passage through k weighted by dk
dk+γ . Let yk

i be the sum of weights of walks that cycle around i
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with each passage through k weighted by dk
dk+γ . We have:

x̃N(s) =

∑
k∈N

∞∑
m=0

∑
p∈Pm

k,sA

w(p)
(

dsA

dsA + λ + µ

)vsA (p)

(

λ

dsA + λ + µ

)
+

∑
k∈N

∞∑
m=0

∑
p∈Pm

k,sB

w(p)
(

dsB

dsB + γ

)vsB (p)

(

γ

2(dsB + γ)

)

x̃N(i, k, i) =
λ(1 + φk

i )

di + λ + µ − yk
i di

+
γ(1 + φi

k)

2(dk + γ − yi
kdk)

(7.7)

The set of walks to i consists in walks to i not passing through k and the set of walks from k to i preceded

by an arbitrary number of cycles around k preceded by a walk to k not passing through i. This leads to:

φk
i = b

k
i + fk,i

dk

dk + γ

+∞∑
j=0

(
ci

k
dk

dk + γ

) j
 (1 + b

i
k) = b

k
i + fk,i

dk

dk + γ − ci
kdk

(1 + b
i
k) (7.8)

The set of cycles around i consists in the set of cycles around i not passing through k and with the set of walks

from k to i preceded by an arbitrary number of cycles around k preceded by a walk from i to k. Hence:

yk
i = ck

i + fk,i
dk

dk + γ

+∞∑
j=0

(
ci

k
dk

dk + γ

) j
 fi,k = ck

i + fk,i fi,k
dk

dk + γ − ci
kdk

(7.9)

Similarly:

φi
k = b

i
k + fi,k

di

di + λ + µ

+∞∑
j=0

(
ck

i
di

di + λ + µ

) j
 (1 + b

k
i ) = b

i
k + fi,k

di

di + λ + µ − ck
i di

(1 + b
k
i ) (7.10)

yi
k = ci

k + fi,k
di

di + λ + µ

+∞∑
j=0

(
ck

i
di

di + λ + µ

) j
 fk,i = ci

k + fi,k fk,i
di

di + λ + µ − ck
i di

(7.11)

Plugging these equations into (7.7) leads to:

x̃N(i, k, i) =

λ
(
1 + b

k
i + fk,i

dk

dk+γ−ci
kdk

(1 + b
i
k)
)

di + λ + µ − di

(
ck

i + fk,i fi,k
dk

dk+γ−ci
kdk

)+

γ
(
1 + b

i
k + fi,k

di

di+λ+µ−ck
i di

(1 + b
k
i )
)

2
(
dk + γ − dk

(
ci

k + fi,k fk,i
di

di+λ+µ−ck
i di

))
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x̃N(i, k, i) =

λ

[
(1 + b

k
i )γ + dk(1 − ci

k)
(
1 + b

k
i + fk,i

1+b
i
k

1−ci
k

)]
(di + λ + µ)(dk + γ − ci

kdk) − di

(
ck

i γ + dk(1 − ci
k)

(
ck

i + fk,i fi,k 1
1−ci

k

))+

γ

[
(1 + b

i
k)(λ + µ) + di(1 − ck

i )
(
1 + b

i
k + fi,k

1+b
k
i

1−ck
i

)]
2
[
(dk + γ)(di + λ + µ − ck

i di) − dk

(
ci

k(λ + µ) + di(1 − ck
i )

(
ci

k + fi,k fk,i 1
1−ck

i

))]
We have:

φi = b
k
i + fk,i

+∞∑
k=0

(ci
k)k

 (1 + b
i
k) = b

k
i + fk,i

1

1 − ci
k

(1 + b
i
k)

yi = ck
i + fk,i

+∞∑
k=0

(ci
k)k

 fi,k = ck
i + fi,k fk,i

1

1 − ci
k

We can get φk and yk in a similar way. Hence, we have:

x̃N(i, k, i) =

λ
[
(1 + b

k
i )γ + dk(1 − ci

k)(1 + φi)
]

(di + λ + µ)(dk + γ − ci
kdk) − di

(
ck

i γ + dk(1 − ci
k)yi

)+

γ
[
(1 + b

i
k)(λ + µ) + di(1 − ck

i )(1 + φk)
]

2
[
(dk + γ)(di + λ + µ − ck

i di) − dk
(
ci

k(λ + µ) + di(1 − ck
i )yk

)]
(7.12)

According to Lemma 2, one has yi = 1 and φi = n − 1 for all i = 1, · · · , n:

x̃N(i, k, i) =

λ
[
(1 + b

k
i )γ + dk(1 − ci

k)n
]

(di + λ + µ)(dk + γ − ci
kdk) − di

(
ck

i γ + dk(1 − ci
k)
)+

γ
[
(1 + b

i
k)(λ + µ) + di(1 − ck

i )n
]

2
[
(dk + γ)(di + λ + µ − ck

i di) − dk
(
ci

k(λ + µ) + di(1 − ck
i )
)]

x̃N(i, k, i) =
λ
[
γbi

k + dkci
kn

]
γdick

i + (λ + µ)dkci
k + γ(λ + µ)

+
γ
[
(λ + µ)bk

i + dick
i n

]
2
(
(λ + µ)dkci

k + γdick
i + γ(λ + µ)

) (7.13)

By following the same procedure, we can get the expressions for (4.4) and (4.5).

7.1.5. Proof of Fact 1

From (4.2), x̃N(i, i, i) =
n(2λ+γ)

2(λ+γ+µ) . Hence, since λ > 0, γ > 0 and µ > 0, we have

∂x̃N(i, i, i)
∂λ

=
n(2µ + γ)

2(λ + γ + µ)2 > 0 ⇔ 2µ + γ > 0

∂x̃N(i, i, i)
∂µ

= −
n(2λ + γ)

2(λ + γ + µ)2 < 0 ⇔ 2λ + γ > 0
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∂x̃N(i, i, i)
∂γ

=
n(µ − λ)

2(λ + γ + µ)2 S 0 ⇔ µ S λ

7.1.6. Proof of Fact 2

When we apply bi
k + bk

i = n to equations (4.3), (4.4) and (4.5), we have the following:

∂x̃N(i, k, i)
∂bi

k

= (λ − µ)γ,
∂x̃N(i, k, i)

∂bk
i

= (µ − λ)γ

∂x̃N(k, i, i)
∂bi

k

= (γ − 2µ)λ,
∂x̃N(k, i, i)

∂bk
i

= (2µ − γ)λ

∂x̃N(i, i, k)
∂bi

k

= (2λ + γ)µ,
∂x̃N(i, i, k)

∂bk
i

= −(2λ + γ)µ

7.1.7. Proof of Fact 3

We have the following:

∂x̃N(i, k, i)
∂(dick

i )
=
∂x̃N(i, k, i)
∂(dkci

k)
= 0

∂x̃N(k, i, i)
∂(dick

i )
=

3
(
ndkci

k + λbi
k

)
2
(
dick

i + 2dkci
k + 2λ

)2 > 0

∂x̃N(k, i, i)
∂(dkci

k)
=
−3

(
ndick

i + 2λbk
i

)
2
(
dick

i + 2dkci
k + 2λ

)2 < 0

∂x̃N(i, i, k)
∂(dick

i )
=

−3
(
ndkci

k + λbi
k

)
2
(
dick

i + 2dkci
k + 2λ

)2 < 0

∂x̃N(i, i, k)
∂(dkci

k)
=

3
(
ndick

i + 2λbk
i

)
2
(
dick

i + 2dkci
k + 2λ

)2 > 0
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7.1.8. Proof of Theorem 2

According to the definition of Nash equilibrium, (i, i, i) is an equilibrium if and only if no individual has a

profitable deviation on his own, that is for all k ∈ N:


πA
λ (i, i, i) ≤ πA

λ (k, i, i)

πB
λ (i, i, i) ≤ πB

λ (i, k, i)

πC
λ (i, i, i) ≤ πC

λ (i, i, k)



(
1 − 1

n x̃N(i, i, i)
)2
≤

(
1 − 1

n x̃N(k, i, i)
)2

(a)(
1
2 −

1
n x̃N(i, i, i)

)2
≤

(
1
2 −

1
n x̃N(i, k, i)

)2
(b)(

1
n x̃N(i, i, i)

)2
≤

(
1
n x̃N(i, i, k)

)2
(c)

For condition (b):

1
4
−

1
n

x̃N(i, i, i) +
1
n2 (x̃N(i, i, i))2 ≤

1
4
−

1
n

x̃N(i, k, i) +
1
n2 (x̃N(i, k, i))2

1
n

(x̃N(i, i, i) − x̃N(i, k, i)) (x̃N(i, i, i) + x̃N(i, k, i)) ≤ x̃N(i, i, i) − x̃N(i, k, i)

We have two possibilities:

1) if x̃N(i, i, i) < x̃N(i, k, i) then 1
n x̃N(i, i, i) ≥ 1 − 1

n x̃N(i, k, i)

2) if x̃N(i, i, i) > x̃N(i, k, i) then 1
n x̃N(i, i, i) ≤ 1 − 1

n x̃N(i, k, i)

Hence, the system of inequalities becomes:



x̃N(i, i, i) ≥ x̃N(k, i, i)
x̃N(i, i, i) < x̃N(i, k, i)

x̃N(i, i, i) ≥ n − x̃N(i, k, i)
or


x̃N(i, i, i) > x̃N(i, k, i)

x̃N(i, i, i) ≤ n − x̃N(i, k, i)

x̃N(i, i, i) ≤ x̃N(i, i, k)
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For particular case where λ = γ = µ and given Theorem 1, we get:



n
(
dkci

k − dick
i

)
≥ λ

(
2bk

i − bi
k

)
0 ≥ 0

1 ≤ 1
or


0 ≤ 0

1 ≥ 1

n
(
dick

i − dkci
k

)
≤ λ

(
bi

k − 2bk
i

)
From (b) we can conclude that for the centrist persuader, in case when all persuaders have the equal impact,

there is no difference between targeting individual i with other persuaders or choosing a different individual k.

We can then omit the systems for the centrist persuader, since they do not play any role. We have:


n
(
dkci

k − dick
i

)
≥ λ

(
2bk

i − bi
k

)
n
(
dick

i − dkci
k

)
≤ λ

(
bi

k − 2bk
i

)
and the final condition is λ

(
bi

k − 2bk
i

)
≥ n

(
dick

i − dkci
k

)
.

7.1.9. Proof of Proposition 4

We get the limit results by calculating the limits under λ → 0 and λ → +∞ in (4.1), using the results

of Theorem 1. Next, we apply the definition of Nash equilibrium and compare the payoffs in (i) and (ii),

respectively:
1
2
≤

3dkci
k

2(dick
i + 2dkci

k)
⇔ dick

i ≤ dkci
k

1
2
≤

3bi
k

4n
⇔ 2bk

i ≤ bi
k

7.1.10. Proof of Proposition 5

Suppose that (i, j, k) with j < {i, k} is a pure strategy Nash equilibrium. This implies that, in particular, the

following conditions must hold: 

πA
λ (i, j, k) ≤ πA

λ ( j, j, k)

πA
λ (i, j, k) ≤ πA

λ (k, j, k)

πB
λ (i, j, k) ≤ πB

λ (i, i, k)

πB
λ (i, j, k) ≤ πB

λ (i, k, k)

πC
λ (i, j, k) ≤ πC

λ (i, j, i)

πC
λ (i, j, k) ≤ πC

λ (i, j, j)
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and therefore, since x̃N(p, p, p) = x̃N(p, r, p) = n
2 for all p, r ∈ N, we have



x̃N(i, j, k) ≥ x̃N( j, j, k)

x̃N(i, j, k) ≥ n
2

πB
λ (i, j, k) ≤ πB

λ (i, i, k)

πB
λ (i, j, k) ≤ πB

λ (i, k, k)

x̃N(i, j, k) ≤ n
2

x̃N(i, j, k) ≤ x̃N(i, j, j)

This leads to x̃N(i, j, k) = n
2 , and hence from (4.1) we get immediately πA

λ (i, j, k) = πC
λ (i, j, k) = 1

4 and πB
λ (i, j, k) =

0. The third and forth conditions stated in the above system of inequalities are therefore always satisfied, since

πB
λ (i, i, k) ≥ 0 and πB

λ (i, k, k) ≥ 0 for all i, k ∈ N. Hence, we get the following:


x̃N( j, j, k) ≤ n

2

x̃N(i, j, j) ≥ n
2

Since λ = γ = µ, by virtue of (4.4) and (4.5), we get

x̃N( j, j, k) =
3
(
λb j

k + dkc j
kn

)
2
(
d jck

j + 2dkc j
k + 2λ

)

x̃N(i, j, j) =
2
(
2λbi

j + d jci
jn
)

+ λb j
i + dic

j
i n

2
(
d jci

j + 2dic
j
i + 2λ

)
and therefore the conditions become 

b j
k − 2bk

j ≤
n
λ

(
d jck

j − dkc j
k

)
b j

i − 2bi
j ≤

n
λ

(
d jci

j − dic
j
i

)
7.2. Appendix B

Extension to a multi-target framework

The model considers three persuaders and a society N of n individuals, where each persuader is assumed

to target only one individual. We show that there is convergence of opinions in the society and consensus

appears in special cases. Next we want to examine if the results on convergence and consensus are still valid

when the number of targeted individuals is increased. Let us assume that the persuaders can choose/target two
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individuals in N to form a link with in order to influence the formation of opinions in the society. We introduce

an additional notation for targeted individuals and put upper indices indicating the number of targets: s1
A, s2

A,

s1
B, s2

B, s1
C , s2

C . The strategy vector becomes s =
(
s1

A, s
2
A, s

1
B, s

2
B, s

1
C , s

2
C

)
. The renormalization matrix ∆λ,γ,µ(s) has

now diagonal elements equal to

d1

d1 + λδ1,sl
A

+ γδ1,sl
B

+ µδ1,sl
C

, · · · ,
dn

dn + λδn,sl
A

+ γδn,sl
B

+ µδn,sl
C

(7.14)

with δi,sl
j

= 1 if i = sl
j for all i ∈ N, sl

j ∈ {s
1
A, s2

A, s1
B, s2

B, s1
C , s2

C} and 0 otherwise. The matrix of strategic

influence is modified to

Eλ,γ,µ(s) =


λ

ds1
A

es1
A

γ
ds1

B

es1
B

µ
ds1

C

es1
C

λ
ds2

A

es2
A

γ
ds2

B

es2
B

µ
ds2

C

es2
C

 (7.15)

where el
i denotes the unit vector with coordinate 1 at i and j. All other parameters stay the same. Following the

same technique as in the proof of Proposition 1, we get the result on opinion convergence.

Fact 4. For any initial vector of opinions x(0) := [1 1
2 0 xN(0)]′, we have

lim
t→+∞

(Mλ,γ,µ(s))t
[
1 1

2 0 xN(0)
]′

=
[
1 1

2 0 xN(s)
]′

(7.16)

where

xN(s) = [I − ∆λ,γ,µ(s)W]−1∆λ,γ,µ(s)


λ

ds1
A

es1
A

+
γ

2ds1
B

es1
B

λ
ds2

A

es2
A

+
γ

2ds2
B

es2
B

 (7.17)

Similarly to Proposition 1, in the model with the increased number of targets there is the opinion convergence

in the society. Note that xN(s) in (7.17) differs from the one in (3.2) by its last part taking into account the

second target.5

Proposition 2 states that if the three persuaders choose the same target, then the long run opinion converges

towards consensus. Following the proof of Proposition 2, we get the same result for the multi-target case.

Fact 5. If s1
A = s1

B = s1
C and s2

A = s2
B = s2

C then the individuals in N reach a consensus α given by

α =
2λ + γ

2(λ + γ + µ)
(7.18)

In particular, if λ = µ, then the consensus is α = 1
2 .

As in the framework with one target, this consensus depends on the persuaders’ impact. As was mentioned

before, the society reaches the same opinion independently of the impact of the centrist player B. This result

5In order to avoid any confusion, we want to recall that es stands for a unit vector with coordinate 1 at s. Therefore, the matrix in
(7.15) is a n × 3 matrix and the last term in (7.17) is a n × 1 vector where all entries except s1 and s2 are equal to zero.
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holds independently of the number of the same targets, i.e., when the three persuaders can choose several targets

for diffusion of information.

7.3. Appendix C

Targeting different individuals

Theorem 1 presents the aggregate opinion for the cases, where at least two out of three persuaders target

the same individual, i.e., the expressions of x̃N(i, i, i), x̃N(i, k, i), x̃N(i, i, k), and x̃N(k, i, i). They are determined

in terms of the persuaders’ impacts, the network size, the individuals’ centrality (influence, intermediacy) and

influenceability. By virtue of this theorem, conditions under which the game admits symmetric Nash equilibria

in pure strategies are provided in Theorem 2. Consequently, the existence of equilibria depends, e.g., on the

network structure determined by the individuals’ intermediacy and influenceability.

Consider now the case when all three persuaders choose different targets such as sA = i, sB = j, sC = k,

with i , j , k, i , k. For determining the aggregate opinion x̃N(i, j, k), the individuals’ intermediacy and

influenceability are not sufficient anymore, and we need to introduce more complex parameters. Let φ jk
i stay for

the sum of weights of the walks to i with each passage through j and k weighted by d j
d j+γ

and dk
dk+µ , respectively.

Moreover, let y jk
i be the sum of weights of walks that cycle around i with each passage through j and k weighted

by d j
d j+γ

and dk
dk+µ , respectively. Analogically for φik

j and yik
j . Then we have the following:

x̃N(s) =

∑
k∈N

∞∑
m=0

∑
p∈Pm

k,sA

w(p)
(

dsA

dsA + λ

)vsA (p)

(

λ

dsA + λ

)
+

∑
k∈N

∞∑
m=0

∑
p∈Pm

k,sB

w(p)
(

dsB

dsB + γ

)vsB (p)

(

γ

2(dsB + γ)

)

and therefore

x̃N(i, j, k) =
λ(1 + φ

jk
i )

di + λ − y jk
i di

+
γ(1 + φik

j )

2(d j + γ − yik
j d j)
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