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Asymptotic Behavior of Imaginary Zeros of Linear Systems
with Commensurate Delays

Jie Chen, Peilin Fu and Silviu-Iulian Niculescu

Abstract— This paper addresses the problem of asymptotic
stability of linear time-delay systems with commensurate delays.
We study the asymptotic behavior of the critical characteristic
zeros of such systems on the imaginary axis. This behavior
determines whether the imaginary zeros cross from one half
plane into another, and hence plays a critical role in determining
the stability of a time-delay system. We consider time-delay sys-
tems given in both state-space form and as a quasipolynomial.
Our results reveal that in the former case the zero asymptotic
behavior can be characterized by solving a simple eigenvalue
problem, and in the latter case, by computing the derivatives
of the quasipolynomial. To perform such an analysis, we make
use of an operator perturbation approach.

Keywords: Time-delay, asymptotic stability, critical zeros,
asymptotic behavior, matrix pencil.

I. I NTRODUCTION

In this paper we consider linear time-delay systems de-
scribed by the state-space equation

ẋ(t) = A0 x(t) +
q∑

k=1

Ak x(t− kτ), τ ≥ 0. (1)

Alternatively, we also consider the differential-difference
equation

y(n)(t) +
n−1∑

i=0

q∑

k=0

akiy
(i)(t− kτ) = 0, τ ≥ 0. (2)

It is known that both these representations provide full
description of retarded delay systems withcommensurate
delays, which can be exchanged from one to another. We
study the stability of these systems.

The stability of linear time-delay systems has been a well-
studied topic, which generally can be conducted equivalently
on a system’scharacteristic quasipolynomial. For retarded
systems with commensurate delays, the stability problem can
be tackled in an especially efficient manner. Indeed, it is now
widely known that the stability properties of such a system
can be fully characterized by finding a set of critical delay
values, at which the system’s characteristic quasipolynomial
has zeros on the imaginary axis. The latter can be computed
in a variety of ways, notably, e.g., by solving a generalized
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eigenvalue problem [8]. These critical delay values form
adjacent intervals; by the continuity of the zeros with respect
to the delay, whether the system is stable or not over a
specific delay interval can be determined by checking the
stability for any one fixed value within that interval. Thus
in this way, the stability of the system can be determined in
principle over the entire range of delay values. One should
note, nevertheless, that even for a fixed delay, the testing of
stability for a time-delay system is not a simple task.

An alternative method in determining the stability is
to analyze the asymptotic behavior of the critical zeros
on the imaginary axis. Specifically, at each critical delay
value corresponding to a critical zero of the characteristic
quasipolynomial, we may seek to determine whether the zero
may traverse from one half plane into another; for example,
the system will become unstable if a critical zero enters the
open right half plane, and otherwise will remain stable if all
the critical zeros remain in the left half plane. This thinking
has been advocated in the early works [2], [4], [5], [9], [13],
[14], [16], and will be the central issue addressed in the
present paper. This analysis of the zero asymptotic behavior,
known as thestability switch problem, is unfortunately, not
without intricacy. The issue is especially complicated by the
fact that the characteristic zeros of a quasipolynomial may
exhibit rather complex analytical properties, and as such a
rigorous justification is called for; this seems to have been
overlooked in the existing literature.

We adopt anoperator perturbation approachto the sta-
bility switch problem. A sound mathematical tool (see, e.g.,
[11]), this approach appears most natural. Indeed, the ap-
proach seeks to recast the zero asymptotic analysis problem
as one of eigenvalue perturbation. This enables us to obtain
readily computable results that fully characterize the varia-
tion properties of the critical zeros at the critical delay values.
Specifically, we show that the zero asymptotic behavior can
be determined by computing the eigenvalues of a constant
matrix, whereas the matrix in question is constructed directly
from the solution of of the aforementioned generalized eigen-
value problem. As such, not only does the approach lend a
rigorous treatment, but it also requires essentially no more
computation than that required for determining the critical
zeros. The results thus constitute a natural continuation of
the previous work, and the computation overhead is minimal.

The remaining paper is organized as follows. In Section
2, we introduce and more importantly, develop further the
eigenvalue perturbation results. These results are not only



pertinent to our subsequent analysis, but in fact provide a
more general development of interest to operator perturbation
theory in general. Based on these results, we then solve
in Section 3 the stability switch problem for the system
given in (1). Section 4 develops companion results for
systems described by (2), or equivalently, those described
by a quasipolynomial. Section 5 concludes the paper.

The following notations will be used throughout the paper.
Let IR be the set of real numbers,C the set of complex
numbers, andIR+ the set of nonnegative real numbers.
Denote the open right half plane byC+ := {s : <(s) > 0},
the closed right half plane byC+, and the imaginary axis
by ∂C+. Similarly, denote the open unit disc byID, the unit
circle by ∂ID, and the closed exterior of the unit disc by
IDc. For a matrixA, denote its spectrum byλ(A), and the
ith eigenvalue byλi(A). For a matrix pair(A, B), denote
the set of all its generalized eigenvalues byσ(A, B), i.e.,

σ(A, B) := {λ ∈ C : det(A− λB) = 0} .

The operationA⊕B denotes the Kronecker sum, andA⊗B
the Kronecker product, of the matricesA andB.

II. PRELIMINARY RESULTS

In this section, we introduce the operator perturbation
theory for matrix eigenvalue problems, which concerns how
the eigenvalues of a matrix function may vary with respect
to a small perturbation. The development is based on the
classical treatise of Kato [11], but goes further beyond.

Consider a matrix operatorT (x) of a real variablex.
Suppose that in the neighborhood ofx = 0, the perturbed op-
eratorT (x) is holomorphic, or equivalently, can be expanded
into the power series,

T (x) = T (0) + xT ′(0) + x2T ′′(0) + · · · . (3)

Let D0 be a small disk nearx = 0 but excludingx = 0. It is
known that forx ∈ D0, any semisimple eigenvalue ofT (x),
namely the semisimple root of the characteristic equation

det (T (x)− ξI) = 0, (4)

is an analytic functions ofx and can also be expressed as
a power series inx; here by a semisimple eigenvalue, we
mean a repeated but diagonalizable eigenvalue. This fact is
summarized in Lemma 1.

Lemma 1 [11] Let λ(0) be a semisimple eigenvalue ofT (0)
with multiplicity m, and P be the eigenprojection forλ(0),
that is,

P =
1

2πj

∮

Γ

(ξI − T (0))−1
dξ, (5)

where Γ is a positively-oriented closed contour enclosing
λ(0) but no other eigenvalues ofT (0). Then the correspond-
ing eigenvalues ofT (x) are analytic inx and have the form

µi(x) = λ(0) + λ
(1)
i x + o(x2), i = 1, . . . , m, (6)

whereλ
(1)
i are the eigenvalues ofPT ′(0)P .

With no loss of generality, letλ(0) be ordered as the first
eigenvalue ofT (0) with multiplicity m. ThenT (0) can be
decomposed as

T (0) = QΣR =
[

Q1 Q2

] [
Σ1 0
0 Σ2

] [
R1

R2

]
, (7)

where Σ1 is diagonal with diagonal entries asλ(0), R =
Q−1 =

[
rT
1 · · · rT

n

]T
, and Q =

[
q1 · · · qn

]
consist of the eigenvectors and generalized eigenvectors of
of T (0). The following lemma shows howλ(1)

i may be
computed.

Lemma 2 Let T (0) be partitioned as in (7). Thenλ(1)
i , i =

1, . . . , m, in (6) are the eigenvalues ofR1T
′(0)Q1.

Proof. According to the Cauchy integral theorem,

P =
1

2πj

∮

Γ

(ξI − T (0))−1
dξ

= Q

[
1

2πj

∮

Γ

(ξI − Σ)−1
dξ

]
R

= Q

[
I 0
0 0

]
R = Q1R1.

As a result, we have

λi (PT ′(0)P ) = λi (Q1R1T
′(0)Q1R1)

= λi (R1T
′(0)Q1R1Q1)

= λi (R1T
′(0)Q1) ,

where the last equality holds sinceR1Q1 = I. This com-
pletes the proof.

Consider next the case thatλ(0) is not a semisimple but
repeated eigenvalue ofT (0) with multiplicity m. In this case,
T (0) admits a Jordan decomposition in whichΣ is block
diagonal with diagonal Jordan blocks, andQ1 consists of the
generalized eigenvectors associated withλ(0). In particular,

Σ1 =




λ(0) 1 · · · 0

0
.. .

. . . 0
...

. . . 1
0 · · · · · · λ(0)




.

The eigenvalue ofT (x) can no longer be expanded in the
form of (6), but instead as a Puiseux series.

Lemma 3 Let λ(0) be a non-semisimple eigenvalue ofT (0)
with multiplicity m. Then the corresponding eigenvalues of
T (x) have the form

µi(x) = λ(0) +
(
γ

(1)
i

) 1
m

x
1
m + · · · , i = 1, . . . , m, (8)

whereγ
(1)
i = rmT ′(0)q1.

Proof. Construct an operatorW (x) as

W (x) =
(
T (x)− λ(0)I

)m

. (9)



It follows that

W (0) =
(
T (0)− λ(0)I

)m

=
(
QΣR− λ(0)I

)m

= Q
(
Σ− λ(0)I

)m

R.

As a result,0 is a semisimple eigenvalue ofW (0) with
multiplicity m. SinceW (x) is holomorphic, i.e.,

W (x) = W (0) + xW ′(0) + · · · ,
Lemma 1 indicates that the eigenvalues ofW (x) nearx = 0
can be expanded as

νi(x) = 0 + γ
(1)
i x + o(x2), i = 1, . . . , m

whereγ
(1)
i are the eigenvalues ofPW W ′(0)PW , with

PW =
1

2πj

∮

Γ

(ξI −W (0))−1
dξ, (10)

andΓ as a positively-oriented closed contour enclosing0 but
no other eigenvalues ofW (0). On the other hand, according
to (9), the eigenvalues ofW (x) are found to be

λi (W (x)) = λi

((
T (x)− λ(0)I

)m)

=
[
λi (T (x))− λ(0)

]m

.

As a result, thei-th eigenvalue ofT (x), namely µi(x),
satisfies

[
µi(x)− λ(0)

]m

= 0 + γ
(1)
i x + · · · , i = 1, 2, · · · , m,

which gives rise to

µi(x) = λ(0) +
(
γ

(1)
i

) 1
m

x
1
m + · · · .

The remainder of the proof then amounts to calculat-
ing γ

(1)
i , i = 1, 2, · · · , m, which are the eigenvalues of

PW W ′(0)PW . Since

PW =
1

2πj

∮

Γ

(ξI −W (0))−1
dξ

=
1

2πj

∮

Γ

Q
[
ξI −

(
Σ− λ(0)I

)m]−1

Rdξ

= Q

[
I 0
0 0

]
R

= Q1R1,

we haveλi (PW W ′(0)PW ) = λi (Q1R1W
′(0)Q1R1) =

λi (R1W
′(0)Q1), whereQ1 = [q1 q2 · · · qm] and R1 =

[rT
1 rT

2 · · · rT
n ]T . Sinceq1, q2, · · · , qm are the generalized

eigenvectors associated withλ(0), it follows that
[
T (0)− λ(0)I

]
q1 =

[
T (0)− λ(0)I

]2

q2

= · · ·
=

[
T (0)− λ(0)I

]m

qm

= 0. (11)

Furthermore, considerW (x) as them successive products
of T (x)− λ(0)I, we have

W ′(0) =
m−1∑

k=0

[
T (0)− λ(0)I

]k

T ′(0)
[
T (0)− λ(0)I

]m−1−k

.

(12)
It then follows from (11) and (12) that

W ′(0)q1 =
[
T (0)− λ(0)I

]m−1

T ′(0)q1, (13)

W ′(0)q2 =
[
T (0)− λ(0)I

]m−2

T ′(0)
[
T (0)− λ(0)I

]
q2

+
[
T (0)− λ(0)I

]m−1

T ′(0)q2

=
[
T (0)− λ(0)I

]m−2

T ′(0)q1

+
[
T (0)− λ(0)I

]m−1

T ′(0)q2, (14)

...

W ′(0)qm =
[
T (0)− λ(0)I

]0

T ′(0)q1

+
[
T (0)− λ(0)I

]1

T ′(0)q2 + · · ·

+
[
T (0)− λ(0)I

]m−1

T ′(0)qm. (15)

Moreover, the Jordan decompositionT (0) = QΣR leads to
[
T (0)− λ(0)I

]k

= Q
[
Σ− λ(0)I

]k

R.

As a consequence, we have

r1

[
T (0)− λ(0)I

]k

= r1Q
[
Σ− λ(0)I

]k

R

=
[

1 0 · · · 0
] [

Σ− λ(0)I
]k

R

=





r2 k = 1
r3 k = 2
...

...
rm k = m− 1

(16)

r2

[
T (0)− λ(0)I

]k

=
[

0 1 0 · · · 0
] [

Σ− λ(0)I
]k

R

=





r3 k = 1
r4 k = 2
...

...
rm k = m− 2
0 k = m− 1

(17)

...

In light of (13) and (16), it is then straightforward to verify
that

r1W
′(0)q1 = r1

[
T (0)− λ(0)I

]m−1

T ′(0)q1 = rmT ′(0)q1.



Similarly,

riW
′(0)qj =

{
rmT ′(0)q1 i = j
0 i > j

Consequently,

R1W
′(0)Q1

=




rmT ′(0)q1 r1W
′(0)q2 · · · r1W

′(0)qm

0 rmT ′(0)q1 · · · r2W
′(0)qm

...
...

.. .
...

0 0 · · · rmT ′(0)q1




which is an upper triangular matrix with the eigenvalues

γ
(0)
i = rmT ′(0)q1, i = 1, 2, · · ·m.

This completes the proof.

It is worth pointing out that most of the available lit-
erature (see, e.g., [?], [15], [12]), while noting thatµi(x)
can be expanded in a Puiseux series, does not provide a
characterization of the coefficients, which, however, will be
of central importance in our subsequent development. On the
other hand, the explicit expression (8) has been given in [1]
(pp. 164) without proof, and derived in [6]; the derivation in
the latter reference, unfortunately, was done in a seemingly
ad hocway. Our development gives a rigorous treatment of
this case based on the semisimple case developed in [11],
which also appears more elegant mathematically.

III. STATE-SPACE MODELS

We now consider the systems described by the state-space
form (1). The characteristic quasipolynomial associated with
this system is given by

p(s, τ) := det

(
sIn −

q∑

k=0

Ake−skτ

)
. (18)

For a fixedτ ≥ 0, the system is asymptotically stable if and
only if all the zeros of the quasipolynomialp(s, τ) lie in
C− (see, e.g., [8]). Define the matrices

U =




In2 0 . . . 0 0
0 In2 . . . 0 0

. ..
0 0 . . . In2 0
0 0 . . . 0 B2q




,

V =




0 In2 0 . . . 0
0 0 In2 . . . 0

.. .
0 0 0 . . . In2

−B0 −B1 −B2 . . . −B2q−1




whereBm ∈ IRn2
, m = 0, 1, . . . , 2q are given by

Bq−m = In ⊗AT
m, Bq = A0 ⊕AT

0 , Bq+m = Am ⊗ In.

The following Lemma characterizes the critical zeros of
p(s, τ) on the imaginary axis, together with the critical delay
values (see, e.g., [3]).

Lemma 4 The quasipolynomialp(s, τ) has a critical zero
on the imaginary axis if and only if the following conditions
are satisfied:

(i) σ(V, U) ∩ ∂ID 6= ∅;
(ii) There exists somezi ∈ σ(V,U) ∩ ∂ID such that

σ

(
q∑

k=0

Akzk
i

)
∩ jIR+ 6= ∅.

For a critical zero jωi ∈ σ(
∑q

k=0 Akzk
i ) whereωi ∈ IR+,

ωi 6= 0, the corresponding critical delay is an element from
the set

T (ωi) =
{

Log(zi)
jωi

+
2π`

ωi
> 0, ` = 1, 2, . . .

}
,

whereLog(·) represents the Cauchy principal value.

Evidently, since the zeros ofp(s, τ) are conjugate symmet-
ric, it suffices to consider only the critical zeros withωi > 0.
This is reflected in the lemma.

Let τ∗ and jω∗, ω∗ ∈ IR+, ω∗ 6= 0 be a critical pair of
critical delay and critical zero ofp(s, τ), i.e.,p(jω∗, τ∗) =
0. Introduce the new real variablex = τ − τ∗, and define

T (x) :=
q∑

k=0

(
Ake−jω∗kτ∗

)
e−jω∗kx. (19)

Clearly, T (x) is holomorphic. Furthermore, since

det(T (0)− jω∗I) = p(jω∗, τ∗) = 0,

jω∗ is an eigenvalue ofT (0). Without loss of generality,
let jω∗ be ordered as the first eigenvalue ofT (0), with
multiplicity m. We first consider the case thatjω∗ is a
semisimple eigenvalue.

Theorem 1 Let jω∗ be a semisimple eigenvalue of∑q
k=0 Ake−jω∗kτ∗ . Then for any τ sufficiently close to

τ∗, the characteristic zeros corresponding tojω∗ can be
expanded by the power series

jω∗ − λi

[
R1

(
q∑

k=1

jkω∗Ake−jω∗kτ∗
)

Q1

]
(τ − τ∗)

+ o
(
(τ − τ∗)2

)
, i = 1, 2, · · · , m. (20)

Thus, forτ sufficiently close toτ∗ but τ > τ∗, there are at
least ` (` ≤ m) of characteristic zeros entering the right-
half plane (or vice versa) if̀ of the eigenvalues satisfy the
condition

Re

{
λi

[
R1

(
q∑

k=1

jkω∗Ake−jω∗kτ∗
)

Q1

]}
< 0 (> 0)

i = 1, 2, · · · , m (21)

whereQ1 = [q1 q2 · · · qm] and R1 = [rT
1 rT

2 · · · rT
m]T ,

with qi and ri the right and left eigenvectors of∑q
k=0 Ake−jω∗kτ∗ associated withjω∗.



Proof.The result follows from a direct application of Lemma
2, by noting that nearx = 0 (i.e., nearτ = τ∗), the matrix
function given in (19) can be expanded as

T (x) = T (0) + xT ′(0) + o(x2)

=
q∑

k=0

Ake−jω∗kτ∗ − x

(
q∑

k=1

jkω∗Ake−jω∗kτ∗
)

+ o(x2).

This gives the power series expansion (20). Taking the real
part of (20) then completes the proof.

It is worth noting that the right and left eigenvectors in
Theorem 1 are precisely those of the matrix

∑q
k=0 Akzk

i ,
with zi = e−jω∗τ∗ . Hence, the matricesQ1 andR1 are com-
puted directly while computing the spectrum of

∑q
k=0 Akzk

i ,
which is required in order to determine the critical zeros
jω∗. The computation required to check the condition (21)
is then only that of computing the eigenvalues. In particular,
when jω∗ is a simple critical zero, this computation can be
further simplified. The following corollary is an immediate
consequence of Theorem 1, which attests to this observation.

Corollary 1 Let jω∗ be a simple eigenvalue of∑q
k=0 Ake−jω∗kτ∗ . Then for anyτ sufficiently close toτ∗

but τ > τ∗, jω∗ enters the right-half plane (or vice versa)
if

Re

{
r1

(
q∑

k=1

jkω∗Ake−jω∗kτ∗
)

q1

}
< 0 (> 0),

whereq1 andr1 are the right and left eigenvectors associated
with jω∗ .

Our next result concerns the case thatjω∗ is not a
semisimple but repeated eigenvalue. The proof is analogous
to that of Theorem 1, and follows from Lemma 3.

Theorem 2 Let jω∗ be a repeated eigenvalue of∑q
k=0 Ake−jω∗kτ∗ with multiplicity m. Suppose thatjω∗

is not semisimple. Then for anyτ sufficiently close toτ∗ but
τ > τ∗, the characteristic zeros corresponding tojω∗ can
be expanded by the Puiseux series

jω∗ +

∣∣∣∣∣rm

(
q∑

k=1

jkω∗Ake−jω∗kτ∗
)

q1

∣∣∣∣∣

1
m

ej 2kπ+π+θ
m

× (τ − τ∗)
1
m + · · · , k = 0, 1, · · · , m− 1,

where θ ∈ [0, 2π] is the phase angle of
rm

(∑q
k=1 jkω∗Ake−jω∗kτ∗

)
q1, and q1 and rm are

obtained from the Jordan decomposition
q∑

k=0

Ake−jω∗kτ∗ = QΣR,

with Q = [q1 q2 · · · qn] andR = Q−1 = [rT
1 rT

2 · · · rT
n ]T .

Hence, forτ sufficiently close toτ∗ but τ > τ∗, the number
of critical zeros entering the right-half plane (or vice versa)
can be determined by the condition

cos
(

2kπ + π + θ

m

)
> 0 (< 0), k = 0, · · · , m−1. (22)

Theorem 2 reveals a fundamental difference between the
asymptotic behaviors of a semisimple eigenvalue and one
that is not. For a repeated eigenvalue that is not semisimple,
the result shows that, precluding the case that

rm

(
q∑

k=1

jkω∗Ake−jω∗kτ∗
)

q1 = 0,

whether the zero will enter the right-half plane is solely deter-
mined by the multiplicity of the zero and the phase angleθ.
In this case, the branches of the zero will almost generically
enter the right-half plane. Note that in the degenerate case
m = 1, Theorem 2 also reduces to Corollary 1.

IV. D IFFERENTIAL-DIFFERENCEEQUATION MODEL

In this section we develop companion results for sys-
tems described by the differential-difference equation (2), or
equivalently, by the quasipolynomial

a
(
s, e−τs

)
=

q∑

k=0

ak(s)e−kτs, τ ≥ 0, (23)

where

a0(s) = sn+
n−1∑

i=0

a0is
i, ak(s) =

n−1∑

i=0

akis
i, k = 1, · · · , q.

We note that a similar generalized eigenvalue-based solution
(see, e.g., [3]) exists for the critical zerosjω∗ of a (s, e−τs)
at the critical delay valueτ∗, at whicha

(
jω∗, e−jω∗τ∗

)
=

0. It is also clear that Theorem 1 and Theorem 2 can be
directly applied to determine the asymptotic behavior of the
critical zerosjω∗, by making use of the realization

A0 =




0 1 · · · 0
...

...
. ..

...
0 0 · · · 1

−a00 −a01 · · · −a0,n−1


 ,

Ak =




0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

−ak0 −ak1 · · · −ak,n−1


 , k = 1, . . . , q.

Additionally, with the specific structures of this realization,
it is not difficult to derive that the eigenvalues ofT (0)
are also the roots of quasipolynomiala

(
s, e−jω∗τ∗

)
which

make it possible to state the results directly in terms of
a (s, e−τs). We first show that with a realization given by
the above companion form,T (0) cannot have semisimple
repeated eigenvalues.

Lemma 4 Any companion matrix

A =




0 1 · · · 0
...

...
.. .

...
0 0 · · · 1
−α0 −α1 · · · −αn−1


 ,



cannot have semisimple repeated eigenvalues.

Proof. Assume otherwise; that is,A has a semisimple re-
peated eigenvalueλ(0) with multiplicity m, m > 1. Then,
there exists a similarity transformation such thatPAP−1 is
in block diagonal form, in which, without loss of generality,
the first diagonal block is itself anm ×m diagonal matrix
with diagonal elements equal toλ(0). Consider the vector
b =

[
0 0 · · · 1

]T
. It is well-known that(A, b) forms

a controllable pair. Since controllability is invariant under
similarity transformation,(PAP−1, P b) is also controllable.
This, however, is not possible withPAP−1 given as above,
a fact readily verified using, e.g., the PBH controllability
test [10]. We are thus led to contradiction and the proof is
completed.

The implication of Lemma 4 is rather clear. With the above
realization ofAk, the matrixT (0) is in the companion form
with αi =

∑q
k=0 akie

−jkω∗τ∗ , i = 0, 1 · · · , n−1. As such,
when applying the results in Section 3, one can preclude
the case thatT (0) has semisimple repeated eigenvalues;
instead, the critical zerojω∗ is either a simple eigenvalue,
or a repeated, non-semisimple eigenvalue ofT (0). Theorem
3 and Corollary 2 given below describe the asymptotic
behavior of imaginary poles in these two cases, in terms
of a (s, e−τs). The proofs of these results involve lengthy
algebraic manipulations and are omitted for brevity.

Theorem 3 Let jω∗ be a repeated zero ofa
(
s, e−jω∗τ∗

)
with multiplicity m. Then for anyτ sufficiently close toτ∗

but τ > τ∗, the zeros corresponding tojω∗ can be expanded
by the Puiseux series

jω∗ +

∣∣∣∣∣∣
m!

d a(jω∗, e−jω∗τ )
dτ |τ=τ∗

dm a(s, e−jω∗τ∗ )
dsm |s=jω∗

∣∣∣∣∣∣

1
m

ej 2kπ+π+θ
m (τ − τ∗)

1
m

+ · · · , k = 0, 1, · · · , m− 1,

whereθ ∈ [0, 2π] is the phase angle of

d a(jω∗, e−jω∗τ )
dτ |τ=τ∗

dm a(s, e−jω∗τ∗ )
dsm |s=jω∗

.

Hence, forτ sufficiently close toτ∗ but τ > τ∗, the number
of critical zeros entering the right-half plane (or vice versa)
can be determined by the condition

cos
(

2kπ + π + θ

m

)
> 0 (< 0), k = 0, 1, · · · , m− 1.

Corollary 2 Let jω∗ be a simple zero ofa
(
s, e−jω∗τ∗

)
.

Then for anyτ sufficiently close toτ∗ but τ > τ∗, jω∗

enters the right-half plane (or vice versa) if

Re





d a(jω∗, e−jω∗τ )
dτ |τ=τ∗

d a(s, e−jω∗τ∗ )
ds |s=jω∗



 < 0 (> 0).

It is useful to note that in the case of a simple critical
zero, results similar to Corollary 3 have been reported in [2],

[4], [5], [9], [16], while without much technical deliberation.
Our derivation herein thus provides an independent, rigorous
justification to some of the previously available results.

V. CONCLUDING REMARKS

In this paper we have studied the asymptotic behavior of
the critical characteristic zeros of linear time-delay systems
with commensurate delays, for systems posed both in state-
space form and as a quasipolynomial. The results build on
the previous work on computing the critical delay value
and critical zeros, and hence require no further significant
computation.

While this paper is only concerned with retarded time-
delay systems, the results can be extended in a fairly
straightforward manner to neutral systems, based on the
recent work [7] by the authors. It is also possible to carry
out a more elaborate development utilizing second or even
higher order analysis, to have a more refined characterization
of the zero asymptotic behavior. This will require a series
expansion in higher order terms. A second order analysis
will be useful when the present first-order expansion ceases
to be conclusive, when some of the eigenvalues in the first-
order term have a real part equal to zero. These extensions
will be reported in a forthcoming paper.
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