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Asymptotic Behavior of Imaginary Zeros of Linear Systems
with Commensurate Delays

Jie Chen, Peilin Fu and Silviu-lulian Niculescu

Abstract—This paper addresses the problem of asymptotic eigenvalue problem [8]. These critical delay values form
stability of linear time-delay systems with commensurate delays. adjacent intervals; by the continuity of the zeros with respect
We study the asymptotic behavior of the critical characteristic  {, "the delay, whether the system is stable or not over a
zeros of such systems on the imaginary axis. This behavior r T . .
determines whether the imaginary zeros cross from one half Spe?'f'c delay 'ntervall can be det?rm'ned b}’ checking the
plane into another, and hence plays a critical role in determining ~ Stability for any one fixed value within that interval. Thus
the stability of a time-delay system. We consider time-delay sys- in this way, the stability of the system can be determined in
tems given in both state-space form and as a quasipolynomial. principle over the entire range of delay values. One should
Our results reveal that in the former case the zero asymptotic note, nevertheless, that even for a fixed delay, the testing of

behavior can be characterized by solving a simple eigenvalue tability f i del t . t imole task
problem, and in the latter case, by computing the derivatives Stability Tor a ume-delay system IS not a simple task.

of the quasipolynomial. To perform such an analysis, we make

use of an operator perturbation approach. An alternative method in determining the stability is

to analyze the asymptotic behavior of the critical zeros

Keywords: Time-delay, asymptotic stability, critical zeros, O the imaginary axis. Specifically, at each critical delay

asymptotic behavior, matrix pencil. value corresponding to a critical zero of the characteristic

guasipolynomial, we may seek to determine whether the zero

|. INTRODUCTION may traverse from one half plane into another; for example,

In this paper we consider linear time-delay systems ddéhe system will become unstable if a critical zero enters the
scribed by the state-space equation open right half plane, and otherwise will remain stable if all

q the critical zeros remain in the left half plane. This thinking
i(t) = Ao z(t) + Z Ay z(t — kr), r>0. () has been advocated in the early works [2], [4], [5], [9], [13],
1 [14], [16], and will be the central issue addressed in the

resent paper. This analysis of the zero asymptotic behavior,

Alternatively, we also consider the differential-differenceE - ’ .
y nown as thestability switch problemis unfortunately, not

equation : o . . . .
quat without intricacy. The issue is especially complicated by the
nola . fact that the characteristic zeros of a quasipolynomial may
vy +Y D akiy®(t—kt) =0,  T>0. (2  exhibit rather complex analytical properties, and as such a
=0 k=0 rigorous justification is called for; this seems to have been

It is known that both these representations provide fulbverlooked in the existing literature.
description ofretarded delay systems witlcommensurate

delays, which can be exchanged from one to another. We e adopt anoperator perturbation approacto the sta-
study the stability of these systems. bility switch problem. A sound mathematical tool (see, e.g.,

[11]), this approach appears most natural. Indeed, the ap-
The stability of linear time-delay systems has been a welproach seeks to recast the zero asymptotic analysis problem
studied topic, which generally can be conducted equivalentlys one of eigenvalue perturbation. This enables us to obtain
on a system'sharacteristic quasipolynomialFor retarded readily computable results that fully characterize the varia-
systems with commensurate delays, the stability problem cg@n properties of the critical zeros at the critical delay values.
be tackled in an eSpeCiaIIy efficient manner. Indeed, it is no‘gpeciﬁca”y, we show that the zero asymptotic behavior can
widely known that the stability properties of such a systempe determined by computing the eigenvalues of a constant
can be fully characterized by finding a set of critical delaynatrix, whereas the matrix in question is constructed directly
values, at which the system’s characteristic quasipolynomigom the solution of of the aforementioned generalized eigen-
has zeros on the imaginary axis. The latter can be computggue problem. As such, not only does the approach lend a
in a variety of ways, notably, e.g., by solving a generalizedigorous treatment, but it also requires essentially no more
This research is supported in part by CNRS/France and NSF/USA. computation than that reqUire.d for determining the Cr_itical
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pertinent to our subsequent analysis, but in fact provide a With no loss of generality, leA(®) be ordered as the first
more general development of interest to operator perturbati@genvalue ofI’(0) with multiplicity m. ThenT'(0) can be
theory in general. Based on these results, we then soldecomposed as

in Section 3 the stability switch problem for the system

given in (1). Section 4 develops companion results for T(0) = QYR = [ Q1 Qs ] { 2(1)1 2? } [ IR?l }’ @
systems described by (2), or equivalently, those described 2 2

by a quasipolynomial. Section 5 concludes the paper. where 3, is diagonal with diagonal entries a§?), R —

The following notations will be used throughout the pape@ ™ = [HT SR ) ]T- and Q@ = [ql ot n ]
Let R be the set of real numberg] the set of complex consist of the eigenvectors and generalized eigenvectors of
numbers, andR, the set of nonnegative real numbersof 7'(0). The following lemma shows hovv\gl) may be
Denote the open right half plane iy, := {s: %(s) >0}, computed.
the closed right half plane b¢ ., and the imaginary axis
by 9C. . Similarly, denote the open unit disc iy, the unit
circle by 9D, and the closed exterior of the unit disc byl’ "

ID°. For a matrixA, denote its spectrum b¥(A), and the pyoof. According to the Cauchy integral theorem,
ith eigenvalue by\;(A). For a matrix pair(A, B), denote .

Lemma 2 Let 7(0) be partitioned as in (7). Then!", i =
.,m, in (6) are the eigenvalues dt,7"(0)Q;.

the set of all its generalized eigenvaluesdyd, B), i.e., P = — ¢ (eI-T(0) ‘ag
27j
o(A, B):={\eC: det(A— AB)=0}. a »
| - Q[,f(ﬂ—m d&}R
The operationd & B denotes the Kronecker sum, add B 2rj Jr

the Kronecker product, of the matricelsand B. I 0
P Q[O O}R=Q1R1-

Il. PRELIMINARY RESULTS

In this section, we introduce the operator perturbatiof*au‘S a result, we have

theory for matrix eigenvalge probl_ems, which concerns how X (PT'(0)P) = N (QiRiT'(0)Q1Ry)
the eigenvalues of a matrix function may vary with respect A (RT(0\OR

to a small perturbation. The development is based on the = (M /( J@111Q1)
classical treatise of Kato [11], but goes further beyond. = N (R1T(0)@1),

Consider a matrix operatdf'(z) of a real variablez. where the last equality holds sind&,Q; = I. This com-
Suppose that in the neighborhood:of= 0, the perturbed op- pletes the proof. (]
eratorT'(x) is holomorphic, or equivalently, can be expanded

. ; i 0) j isi
into the power series, Consider next the case that?) is not a semisimple but

repeated eigenvalue @f(0) with multiplicity m. In this case,
T(z) = T(0) + 2T'(0) + 2*T"(0) + - --. (3) T(0) admits a Jordan decomposition in whi¢his block
diagonal with diagonal Jordan blocks, afdg consists of the

Let Do be a small disk near = 0 but excludings = 0. Itis  goneralized eigenvectors associated with. In particular,

known that forz € Dy, any semisimple eigenvalue @¥(x),

namely the semisimple root of the characteristic equation A1 o0

det (T'(z) —&I) =0, 4) v = 0o . .0
is an analytic functions of and can also be expressed as : RO
a power series inz; here by a semisimple eigenvalue, we 0 - - 2O

mean a repeated but diagonalizable eigenvalue. This fact

summarized in Lemma 1. ‘Ilﬁe eigenvalue of'(x) can no longer be expanded in the

form of (6), but instead as a Puiseux series.
Lemma 1[11] Let A\(*) be a semisimple eigenvalue Bf0)
with multiplicity m, and P be the eigenprojection fok(®,
that is,

Lemma 3 Let A(?) be a non-semisimple eigenvaluef0)
with multiplicity m. Then the corresponding eigenvalues of

1 T(z) have the form

= _— ¢ (I -T(0) " d 5

57 F(E (0)) " d¢, (5) . nE
where T is a positively-oriented closed contour enclosing piw) = AT+ (71' ) pre, =1 m (8)
A9 but no other eigenvalues @f(0). Then the correspond-

(1) _
ing eigenvalues of(z) are analytic inz and have the form Wherey; " = 7 T"(0)q1.

() = A© /\gl)x to(@®), i=1,...,m, (6) Proof. Construct an operatdi/(z) as

where A" are the eigenvalues dPT”(0)P. W(z) = (T(as) - /\(0)[) : Q)



It follows that Furthermore, consideW (z) as them successive products

m m of T(x) — )\(O)I, we have
W) = (T(O) - A<°>I) - (QER— A(O)I)
m m=1 m—1—k
= Q(z-\1)"R. 70) U)I} T'(0) [T(0) = A1
k=0
. . : . 12)
As a result,0 is a semisimple eigenvalue d# (0) with (
multiplicity m. SinceW (z) is holomorphic, i.e., It then follows from (11) and (12) that
r Tm—1
W (x) = W(0) + 2W'(0) + -, W(a = |T0) =1 T'(0)q, (13)

Lemma 1 indicates that the eigenvalued®fx) nearr =0  W'(0)g2

can be expanded as

vi(z) = O—l—%(l)nc—i—o(:f)7 i=1,...,m
)

where~; "’ are the eigenvalues dfy, W' (0) Py, with
1 -1
Py = I — 1
W= g pET-wo) e o)

andI" as a positively-oriented closed contour enclosiraut
no other eigenvalues ¥ (0). On the other hand, according
to (9), the eigenvalues d/ (z) are found to be

N (W) = )\i((T(:c)—)\(O)I>m)

[7(0) — A@1] "

+ 1) =21 T(0)ge

= (1) - 2O1]" " 1(0)q,

+ [ 201" 10, (14

[70) - A©1] "T(0)a
+ [T(O) - /\(O)I} ' T'0)g2 + - -

+ [T A1) " 0) g (15)

= |:)\i (T'(x)) - A(O)} : Moreover, the Jordan decompositi@i{0) = QR leads to

As a result, thei-th eigenvalue of7'(z), namely p;(x),
satisfies

[ui(:z:)fA(O)} *OJr'y(l)er cdi=1, 2+, m,

which gives rise to

(@) = A+ (1)

The remainder of the proof then amounts to calculat-
ing "), i = 1,2,---,m, which are the eigenvalues of
Py W'(0)Py . Since

Po = g e -wo) i
-1
_ _ )
N 2#3?{@ &l UI) } FRdg
ik o]R
= QlRla

we have ), (PwW'(0)Py) = N (Q1RiW/(0)Q1R1) =
i (RiW'(0)Q1), where@1 = [g1 g2 -+ ] and Ry =
[rf rzT - rIT Sinceqi, q2, -+, qm are the generalized
eigenvectors associated with®), it follows that

[T(O)—)\(U)I} o = {T(O)fA(O)Iqu

- .[%(0) — O] ™ g

[T(O) - A(O)I] "o [2 - /\(O)I} )

As a consequence, we have

r {T(O) - /\(O)I] *
— 0 [2 - )\(O)I} "R

=[10 - 0][2—%0)1}%

-4 (a6)

In light of (13) and (16), it is then straightforward to verify
that

. ay  nW0)q =r [T(0)— A1 T'(0)q1 = rmT'(0) g



Similarly, Lemma 4 The quasipolynomiab(s, 7) has a critical zero
on the imaginary axis if and only if the following conditions

R R TmT/(O)ql { :] - .
riW'(0)g; = { 0 P> are satisfied:
c " () o(V,U)N oD # 0;
onsequently, (i) There exists some, € o(V,U) N oD such that
RiW'(0)Q1 4
rmT'(0)g1 W' (0)g2 -+ mW (0)gm o (Z Asz> NjIR. # 0.
0 rmT'(0)gr -+ maW(0)gm =0
: : b : For a critical zero jw; € o(3>.7_, AxzF) wherew; € R,
0 0 o T(0)q w; # 0, the corresponding critical delay is an element from
which is an upper triangular matrix with the eigenvalues the set
. Log(Z; 2ml
71‘(0):r77LT/(0)q1a 1=1,2, ---m. ’T(wl): {M+W>O, gl,Q,...},
Jwi Wi
This completes the proof. [ ]

, o , . where Log(-) represents the Cauchy principal value.
It is worth pointing out that most of the available lit-

erature (see, e.g.?], [15], [12]), while noting thatu;(x) Evidently, since the zeros @f(s, 7) are conjugate symmet-
can be expanded in a Puiseux series, does not providerig, it suffices to consider only the critical zeros with > 0.
characterization of the coefficients, which, however, will bé&his is reflected in the lemma.

of central importance in our subsequent development. On the . e y . )
other hand, the explicit expression (8) has been given in [1] L6t 7" andjw”, w* € Ry, w* # 0 be a critical pair of
(pp. 164) without proof, and derived in [6]; the derivation inCritical delay and critical zero gi(s, 7), "e';p(]w*’ ') =
the latter reference, unfortunately, was done in a seeminglly Introduce the new real variable=  — 7%, and define

ad hocway. Our development gives a rigorous treatment of q L .
this case based on the semisimple case developed in [11], T(z) := Z (Ake*J“’ kT )e*ﬂ“’ ke (19)
which also appears more elegant mathematically. k=0
[1l. STATE-SPACE MODELS Clearly, T'(z) is holomorphic. Furthermore, since
We now consider the_systems _descnbec_i by the state-space det(T(0) — jo*I) = p(jw*, ) =0,
form (1). The characteristic quasipolynomial associated with
this system is given by jw* is an eigenvalue ofl'(0). Without loss of generality,

multiplicity m. We first consider the case thab* is a

let jw* be ordered as the first eigenvalue Bf0), with
) (18)
semisimple eigenvalue.

q
p(s, 7) = det <sln - ZAke_SkT
k=0
For a fixedr > 0, the system is asymptotically stable if and
only if all the zeros of the quasipolynomials, 7) lie in
C~ (see, e.g., [8]). Define the matrices

Theorem 1 Let jw* be a semisimple eigenvalue of
Si_, Ape ™39 Then for anyr sufficiently close to
7*, the characteristic zeros corresponding ja* can be

(I, 0 ... 0 0 expanded by the power series
0 I ... 0 0 .
U = ) jw* - )\z Rl (ijw*Ake_j“’*kT*> Q1‘| (T — ’T*)
0 0 coe T2 0 k=1
| 0 0 ... 0 By + o((r—=7%), i=1,2,---, m (20)
8 182 IO 8 Thus, forr sufficiently close ta* but 7 > 7*, there are at
nroo least ¢ (¢ < m) of characteristic zeros entering the right-
Vo= half plane (or vice versa) if of the eigenvalues satisfy the
0 0 0o ... 1,2 condition
L _BO —Bl —BQ e —ng,1 q
: Re! )\ |R hw* Ape I kT 0(>0
whereB,, € R™, m =0,1,...,2q are given by e{ ! (;J W Ake >Q1]}< (>0)
Bym=I,9AL B,=Ao® AL, Byim=An @I, i=1,2-, m(21)
The following Lemma characterizes the critical zeros ofvhereQ: = [¢1 g2 -+ qm] @and Ry = [rT +I ... +T|T,

p(s, T) on the imaginary axis, together with the critical delaywith ¢; and r; the right and left eigenvectors of
values (see, e.g., [3]). S, Ae @+ associated withjw*.



Proof. The result follows from a direct application of Lemma
2, by noting that neax = 0 (i.e., nearr = 7*), the matrix

. , ) Theorem 2 reveals a fundamental difference between the
function given in (19) can be expanded as

asymptotic behaviors of a semisimple eigenvalue and one

T(x) = T(0)+xT'(0) + o(z?) that is not. For a repeated eigenvalue that is not semisimple,
a L a L the result shows that, precluding the case that
_ ZAkefjw kT = ijw*Akefjw kT .
k=0 k=1 . * —djw*kr*
- kw* Ape™ ~0,

o= : (zj o A )ql
This gives the power series expansion (20). Taking the re@hether the zero will enter the right-half plane is solely deter-
part of (20) then completes the proof. B mined by the multiplicity of the zero and the phase artyle

It is worth noting that the right and left eigenvectors inln this case, the branches of the zero will almost generically
Theorem 1 are precisely those of the matpX’_, Ap2, enter the right-half plane. Note that in the degenerate case
with z; = 97", Hence, the matrice9; andR; are com- ™ =1, Theorem 2 also reduces to Corollary 1.
puted directly while computing the spectrumf; _, Ay zF,
which is required in order to determine the critical zeros
jw*. The computation required to check the condition (21) !N this section we develop companion results for sys-
is then only that of computing the eigenvalues. In particulaféms described by the differential-difference equation (2), or
when jw* is a simple critical zero, this computation can be2quivalently, by the quasipolynomial
further simplified. The following corollary is an immediate q
consequence of Theorem 1, which attests to this observation. a(s, e ™) = Z ap(s)e " >0, (23)
k=0

IV. DIFFERENTIAL-DIFFERENCEEQUATION MODEL

Corollary 1 Let jw* be a simple eigenvalue of
S _y Age 77" Then for anyr sufficiently close ta*  Wwhere

but 7 > 7*, jw* enters the right-half plane (or vice versa) n—1 4 n—1 4
if ap(s) = s"—i—Z apis’, ap(s) = Z agist, k=1, ---, q.
q i=0 i=0
Re {ﬁ <ijw*Ak€_]w h ) q1} <0 (>0), We note that a similar generalized eigenvalue-based solution
k=1 (see, e.g., [3]) exists for the critical zergps* of a (s, e~ 7%)

whereg; andr; are the right and left eigenvectors associatedat the critical delay value*, at whicha (jw*, e*jw*T*) =

with jw* . 0. It is also clear that Theorem 1 and Theorem 2 can be
Our next result concerns the case that* is not a directly applied to determine the asymptotic behavior of the

semisimple but repeated eigenvalue. The proof is analogofdtical zerosjw™, by making use of the realization

to that of Theorem 1, and follows from Lemma 3. 0 1 0

Theorem 2 Let jw* be a repeated eigenvalue of A - : : :
Sy Age 7@ with multiplicity m. Suppose thagjw* 0= 0 0 ... 1 ’
is not semisimple. Then for anysufficiently close ta* but

N . . * —Qoo —ao1 —ao,n—1
T > 7%, the characteristic zeros corresponding f@* can

be expanded by the Puiseux series 0 0 0

1 . . . .

q ™ . . . .
e Iy Ap = : : : : , k=1,...,q
Jw* 4 |, (ijw*AkeW kT >q1 e F 0 0 ... 0 e

=1 —ako —ag1 0 —Qkn—1
X (r=1)m+---, k=0, 1,---, m—1,

Additionally, with the specific structures of this realization,
where 6 € [O,‘ 2n] is the phase angle of it is not difficult to derive that the eigenvalues @t(0)
o (3op_y jkw* Are™" ¥ ) ¢, and ¢ and r, are are also the roots of quasipolynomia(s, e=7“ ") which

obtained from the Jordan decomposition make it possible to state the results directly in terms of
q a (s, e”7%). We first show that with a realization given by
ZAke*j“*’”* = QXR, the above companion fornf’(0) cannot have semisimple
k=0 repeated eigenvalues.

WithQ =[g1 ¢2 -+ go] andR=Q "' =[r{ r3 -+~ r71".  Lemma 4 Any companion matrix
Hence, forr sufficiently close ta* but+ > 7*, the number

of critical zeros entering the right-half plane (or vice versa) 0 1 T 0
can be determined by the condition : :

<2kﬂ‘+ﬂ’+9
cos [ ——

m

)>0 (<0), k=0,---, m—1. (22)

—&p —Q1 . —Qp_1



cannot have semisimple repeated eigenvalues. [4]1, [5], [9], [16], while without much technical deliberation.
Our derivation herein thus provides an independent, rigorous

Proof. Assume otherwise; that is4 has a semisimple re- .=~~~ . . )
st P justification to some of the previously available results.

peated eigenvalua(®) with multiplicity m, m > 1. Then,
there exists a similarity transformation such tad P~ is V. CONCLUDING REMARKS
in block diagonal form, in which, without loss of generality,

X ) . ! X In this paper we have studied the asymptotic behavior of
the first diagonal block is itself am x m diagonal matrix

o 50 . the critical characteristic zeros of linear time-delay systems
with diagonal elements equal - Consider the vector it commensurate delays, for systems posed both in state-
b=[0 0 .- 1] .Itiswell-known that(4, b) forms gpace form and as a quasipolynomial. The results build on
a controllable pair. Since controllability is invariant under,q previous work on computing the critical delay value

similarity transformation(PAP~!, Pb) is also controllable. ang critical zeros, and hence require no further significant
This, however, is not possible witRAP~! given as above, computation.

a fact readily verified using, e.g., the PBH controllability

test [10]. We are thus led to contradiction and the proof is While this paper is only concerned with retarded time-
completed. m delay systems, the results can be extended in a fairly

o , i straightforward manner to neutral systems, based on the

The implication of Lemma 4 is rather clear. With the abovgecent work [7] by the authors. It is also possible to carry
realization ofAy,, the matrix7'(0) is in the companion form o 4 more elaborate development utilizing second or even
with o; = Z_Z:o agie T ,1=0, 1---, n=1.As such, pigher order analysis, to have a more refined characterization

when applying the results in Section 3, one can precluds he zero asymptotic behavior. This will require a series
the case thatl'(0) has semisimple repeated eigenvaluessypansion in higher order terms. A second order analysis
instead, the critical zergw™ is either a simple eigenvalue, \i|| pe useful when the present first-order expansion ceases
or a repeated, non-semisimple eigenvalud'th). Theorem 4, pe conclusive, when some of the eigenvalues in the first-
3 and Corollary 2 given below describe the asymptotiger term have a real part equal to zero. These extensions

behavior of imaginary poles in these two cases, in termg; pe reported in a forthcoming paper.
of a(s, e~ 7%). The proofs of these results involve lengthy
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