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On the Hilbert Method in the Kinetic Theory of Multicellular

Systems: Hyperbolic Limits and Convergence Proof∗

Mohamed Khaladi, Nisrine Outada†and Nicolas Vauchelet‡

July 26, 2019

Abstract

We consider a system of two kinetic equations modelling a multicellular system : The first
equation governs the dynamics of cells, whereas the second kinetic equation governs the dynamics
of the chemoattractant. For this system, we first prove the existence of global-in-time solution.
The proof of existence relies on a fixed point procedure after establishing some a priori esti-
mates. Then, we investigate the hyperbolic limit after rescaling of the kinetic system. It leads
to a macroscopic system of Cattaneo type. The rigorous derivation is established thanks to a
compactness method.

Keywords Kinetic systems; Hyperbolic limit; Averaging lemma; hyperbolic limit.

1 Introduction

Our paper deals with derivation of models suitable to describe the behavior of multicellular systems
from their description at the microscopic scale delivered by models derived by suitable generalizations
of the kinetic theory. This problem can be viewed as a possible generalization of the celebrated sixth
Hilbert problem [8] which has been object of several interesting contributions in the classical kinetic
theory. The literature in the field is documented in the review papers by Perthame [19] and Saint
Raymond [20]. As it is known, the time-space scaling can be referred to the so called parabolic
and hyperbolic limits or equivalently low and high field limits. The parabolic limit leads to a drift–
diffusion type system (or reaction–diffusion system) in which the diffusion processes dominate the
behavior of the solutions. The hyperbolic limit leads to models where the influence of the diffusion
terms is of lower (or equal) order of magnitude in comparison with other convective or interaction
terms. Accordingly, different macroscopic models are obtained corresponding to different scaling
assumptions.

The derivation of macroscopic equations from the kinetic theory description was introduced for
dispersed biological entities in the pioneer paper [17] and subsequently developed by various authors
as witnessed in the bibliography of the survey [4]. An interesting application has been the derivation
of Keller-Segel type models. A broad bibliography has been produced on this challenging topic
as reviewed in Sections 5 and 6 of the survey [5]. The rationale of the approach proposed in [17]
consists in deriving a kinetic type model corresponding to the transport equation where the collision
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operator, namely the right hand side term of the kinetic equation, is perturbed by small stochastic
term modeling a poisson velocity jump process. The small parameter corresponds to the entity of
the perturbation, while an expansion of the dependent variable is developed in terms of powers of
the said parameter. Very recent applications have been delivered in [2, 6, 18].

This approach is useful even when it developed at a formal level as it leads to interesting models
at the macroscopic scale based on models of the dynamics at the microscopic scale rather than
on artificial assumptions to close mass and momentum conservation equations. However, as it is
known, most of the literature is developed at a formal level, where ad hoc assumptions are needed
to prove convergence of the aforementioned power expansions. The derivation of hyperbolic models
involves additional problems on the convergence of Hilbert type expansions technically related to
loss of regularity. Indeed, this is the main challenge of our paper which is tackled in four sections.
In more details, Section 2 presents a kinetic theory model of cross diffusion phenomena, where an
hyperbolic scaling is is used to include propagation phenomena with finite speed; a binary mixture
is accounted for and the statement of the initial value problem is delivered. Section 3 develops a
qualitative analysis of the initial value problem and ends up with a local, in time, existence result
and with the extension to arbitrarily large times. Finally, a convergence proof of an Hilbert type
expansion is delivered in Section 4, however, due to technical difficulties, we restrict ourself to one
dimension.

2 A kinetic model of chemotaxis

In this section we recall briefly the kinetic model presented in [18]. For this aim, let f(t, x, v) and
g(t, x, v) denotes, respectively, the density of cells and of the chemoattractant, depending on time t,
position x ∈ R

d and velocity v ∈ V ⊆ R
d. Then our kinetic model of chemotaxis reads:




∂tf + v · ∇xf = L(g, f),

∂tg + v · ∇xg = l(g) +G(f, g),
(1)

where the perturbation turning operators L and l model the dynamics of biological organisms by
velocity-jump process, and are integral operators defined by

L(f) =

∫

V

(
T (v, v′)f(t, x, v′)− T (v′, v)f(t, x, v)

)
dv′, (2)

l(f) =

∫

V

(
K(v, v′)f(t, x, v′)−K(v′, v)f(t, x, v)

)
dv′, (3)

while the operator G(f, g), which describe proliferation/destruction interactions, is given by

G(f, g) = a 〈f〉 − b 〈g〉 , (4)

where a, b are real positive constants, and 〈·〉 stands for the (v)-mean of a function, i.e 〈h〉 :=

∫

V
h(t, x, v)dv

for h ∈ L1(V ). The turning kernels T (v, v′) and K(v, v′) describe the reorientation of cells, i.e the
random velocity changes from the previous velocity v′ to the new v. Moreover, it is assumed that
the set of admissible velocities V is a spherically symmetric bounded domain of Rd with V ⊂ Bν

(the ball of radius ν > 0). This corresponds to the assumption that any individual of the population
chooses a direction with bounded velocity.
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As it is mentioned in the introduction, our contribution in this paper will be the rigorous deriva-
tion of a diffusive type model for movement of chemotaxis, obtained as a hydrodynamic limit of the
kinetic model (1). In detail, let us assume a hyperbolic scaling for the first population:

x −→ εx, t −→ εt, (5)

where ε > 0 is a small parameter which will be allowed to tend to zero. In this way we obtain from
(1) the following scaled kinetic equation




∂tfε + v · ∇xfε =

1
εL(gε, fε),

∂tgε + v · ∇xgε = l(gε) +G(fε, gε).
(6)

In addition we assume that the operator L admits the following decomposition:

L(gε, fε) = L0(fε) + εL1(gε, fε), (7)

where the perturbation turning operators L0 and L1 are linear integral operators with respect to fε,
and reads:

L0(fε) =

∫

V

(
T 0(v, v′)fε(t, x, v

′)− T 0(v′, v)fε(t, x, v)
)
dv′, (8)

L1[gε](fε) =

∫

V

(
T 1[gε](v, v

′)fε(t, x, v
′)− T 1[g](v′, v)fε(t, x, v)

)
dv′, (9)

while the operator l is still defined by Eq. (3). In this work we consider the following turning kernels
T 0, T 1, and K given by

T 0(v, v′) =
µ0

|V |
(1 + γ2v · v′), γ2

∫

V
v ⊗ v dv = |V |Id, (10)

T 1[g](v, v′) =
µ1

|V |
−

µ2γ
2

|V |
v′ · α(< gε >), (11)

K(v, v′) =
σ

|V |
, (12)

where µ0, µ1, µ2, σ are real positive constants, α is a mapping R −→ R
d, and |V | denotes the

volume of V . Notice that since V is assumed to be spherically symmetric, the constant γ in (10) is
well-defined.

With these considerations and after a straightforward calculation we obtain the following kinetic
system, we refer to the paper [18] for more details,





∂tfε + v · ∇xfε =
µ0

ε
(FJε − fε) + µ1

(
nε

|V |
− fε

)

−µ2γ
2

(
Jε
|V |

− vfε

)
· α(Sε),

∂tgε + v · ∇xgε = σ

(
Sε

|V |
− gε

)
+ anε − bSε,

(13)

where:
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• The local densities nε(t, x) and Sε(t, x) are defined by

nε(t, x) =

∫

V
fε(t, x, v)dv, and Sε(t, x) =

∫

V
gε(t, x, v)dv,

while the flux function Jε(t, x) fulfills

Jε(t, x) =

∫

V
vfε(t, x, v)dv.

• The equilibrium function FJε(t, x, v) is assumed to be a linear combination of 1, v1, . . . , vd:

FJε(t, x, v) =
1

|V |

(
nε(t, x) + γ2Jε(t, x) · v

)
. (14)

This equilibrium function is such that (see (10) for the definition of γ)

∫

V
FJε(t, x, v) dv = nε(t, x),

∫

V
vFJε(t, x, v) dv = Jε(t, x).

This system is completed with initial condition

fε(0, x, v) = f0
ε (x, v), and gε(0, x, v) = g0ε(x, v). (15)

3 Existence result

The existence of solutions to kinetic models of chemotaxis coupled to parabolic or elliptic system for
the chemoattractant concentration has been studied in several papers (see for instance [7, 10, 13, 24]).
However, the study of coupled kinetic systems like Eq. (13) is less common.

The aim of this section is to study the Cauchy problem (13)-(15) for fixed ε > 0. More in detail
we will state and prove an existence and uniqueness result for the kinetic model (13)-(15) in Theorem
3.2. The proof is based on a fixed point procedure, after establishing some a priori estimates.

We now introduce some notations which will be used throughout this section: XT := L∞((0, T )×
R
d×V ) stands for the Lebesgue space of essentially bounded measurable functions, with norm given

by

‖f‖L∞
t,x,v

= inf
{
C ≥ 0; |f(x)| ≤ C for almost every (t, x, v) ∈ (0, T )× R

d × V
}
,

and we have analogous definitions for L∞
x , L∞

t,x and L∞
x,v. Moreover, we define X+

T the subspace of
XT with nonnegative functions.

We assume that α is a bounded and globally Lipschitz continuous function on R: There exists
α∞ > 0, Lα > 0 such that

∀S1, S2 ∈ R, ‖α(S1)‖ ≤ α∞, ‖α (S1)− α (S2) ‖ ≤ Lα|S1 − S2|. (16)

Definition 3.1 We say that f is a weak solution of (13)–(15) on XT for T > 0, if f ∈ XT and
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satisfies





∫

(0,T )×Rd×V
(∂tϕ+ v · ∇xϕ) f dxdvdt = −

µ0

ε

∫

(0,T )×Rd×V
(FJ − f)ϕdxdvdt

−µ1

∫

(0,T )×Rd×V

(
n

|V |
− f

)
ϕdxdvdt −

∫

Rd×V
f0(x, v) ϕ(0, x, v) dxdv

+µ2γ
2

∫

(0,T )×Rd×V

(
J

|V |
− vf

)
· α(S)ϕdxdvdt,

∫

(0,T )×Rd×V
(∂tϕ+ v · ∇xϕ) g dxdvdt = −σ

∫

(0,T )×Rd×V

(
n

|V |
− g

)
ϕdxdvdt

+

∫

(0,T )×Rd×V
(an− bS)ϕdxdvdt −

∫

Rd×V
g0(x, v) ϕ(0, x, v) dxdv,

for any test function ϕ ∈ D([0, T )× R
d × V ).

We now state the main result of this section.

Theorem 3.2 (Existence of weak solutions) Let (f0, g0) ∈ L∞
x,v × L∞

x,v be nonnegative and as-

sume that α satisfies assumption (16). Then the Cauchy problem (13)-(15) has a unique global weak

solution (f, g), with (f, g) ∈ X+
T ×X+

T .

Moreover, if (f0, g0) ∈ L1
x,v × L1

x,v, then for any t ∈ [0, T ], ‖f(t, ·, ·)‖L1
x,v

= ‖f0‖L1
x,v

and

‖g(t, ·, ·)‖L1
x,v

= a
b ‖f

0‖L1
x,v

(1− e−b|V |t) + ‖g0‖L1
x,v

e−b|V |t.

The proof of Theorem 3.2 is divided into several steps. We first establish some a priori esti-
mates thanks to a characteristics method. Then, applying a fixed point procedure, we establish the
existence of a local in time solution. This solution can be extended for arbitrary time T > 0 and
therefore we get a global existence result.

3.1 A priori estimates

We start with the following a priori estimates.

Lemma 3.3 (A priori estimates) Let T > 0 and suppose that α satisfies assumption (16). Let

(f0, g0) be given in L∞
x,v×L∞

x,v. Let (f, g) be a weak solution of (13)-(15) such that (f, g) ∈ X+
T ×X+

T

and (∇xf,∇xg) ∈ XT
d ×XT

d. Then (f, g) satisfies the following estimates:

‖n‖L∞
t,x

+ ‖f‖XT
≤ C1‖f

0‖L∞
x,v

, (17)

‖S‖L∞
t,x

+ ‖g‖XT
≤ C2

(
‖f0‖L∞

x,v
+ ‖g0‖L∞

x,v

)
. (18)

Furthermore, if the initial data (f0, g0) ∈ L1
x,v × L1

x,v then we have, ∀ t ∈ [0, T ], ‖f(t, ·, ·)‖L1
x,v

=

‖f0‖L1
x,v

, and

‖g(t, ·, ·)‖L1
x,v

=
a

b
‖f0‖L1

x,v
(1− e−b|V |t) + ‖g0‖L1

x,v
e−b|V |t.

Moreover, if the initial data are given in W 1,∞
x,v ×W 1,∞

x,v and assuming that α ∈ C1(R), then

‖∇xn‖(L∞
x,v)

d + ‖∇xf‖(XT )d ≤ C3

(
‖∇xf

0‖(L∞
x,v)

d + ‖∇xg
0‖(L∞

x,v)
d

)
, (19)

‖∇xS‖(L∞
x,v)

d + ‖∇xg‖(XT )d ≤ C4

(
‖∇xf

0‖(L∞
x,v)

d + ‖∇xg
0‖(L∞

x,v)
d

)
, (20)

where the constants Ci, i = 1, 2, 3, 4, are independents of time T > 0.
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Proof. 1. First we begin with the proof of Eq. (17). For this purpose we write the first equation
of system (13) in the following way

∂tf + v · ∇xf +Kf = R1, (21)

where the functions K and R1 are given by

K =
µ0

ε
+ µ1 − µ2γ

2v · α(S), and R1 =
µ0

ε
FJ +

µ1n

|V |
− µ2γ

2J · α(S), (22)

where the expression of FJ is given in (14). Integrating (21) along the characteristics, we get

f(t, x, v) = exp

(∫ 0

t
K(τ, x̃τ , v)dτ

)
f0(x− tv, v)

+

∫ t

0
exp

(∫ s

t
K(τ, x̃τ , v)dτ

)
R1(x, x̃s, v)ds,

(23)

where we set x̃τ = x+(τ − t)v (this notation will be used throughout this section). Moreover, using
assumption (16), for each 0 ≤ s ≤ τ ≤ t ≤ T we have

|K(τ, x̃τ , v)| ≤
µ0

ε
+ µ1 + µ2α∞γ2ν. (24)

It follows

exp

(∫ s

t
K(τ, x̃τ , v)dτ

)
≤ eC1T ≤ C2. (25)

According to Eqs. (23) and (25) we write

f(t, x, v) ≤ C2f
0(x− tv, v) + C2

∫ t

0
|R1(s, x̃s, v)|ds. (26)

We estimate the last term of the right hand side of the later inequality as follows:

∫ t

0
|R1(s, x̃s, v)|ds ≤

(
µ0

ε|V |
+

µ1

|V |

)∫ t

0
n(s, x̃s)ds

+

(
µ0γ

2ν

ε|V |
+ µ2α∞γ2

)∫ t

0
|J(s, x̃s)|ds

≤

[
µ0

ε|V |
+

µ1

|V |
+

µ0γ
2ν2

ε|V |
+ µ2α∞γ2ν

] ∫ t

0
n(s, x̃s) ds

≤C3

∫ t

0
‖n(s, .)‖L∞

x
ds.

Injecting this last estimate in (26), we obtain

f(t, x, v) ≤ C2‖f
0‖L∞

x,v
+ C4

∫ t

0
‖n(s, ·)‖L∞

x
ds. (27)

An integration with respect to v provides

‖n(t, ·)‖L∞
x

≤ C2|V | ‖f0‖L∞
x,v

+ C4|V |

∫ t

0
‖n(s, ·)‖L∞

x
ds. (28)
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Therefore, applying Gronwall’s inequality we get

‖n(t, ·)‖L∞
x

≤ C‖f0‖L∞
x,v

. (29)

Using Eq. (27) together with (29), we obtain a similar bound on f in L∞
x,v. This completes the

proof of the first assertion (17).
2. The proof of (18) is straightforward and follows the same ideas as of estimate (17). Indeed,

we have

∂tg + v · ∇xg + σg = R2, where R2 =

(
σ

|V |
− b

)
S + an. (30)

Integrating along the characteristics, we get

g(t, x, v) = e−σtg0(x− tv, v) +

∫ t

0
e(s−t)σR2(s, x̃s)ds, (31)

and easy computation yields

g(t, x, v) ≤ g0(x− tv, v) +

∫ t

0
|R2(s, x̃s)|ds

≤ ‖g0‖L∞
x,v

+

∣∣∣∣
σ

|V |
− b

∣∣∣∣
∫ t

0
|S(s, x̃s)|ds + a

∫ t

0
|n(s, x̃s)|ds

≤ ‖g0‖L∞
x,v

+

∣∣∣∣
σ

|V |
− b

∣∣∣∣
∫ t

0
‖S(s, ·)‖L∞

x
ds+ a

∫ t

0
‖n(s, ·)‖L∞

x
ds. (32)

According to (17) we can write
‖n(s, .)‖L∞

x
≤ C1‖f

0‖L∞
x,v

,

hence, from (32) it follows that

g(t, x, v) ≤ ‖g0‖L∞
x,v

+ C1‖f
0‖L∞

x,v
+ C2

∫ t

0
‖S(s, ·)‖L∞

x
ds. (33)

Integrating over V , we obtain

S(t, x) ≤ |V | ‖g0‖L∞
x,v

+ C1|V | ‖f0‖L∞
x,v

+ C2|V |

∫ t

0
‖S(s, ·)‖L∞

x
ds, (34)

and we estimate S thanks to Gronwall’s inequality and we conclude the proof of (18) with (33).
3. Assuming the initial data in L1

x,v, we have by integration of the first equation in (13):
‖f(t, ·, ·)‖L1

x,v
= ‖f0‖L1

x,v
. Integrating the second equation in (13), we get

d

dt
‖g(t, ·, ·)‖L1

x,v
= a|V |‖f0‖L1

x,v
− b|V |‖g(t, ·, ·)‖L1

x,v
.

We obtain the desired estimate by integrating in time this later identity.
4. We now prove (19) and (20). To begin with, we rewrite (13) in the following way

{
∂tf + v · ∇xf + K̃f = R̃1,

∂tg + v · ∇xg = R2,
(35)

where the functions K̃ and R̃1 are defined by

K̃ =
µ0

ε
+ µ1, and R̃1 =

µ0

ε
FJ +

µ1 n

|V |
−

µ2γ
2

|V |
J · α(S) + µ2γ

2v · α(S)f, (36)
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while R2 is still given in (30). Therefore, we obtain

f(t, x, v) = e−tK̃f0(x− tv, v) +

∫ t

0
e(s−t)K̃ R̃1(s, x̃s, v)ds, (37)

and

g(t, x, v) = e−tσg0(x− tv, v) +

∫ t

0
e(s−t)σR2(s, x̃s)ds. (38)

Let i ∈ {1, . . . , d} be arbitrary but fixed index, and for a generic function h we denote by hi the
partial derivate ∂xi

h. Hence, from (37) and (38) we get

fi(t, x, v) = e−tK̃f0
i (x− tv, v) +

∫ t

0
e(s−t)K̃∂xi

(
R̃1(s, x̃s, v)

)
ds, (39)

and

gi(t, x, v) = e−tσg0i (x− tv, v) +

∫ t

0
e(s−t)σ∂xi

(R2(s, x̃s)) ds. (40)

We now estimate separately fi and gi. From (39) it follows that

|fi(t, x, v)| ≤ ‖f0
i ‖L∞

x,v
+

∫ t

0

∣∣∣∂xi

(
R̃1(s, x̃s, v)

)∣∣∣ ds. (41)

We have

∂xi

(
R̃1(s, x̃s, v)

)
=

µ0

ε|V |

(
ni(s, x̃s) + γ2Ji(s, x̃s) · v

)
+

µ1 ni(s, x̃s)

|V |

−
µ2γ

2

|V |
Ji(s, x̃s) · α (S(s, x̃s))−

µ2γ
2

|V |
Si(s, x̃s)J(s, x̃s) · α

′ (S(s, x̃s))

+ µ2γ
2v · α (S(s, x̃s)) fi(s, x̃s, v) + µ2γ

2Si(s, x̃s) v · α
′ (S(s, x̃s)) f(s, x̃s, v)

=

(
µ0

ε|V |
+

µ1

|V |

)
ni(s, x̃s) +

(
µ0γ

2 v

ε|V |
−

µ2γ
2

|V |
α (S(s, x̃s))

)
· Ji(s, x̃s)

−
µ2γ

2

|V |
Si(s, x̃s)J(s, x̃s) · α

′ (S(s, x̃s)) + µ2γ
2v · α (S(s, x̃s)) fi(s, x̃s, v)

+ µ2γ
2Si(s, x̃s) v · α

′ (S(s, x̃s)) f(s, x̃s, v).

(42)

We introduce the following notations

ñi(s) =

∫

V
‖fi(s, ·, v)‖L∞

x
dv, and S̃i(s) =

∫

V
‖gi(s, ·, v)‖L∞

x
dv. (43)

In this way we have

|ni(s, x̃s)| ≤ ñi(s), |Ji(s, x̃s)| ≤ νñi(s), and |Si(s, x̃s)| ≤ S̃i(s). (44)

Then from (42) we immediately obtain
∣∣∣∂xi

(
R̃1(s, x̃s, v)

)∣∣∣ ≤ C1ñi(s) + C2S̃i(s)‖n(s, ·)‖L∞
x

+ C3‖fi(s, ·, v)‖L∞
x

+ C4S̃i(s)‖f(s, ·, ·)‖L∞
x,v

.
(45)

According to (17) we have

‖n(s, ·)‖L∞
x

≤ C1‖f
0‖L∞

x,v
, and ‖f(s, ·, ·)‖L∞

x,v
≤ C2‖f

0‖L∞
x,v

. (46)

8



Therefore, using (45) we deduce that
∣∣∣∂xi

(
R̃1(s, x̃s, v)

)∣∣∣ ≤ C1ñi(s) + C2S̃i(s) + C3‖fi(s, ·, v)‖L∞
x
. (47)

This last estimate together with (41) allow to write

‖fi(t, ·, v)‖L∞
x

≤ ‖f0
i ‖L∞

x,v
+ C1

∫ t

0

(
ñi(s) + S̃i(s)

)
ds+ C3

∫ t

0
‖fi(s, ·, v)‖L∞

x
ds. (48)

The estimate on gi can be done similarly to assertion (48). Indeed from Eq. (40) it follows that

‖gi(t, ·, v)‖L∞
x

≤ ‖g0i ‖L∞
x,v

+

∫ t

0
|∂xi

(R2(s, x̃s))| ds, (49)

and we compute the first partial derivative of R2 as follows

∂xi
(R2(s, x̃s)) =

(
σ

|V |
− b

)
Si + ni. (50)

Hence

∂xi
(R2(s, x̃s)) ≤

∣∣∣∣
σ

|V |
− b

∣∣∣∣ S̃i(s) + ñi(s). (51)

Taking Eqs. (49) and (51) into account we deduce that

‖gi(t, ·, v)‖L∞
x

≤ ‖g0i ‖L∞
x,v

+

∫ t

0

(
ñi(s) + S̃i(s)

)
ds. (52)

Next integrating, with respect to v. Eqs. (48) and (52) and adding the resulting inequalities, we
can write

ñi(t) + S̃i(t) ≤ C1

(
‖f0

i ‖L∞
x,v

+ ‖g0i ‖L∞
x,v

)
+ C2

∫ t

0

(
ñi(s) + S̃i(s)

)
ds. (53)

Therefore, in view of Gronwall’s inequality, equation (53) yields

|ni(s, x)|+ |Si(s, x)| ≤ ñi(s) + S̃i(s) ≤ C1

(
‖f0

i ‖L∞
x,v

+ ‖g0i ‖L∞
x,v

)
, (54)

and a similar estimate is obtained for fi and gi using (48), (52) and (54). This complete the a-priori
estimates.

3.2 Proof of Theorem 3.2.

We are now in position to prove the existence result. The idea of the proof follows standard tech-
niques consisting in, first, proving local in time existence by a fixed point procedure, second, iterating
this process to obtain global in time existence.

For the local in time existence, let T > 0, we introduce the map

F : XT −→ XT , f 7−→ F(f) := F2(F1(f))

where G = F1(f) is a weak solution of the following problem:



∂tG+ v · ∇xG =

(
σ

|V |
− b

)∫

V
Gdv + an− σG,

G(0, x, v) = g0(x, v) ∈ L∞
x,v,

9



with the notation n(t, x) =
∫
V f(t, x, v)dv, while the functional F2 is defined by: F = F2(g) is a

weak solution of




∂tF + v · ∇xF =
µ0

ε

[
1

|V |

(∫

V
Fdv + γ2

∫

V
vFdv · v

)
− F

]

+µ1

(
1

|V |

∫

V
Fdv − F

)
− µ2γ

2

(
1

|V |

∫

V
vFdv − vF

)
· α(S),

F (0, x, v) = f0(x, v) ∈ L∞
x,v,

with S(t, x) =
∫
V g(t, x, v)dv. Existence of solutions for these two linear systems is now standard.

It is clear, adapting the techniques of Lemma 3.3 that F1 and F2 map XT into itself. Our objective
is to show that F defines a contraction on XT for T small enough. Let f1 and f2 be given in XT ,
then we have the following result:

Lemma 3.4 For T > 0 small enough, there exists a constant C1(T ) < 1 such that

‖F1(f1)−F1(f2)‖XT
≤ C1(T )‖f1 − f2‖XT

. (55)

Proof. We set G12 = F1(f1)−F1(f2), then we have

∂tG12 + v · ∇xG12 =

(
σ

|V |
− b

)∫

V
G12dv − σG12 + a(n1 − n2), (56)

with the notations ni(t, x) =
∫
V fi(t, x, v)dv, i = 1, 2. Analogously to the proof of Lemma 3.3, we

write identity (56) in the following way

∂tG12 + v · ∇xG12 + σG12 = R1, (57)

where

R1 =

(
σ

|V |
− b

)∫

V
G12dv + a(n1 − n2). (58)

Moreover, from equation

d

ds

(
e(s−t)σG12(s, x̃s, v)

)
= e(s−t)σR1(s, x̃s), (59)

it follows that

G12(t, x, v) =

∫ t

0
e(s−t)σR1(s, x̃s)ds. (60)

(
We recall the notation x̃s = x+ (s− t)v

)
. Since e(s−t)σ < 1, for all 0 ≤ s ≤ t ≤ T we deduce from

(60) the following estimate

|G12(t, x, v)| ≤

∫ t

0
|R1(s, x̃s)|ds. (61)

However, we have

|R1(s, x̃s)| ≤

∣∣∣∣
σ

|V |
− b

∣∣∣∣ |V | ‖G12(s, ·, ·)‖L∞
x,v

+ a |V | ‖f1 − f2‖XT

= C1 ‖G12(s, ·, ·)‖L∞
x,v

+ C2 ‖f1 − f2‖XT
.

(62)

Using this last inequality in Eq. (61) we get

|G12(t, x, v)| ≤

∫ t

0
C1 ‖G12(s, ·, ·)‖L∞

x,v
ds+ C2 ‖f1 − f2‖XT

, (63)

and the Gronwall lemma gives the desired estimate (55), which finished the proof of Lemma 3.4.
Now, let us introduce g1 = F1(f1) and g2 = F1(f2). Then we claim that:
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Lemma 3.5 For T > 0 small enough, there exists a constant C2(T ) < 1 such that

‖F2(g1)−F2(g2)‖XT
≤ C2(T )‖g1 − g2‖XT

. (64)

Proof. The proof of Lemma 3.5 follows the same techniques as in the proof of Lemma 3.4, but
with more technical difficulties. To begin with we set F12 = F2(g1)−F2(g2), then we have

∂tF12 + v · ∇xF12 =
µ0 + εµ1

ε|V |

∫

V
F12dv +

µ0γ
2

ε|V |

∫

V
vF12dv · v

−
µ2γ

2

|V |

∫

V
vF12dv · α(S1)−

µ2γ
2

|V |

∫

V
F2(g2)dv · (α(S1)− α(S2)) (65)

−

(
µ0

ε
+

µ1

|V |

)
F12 + µ2γ

2vF12 · α(S1) + µ2γ
2vF2(g2) · (α(S1)− α(S2)) ,

with Si(t, x) =
∫
V gi(t, x, v)dv, i = 1, 2. We introduce the following notations

K =
µ0

ε
+

µ1

|V |
− µ2γ

2v · α(S1),

and

R1 =
µ0 + εµ1

ε|V |

∫

V
F12dv +

µ0γ
2

ε|V |

∫

V
vF12dv · v −

µ2γ
2

|V |

∫

V
vF12dv · α(S1)

−
µ2γ

2

|V |

∫

V
F2(g2)dv · (α(S1)− α(S2)) + µ2γ

2vF2(g2) · (α(S1)− α(S2)) .

In this way we can write identity (65) as

∂tF12 + v · ∇xF12 +KF12 = R1. (66)

A simple calculation shows that

F12(t, x, v) =

∫ t

0

[
exp

(∫ s

t
K(τ, x̃τ , v)dτ

)
R1(s, x̃s, v)

]
ds, (67)

and in view of estimate exp
(∫ s

t K(τ, x̃τ , v)dτ
)
≤ eC1T , we deduce from (67) that

|F12(t, x, v)| ≤ eC1T

∫ t

0
|R1(s, x̃s, v)|ds. (68)

Moreover, it is easy to see that

|R1(s, x̃s, v)| ≤C2n12(s, x̃s) + C3n2(s, x̃s) |α(S1(s, x̃s))− α(S2(s, x̃s))|

+ C4F2(g2)(s, x̃s, v) |α(S1(s, x̃s))− α(S2(s, x̃s))| ,

with the notation n12(t, x) =
∫
V F12(t, x, v)dv and n2(t, x) =

∫
V F2(g2)(t, x, v)dv. Using Lemma 3.3

together with the assumption (16), we get

|R1(s, x̃s, v)| ≤ C2|n12(s, x̃x)|+C5‖f
0‖L∞

x,v
Lα‖S1 − S2‖L∞

t,x
(69)

We remark that
|n12(s, x̃x)| ≤ |V |‖F12(s, ·, ·)‖L∞

x,v
, (70)
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and
‖S1 − S2‖L∞

t,x
≤ |V |‖g1 − g2‖XT

. (71)

Then from (68), (69), (70) and (71) it follows that

‖F12(t, ·, ·)‖L∞
x,v

≤ eC1T

∫ t

0
‖F12(s, ·, ·)‖L∞

x,v
ds+ TC3e

C1T ‖g1 − g2‖XT
, (72)

and we conclude the proof of Lemma 3.5 using Gronwall inequality.
The local existence in Theorem 3.2 follows from a direct application of the Banach fixed point the-
orem since F is a contraction on XT for T small enough. This gives existence of a unique solution
on [0, T ] for small enough T . Thanks to a priori estimates in Lemma 3.3 we may iterate this process
to extend the solution on [T, 2T ], then on [2T, 3T ], ... It concludes the proof of Theorem 3.2.

4 Hyperbolic limit

Derivation of macroscopic model from the underlaying description at the microscopic scale, provided
by the kinetic theory of active particles, is the subject of a growing literature. In [7, 12, 14, 4, 21, 15]
it has been proved that the Keller-Segel [5] model can be derived as the limit of a kinetic model
by using a moment method. The hyperbolic limit is considered in [11, 3, 16] leading to the same
kind of macroscopic model with small diffusion. More recently these results have been extended in
[18] dealing with the coupled kinetic system (13). As a consequence a formal derivation of a class of
hyperbolic equations of Cattaneo type is obtained. The aim of this section is to purpose a rigorous
proof of the formal derivation of the hyperbolic limit performed in [18]. However, due to technical
difficulties, we restrict ourself to the one dimensional case, d = 1.

The main result can be stated as follows.

Theorem 4.1 Let T > 0, d = 1, and V a symmetric bounded domain of R with γ2 = |V |
(∫

V v2 dv
)−1

.

Let (f0, g0) ∈ (L1
x,v ∩L∞

x,v)
2 be nonnegative and assume that α ∈ C1(R) satisfies (16). Let (fε, gε) be

the unique nonnegative weak solution of the scaled Cauchy problem (13) on [0, T ]. Then there exists

a subsequence, denoted in the same way, and a couple (f, g) such that

fε ⇀ f, gε ⇀ g in L2
t,x,v. (73)

In addition, the moments

n =

∫

V
f(v) dv, S =

∫

V
g(v) dv, J =

∫

V
vf(v) dv, (74)

satisfy the following macroscopic system





∂tn+ ∂xJ = 0

∂tJ + 1
γ2 ∂xn = −µ1J + µ2nα(S)

∂tg + v∂xg = σ
(

S
|V | − g

)
+ an− bS.

(75)

Moreover, the asymptotic limit f satisfies

f =
1

|V |

(
n+ γ2Jv

)
. (76)
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The first two equations in system (75) form the so-called Cattaneo system for chemosensitive move-
ment [9, 23]. Hence a direct consequence of this Theorem (and Theorem 3.2) is the existence of a
solution for the one dimensional Cattaneo system.

Since the last equation has not been rescaled, it cannot be rewritten as a closed system with
macroscopic variable. However, we deduce from the last equation in (75) that the moments S = 〈g〉
and q = 〈vg〉 verify the (non-closed) system

∂tS + ∂xq = an− bS, ∂tq + ∂xQ(g) = −σq,

where the second order moment Q is defined by Q(g) =
∫
V v2g(v)dv.

4.1 Uniform a priori estimates

We start with the following a priori estimates uniform with respect to ε > 0:

Lemma 4.2 (A priori estimate in L2
x,v) We suppose that we are in the conditions of theorem

4.1. Then the following estimate

‖fε(t)‖
2
L2
x,v

+ ‖gε(t)‖
2
L2
x,v

≤ C(T )
(
‖f0‖2L2

x,v
+ ‖g0‖2L2

x,v

)
, (77)

holds true for a.e t ∈ (0, T ), where the constant C(T ) is independent of ε.

Proof. We multiply the first equation of system (13) by fε

1

2

(
∂tf

2
ε + v∂xf

2
ε

)
=

µ0

ε

[
1

|V |

(
nεfε + Jεγ

2vfε
)
− f2

ε

]
+ µ1

(
nε

|V |
fε − f2

ε

)

−µ2γ
2

(
Jεfε
|V |

− vf2
ε

)
α(Sε),

and integrate over V to obtain

1

2

(
∂t

∫

V
f2
ε dv + ∂x

∫

V
vf2

ε dv

)
=

µ0

ε

[
1

|V |

(
n2
ε + J2

ε γ
2
)
−

∫

V
f2
ε dv

]

+µ1

(
n2
ε

|V |
−

∫

V
f2
ε dv

)
− µ2γ

2

(
Jεnε

|V |
−

∫

V
vf2

ε dv

)
α(Sε). (78)

Let us introduce the symmetric and the anti-symmetric part of fε as follows

fS
ε (v) =

1

2
(fε(v) + fε(−v)) , v ∈ V,

fA
ε (v) =

1

2
(fε(v)− fε(−v)) , v ∈ V.

Since V is symmetric, it follows that

fε = fS
ε + fA

ε , nε =

∫

V
fS
ε dv, Jε =

∫

V
vfA

ε dv, (79)

and ∫

V
f2
ε dv =

∫

V

(
fS
ε

)2
dv +

∫

V

(
fA
ε

)2
dv. (80)
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Using (78)-(80), we have

1

2

(
∂t

∫

V
f2
ε dv + ∂x

∫

V
vf2

ε dv

)
=

µ0

ε

[
1

|V |

(∫

V
fS
ε dv

)2

−

∫

V

(
fS
ε

)2
dv

+
γ2

|V |

(∫

V
vfA

ε dv

)2

−

∫

V

(
fA
ε

)2
dv

]

+ µ1

[
n2
ε

|V |
−

∫

V
f2
ε dv

]
− µ2γ

2

(
Jεnε

|V |
−

∫

V
vf2

ε dv

)
α(Sε),

(81)

and according to Cauchy-Schwarz inequality we have

(∫

V
fS
ε dv

)2

≤ |V |

∫

V

(
fS
ε

)2
dv,

(∫

V
vfA

ε dv

)2

≤
|V |

γ2

∫

V

(
fA
ε

)2
dv. (82)

By combining equations (81) and (82) we get

1

2

(
∂t

∫

V
f2
ε dv + ∂x

∫

V
vf2

ε dv

)
≤ −µ2γ

2

(
Jεnε

|V |
−

∫

V
vf2

ε dv

)
α(Sε). (83)

Moreover, we have

−µ2γ
2

(
Jεnε

|V |
−

∫

V
vf2

ε dv

)
α(Sε) = µ2γ

2α(Sε)

(∫

V
vf2

ε dv −
Jεnε

|V |

)

≤ µ2γ
2να∞

(∫

V
f2
ε dv +

n2
ε

|V |

)
,

and using (82), we obtain

−µ2γ
2

(
Jεnε

|V |
−

∫

V
vf2

ε dv

)
α(Sε) ≤ 2µ2γ

2να∞

∫

V
f2
ε dv. (84)

Hence, from (83) and (84) we get

∂t

∫

V
f2
ε dv + ∂x

∫

V
vf2

ε dv ≤ C

∫

V
f2
ε dv,

and integration over x ∈ R
d yields

d

dt
‖fε(t)‖

2
L2
x,v

≤ C‖fε(t)‖
2
L2
x,v

. (85)

To derive a similar estimate for gε we multiply the second equation of system (13) by gε and we
integrate over V to obtain

1

2

(
∂t

∫

V
g2εdv + ∂x

∫

V
vg2εdv

)
= σ

(
S2
ε

|V |
−

∫

V
g2εdv

)
+ anεSε − bS2

ε .

Using the Cauchy-Schwarz inequality we can write

1

2

(
∂t

∫

V
g2εdv + ∂x

∫

V
vg2εdv

)
≤

a|V |

2

∫

V
f2
ε dv +

(a
2
+ b
)
|V |

∫

V
g2εdv,
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and integration over the space variable x ∈ R gives

d

dt
‖gε(t)‖

2
L2
x,v

≤ a|V |‖fε(t)‖
2
L2
x,v

+ (a+ 2b)|V |‖gε(t)‖
2
L2
x,v

. (86)

Let us now combine equations (85) and (86) to get

d

dt

[
‖fε(t)‖

2
L2
x,v

+ ‖gε(t)‖
2
L2
x,v

]
≤ C

[
‖fε(t)‖

2
L2
x,v

+ ‖gε(t)‖
2
L2
x,v

]
.

We conclude the proof thanks to a Gronwall’s inequality.

4.2 Convergence by compactness

According to Lemma 4.2, the sequences fε, gε are bounded in L∞
(
0, T ;L2

x,v

)
, hence there are

bounded in L2
t,x,v. Accordingly, it follows that there exist two subsequences, denoted in the same

way, and f , g ∈ L2
t,x,v such that

fε ⇀ f, gε ⇀ g in L2
t,x,v. (87)

Moreover, we have

∂tgε + v∂xgε = σ

(
Sε

|V |
− gε

)
+ anε − bSε ∈ L2

x,v. (88)

Hence, according to averaging Lemma, see for instance [20] Proposition 3.3.1, we have

∫

V
gε(v) dv = Sε is uniformly bounded in L2

(
0, T ;H

1

2 (R)
)
. (89)

Integrating equation (88) with respect to v, we deduce clearly that ∂tSε ∈ L2
(
0, T ;W−1,1(R)

)
.

Moreover, for each compact K ⊂ R, we have the embeddings (see e.g. [1])

H
1

2 (K) −֒−−−−→
compact

L2(K) −֒−−→
−−−

W−1,1(K). (90)

From Aubin-Lions compactness Lemma (see [22]), we deduce that the sequence (Sε)ε is relatively
compact in L2

(
0, T ;L2(K)

)
. Hence we can extract a subsequence, still denoted (Sε)ε, which

converges strongly towards S in L2 ((0, T )×K). By uniqueness of the weak limit, we have that
S =

∫
V g(v)dv.

However the convergence is global:

Sε → S in L2
t,x. (91)

Indeed, for any compact [−R,R] ⊂ R we may extract a subsequence (Sε)ε such that Sε → S strongly
in L2([0, T ] × [−R,R]), and we know that Sε =

∫
V gε(v) dv where

∂t

∫

V
(f2

ε + g2ε)dv + ∂x

∫

V
v(f2

ε + g2ε)dv ≤ C

∫

V
(f2

ε + g2ε)dv.

Multiplying by a function x 7→ φ(x) ∈ C1(R) with bounded derivative and integrating, we deduce

d

dt

∫

R

∫

V
(f2

ε + g2ε)φdxdv ≤ C

∫

R

∫

V
(f2

ε + g2ε)φdxdv +

∫

R

∫

V
v(f2

ε + g2ε)φ
′ dxdv. (92)
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In order to pass from local to global convergence, we need to prove that we have a bound on the
tail at infinity. Let us show that (Sε)ε is a Cauchy sequence in L2

t,x. We compute

∫ T

0

∫

R

|Sε − Sε′ |
2 dxdt =

∫ T

0

∫ R

−R
|Sε − Sε′ |

2 dxdt+

∫ T

0

∫

R\[−R,R]
|Sε − Sε′ |

2 dxdt.

From the above result, we know that the first term of the right hand side goes to 0 as ε, ε′ → 0.
For the second term, let us consider φ ∈ C∞(Rd) such that 0 ≤ φ ≤ 1, φ(x) = 0 for |x| ≤ 1/2 and
φ(x) = 1 for |x| ≥ 1. We define φR(x) = φ(x/R). Then, we have

∫ T

0

∫

R\[−R,R]
|Sε − Sε′ |

2 dxdt ≤

∫ T

0

∫

R\[−R,R]
|Sε − Sε′ |

2φR dxdt

≤ 2

∫ T

0

∫

R

(|Sε|
2 + |Sε′ |

2)φR dxdt.

Let us now use estimate (92) with φR, since φ′
R(x) =

1
Rφ

′(x/R), we have

d

dt

∫

R

∫

V
(f2

ε + g2ε)φR dxdv ≤ C

∫

R

∫

V
(f2

ε + g2ε)φR dxdv

+
1

R

∫

R

∫

V
v(f2

ε + g2ε)φ
′(x/R) dxdv.

(93)

Applying a Gronwall Lemma, we deduce that

∫

R

∫

V
(f2

ε + g2ε)φR dxdv ≤ eCT

(∫

R

∫

V
((f0)2 + (g0)2)φR dxdv +

C‖φ′‖

R

)
.

Since the initial data f0 and g0 are given in L2
x,v and φR(x) = 0 on BR/2, we deduce that the left

hand side goes to 0 as R → +∞, uniformly with respect to ε. Thus,

∫ T

0

∫

R

(|Sε|
2 + |Sε′ |

2)φR dxdt ≤ |V |

∫ T

0

∫

R

∫

V
(f2

ε + f2
ε′)φR dxdvdt

goes uniformly to 0 as R → +∞. We conclude that the sequence (Sε)ε is a Cauchy sequence in
L2([0, T ] × R).

4.3 Proof of Theorem 4.1

Multiply the first and second equations of system (13) by 1 and v respectively, and integrate over
V to obtain the following system





∂tnε + ∂xJε = 0

∂tJε + ∂x

∫

V
v2fε dv = −µ1Jε + µ2γ

2

∫

V
v2fε dv α(Sε)

∂tgε + v · ∂xgε = σ
(

Sε

|V | − gε

)
+ anε − bSε.

(94)

We have
fε(t, x, v) ⇀ f(t, x, v) and gε(t, x, v) ⇀ g(t, x, v) in L2

t,x,v. (95)
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Therefore, since the set of velocities V is bounded, we deduce

nε(t, x) ⇀ n(t, x), Jε(t, x) ⇀ J(t, x) in L2
t,x, (96)

Sε(t, x) → S(t, x), qε(t, x) ⇀ q(t, x) in L2
t,x, (97)

∫

V
v2fε(t, x, v)dv ⇀

∫

V
v2f(t, x, v)dv in L2

t,x, (98)

∫

V
v2gε(t, x, v)dv ⇀

∫

V
v2g(t, x, v)dv in L2

t,x, (99)

when ε tends to zero. However, according to Section 4.2 we have

α(Sε(t, x))

∫

V
v2fε(t, x, v) dv ⇀ α(S(t, x))

∫

V
v2f(t, x, v) dv in L2

t,x. (100)

Hence, by passing to limit in (94), in the sense of distributions, and taking into account Eqs.
(96)-(100), it follows that





∂tn+ ∂xJ = 0

∂tJ + ∂x

∫

V
v2fdv = −µ1J + µ2γ

2

∫

V
v2fdv α(S)

∂tg + v · ∂xg = σ

(
S

|V |
− g

)
+ an− bS.

(101)

To identify the term
∫
V v2f(t, x, v)dv, we multiply the first equation of system (13) by ε to get

ε∂tfε(t, x, v) + εv · ∂xfε(t, x, v)

= µ0(Fnε,Jε(t, x, v) − fε(t, x, v)) + εµ1

(
nε(t, x)

|V |
− fε(t, x, v)

)

−εµ2γ
2

(
Jε(t, x)

|V |
− vfε(t, x, v)

)
α (Sε(t, x)) .

(102)

Then, letting ε go to zero yields

f = Fn,J(t, x, v) =
1

|V |

(
n+ γ2Jv

)
(103)

and a simple calculations shows that

∫

V
v2f(t, x, v)dv =

∫

V
v2Fn,J(t, x, v)dv =

1

γ2
n(t, x). (104)

Using this last equation in system (101) finishes the proof.
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