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Abstract 22 

Antibiotics, have a wide application range in human and veterinary medicines. Being designed for 23 

pharmacological stability, most antibiotics are recalcitrant to biodegradation after ingestion and can 24 

be persistent in the environment. Antibiotic residues have been detected as contaminants in various 25 

environmental compartments where they cause human and environmental threats, notably with 26 

respect to the potential emergence and proliferation of antibiotic resistant bacteria. An important 27 

component of managing environmental risk caused by antibiotics is to understand exposure of soil 28 

and water resources to their residues. One challenge is to gain knowledge on the fate of antibiotics in 29 

the ecosystem along the soil::water continuum, and on the collateral impact of antibiotics on 30 

environmental microorganisms responsible for crucially important ecosystem functions. In this 31 

context, the ANTIBIOTOX project aims at studying the environmental fate and impact of two 32 

antibiotics of the sulfonamides class of antibiotics, sulfamethazine (SMZ) and sulfamethoxazole 33 

(SMX). 34 

 35 
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1. Environmental risks of antibiotics in agroecosystems 38 

Antibiotics (antimicrobials used to kill bacteria) are widely used in human medicine and in many 39 

terrestrial and aquatic food animal production systems. Numerous antibiotics are recalcitrant to 40 

degradation following ingestion and are excreted intact. Therefore, some antibiotics are widely 41 

detected in terrestrial and aquatic matrices (Bottoni and Caroli 2015). In agroecosystems, antibiotic 42 

residues can be transported from livestock production areas or from agricultural soils amended with 43 

antibiotic-contaminated manure by surface runoff or infiltration, contaminating adjacent surface- 44 

and groundwater resources (Boxall 2004). Once released in the environment, antibiotics may exert a 45 

selection pressure favoring the emergence of bacteria harboring antimicrobial resistances (AMR) 46 

even at low environmentally relevant concentrations (Gulberg et al. 2011). Indeed, the development 47 

of antibiotic-resistant bacteria near confined animal feed operations (Chee-Sanford et al. 2001; Koike 48 

et al. 2007; Sapkota et al. 2007), in soils treated with animal manures or in waste water treatment 49 

plants (Gao et al. 2012) suggests that exposure to antibiotics can lead to the increase in abundance 50 

of resistance genes in the environment (Heuer et al. 2011; Storteboom et al. 2010). 51 

The World Health Organization has identified the increasing occurrence of AMR in human pathogens 52 

as one of the most pressing contemporary global public health challenges.  Due to the risks for 53 

subsequent transfers of resistance factors to human pathogens an increasing reservoir of AMR 54 

bacteria in the environment if of human health concern (Ashbolt et al. 2013; Bengtsson-Palme et al., 55 

2018). Promoting the ‘One Health’ concept, the United Nations and the European Commission 56 

highlighted the need to develop approaches to better assess the risk for resistance selection in 57 

natural microbial communities (Bengtsson-Palme and Larsson, 2016). In June 2017, the European 58 

Commission adopted the new EU One Health Action Plan against AMR and the French Ministry of 59 

Agriculture launched the new EcoAntibio national plan (2017-2021) with the objective of mitigating 60 

the risk of AMR development. Managing the environmental risk of AMR is predicated on 61 

understanding the exposure of soil and water resources to antibiotic residues, antibiotic-resistant 62 

bacteria and antibiotic resistance genes (Blanco et al. 2009; Knapp et al. 2010; Pruden et al. 2013). 63 

There is thus a need to identify environmental conditions that govern the fate of antibiotics in 64 

agroecosystems including transfers along the soil-water continuum, as well as dissipation (e.g. 65 

through biodegradation) and persistence (e.g. through retention due to sorptive processes) in the 66 

different environmental compartments (Larrsson et al. 2018). Although up to now, the major 67 

concern about antibiotics is associated with the development and dissemination of resistance 68 

mechanisms by bacteria (Heuer et al. 2011) and the implications of this process for both human and 69 

animal health. Their sustained release to different environmental compartments and their bioactive 70 

properties also raise serious issues about their impact on non-target organisms (Gonzales-Pleiter et 71 

al. 2013). Briefly, and as recently underlined by Barra-Caracciolo et al. (2015) and Brandt et al. (2015), 72 
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much more knowledge concerning environmental emissions of antibiotics, their persistence, 73 

degradation pathways and impacts on ecosystem health is required. Environmental risk assessments 74 

should take into account terrestrial and aquatic microbial communities that undertake the main 75 

ecosystem functions and services including the biodegradation of contaminants (Ghiglione et al. 76 

2016). 77 

 78 

2. The case of Sulfonamides 79 

Among the antibiotics, the sulfonamides (SMs), one the oldest family on the market, are often 80 

detected in aquatic and terrestrial matrices (Baran et al. 2006; Manzetti and Ghisi 2014; Deng et al., 81 

2018) because of the large volume used, high excretion rates, and relative persistence in soil (Brandt 82 

et al. 2009). In a pioneering study, Kolpin et al. (2002) reported the detection of SMs in 80% of the 83 

139 streams and rivers sampled in 1999 and 2000 across 30 states in the US. Since then SMs are 84 

frequently detected in the environment (Hruska and Franek 2012) including rural streams and 85 

connected rivers surrounding livestock production (Kolpin et al. 2002; Veach and Bernot 2011; 86 

Bernot et al. 2013; Iglesias et al. 2014). It is noteworthy that sulfamethoxazole (SMX; used primarily 87 

in human medicine) and sulfamethazine (SMZ; used primarily in food animal production) are among 88 

the most often SM residues detected in various contaminations sources (waste water, digestate and 89 

manure) and in the different compartments of the environment (soil, sediment, surface- and ground-90 

water) (Table 1). The repeated fertilization of cropland with animal manure containing veterinary 91 

antibiotics (VAs) is one of the main contamination routes of surface water resources (Kemper 2008). 92 

While their concentrations in surface water worldwide vary between a few and several dozen ng.L-1 93 

(Kolpin et al. 2002; Veach and Bernot 2011; Bernot et al. 2013; Iglesias et al. 2014; Matongo et al. 94 

2015; Grenni et al. 2018), peak concentrations can sometimes reach several µg.L-1 in different rivers 95 

(Yargau et al. 2007; Peng et al. 2008; Lacina et al. 2012; Matongo et al. 2015). In France, a survey 96 

performed in the Seine River revealed that SMX was detected in all samples, with a maximum 97 

concentration of 544 ng.L-1 (Tamtam et al. 2008). In the US, a study showed that 20% of groundwater 98 

samples were contaminated with SMX at concentrations of up to 1.0 µg.L-1 which are in the range of 99 

pesticide concentrations observed in agricultural streams (Barnes et al. 2008). A recent review of the 100 

maximum concentrations of the most frequently detected SMs in contamination sources and in 101 

different environmental compartments including soils, surface and ground waters can be found in 102 

Deng et al. (2018). 103 

SMs are broad-spectrum bacteriostatic agents that inhibit the biosynthesis of folic acid through 104 

competitive inhibition of dihydropteroate synthase, blocking the condensation of 6-hydroxymethyl-105 

7,8-dihydropteridine pyrophosphate to para-aminobenzoic acid (Petri 2001). Although known as 106 

recalcitrant compounds, SMs can be metabolized, the most frequently detected metabolites being 107 
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the 3-amino-5-methylisoxazole and 2-amino-4,6-dimethylpyrimidine  for SMX and SMZ, respectively 108 

(Ricken et al. 2013) (Figure 1). Strains belonging to the genus Rhodococcus, known to co-metabolize 109 

hydrocarbons, co-metabolically degrade SMX as well as other SMs such as sulfamethizole (Gauthier 110 

et al. 2010; Larcher and Yargeau 2011). Other strains belonging to the class of -proteobacteria have 111 

been shown to co-metabolically degrade various SMs (Zhang et al. 2012a; Zhang et al. 2012b; Mao et 112 

al. 2018). The co-metabolic transformation or biodegradation of sulfonamide antibiotics by various 113 

microorganisms has recently been reviewed (Deng et al. 2018; Chen and Xie 2018; Wang and Wang 114 

2018).  115 

Chronic or punctual exposure of natural soil microbial communities to SMs can enhance their 116 

capacities to degrade this class of antibiotic. Indeed, repeated long-term treatment of  agricultural 117 

soil with SMZ resulted in an increase of SMZ mineralization capacities of autochtonous microbial 118 

communities, at least partially due to the selection of a resistant bacterial population 119 

(Microbacterium sp. strain C448) able to metabolize and grow at the expense of SMZ and other 120 

sulfonamides (Topp et al. 2013). Microbacterium C448 mineralizes the benzylic ring of the molecule, 121 

excreting the pyrimidine moiety as an end product of metabolism (Topp et al. 2013) (Figure1). Two 122 

other Microbacterium strains, BR1 (Ricken et al. 2013) and SDZm4 (Tappe et al. 2013) were isolated 123 

from a waste water treatment plant and from a lysimeter exposed to pig manure, respectively. 124 

Biodegradation of SMs was subsequently reported in members of the phyla Proteobacteria 125 

(Pseudomonas (Jiang et al. 2014), Ochrobactrum (Mulla et al. 2018) and Acinetobacter (Wang et al. 126 

2018)) and Actinobacteria (Microbacterium (Ricken et al. 2013; Tappe et al. 2013;Topp et al. 2013); 127 

Arthrobacter (Deng et al. 2016), Gordonia (Mulla et al. 2018), and Leucobacter (Reis et al. 2018)). SM 128 

degradation of Microbacterium sp. BR1 is initiated by an ipso-substitution (Ricken et al. 2013) 129 

followed by a ring cleavage in the downstream pathway (Ricken et al. 2015). The sadABC gene cluster 130 

encodes two monooxygenases (SadA and SadB) and one flavine mononucleotide (FMN) reductase 131 

(SadC). SadA and SadC initiate the transformation of SMs yielding to the release of 4-aminophenol. 132 

This intermediate is then transformed by SadB and SadC to 1,2,4-trihydroxybenzene which is entirely 133 

mineralized (Ricken et al. 2017). This gene cluster is nearly identical (between 97 and 99% similarity) 134 

in the draft genomes of Microbacterium sp. C448 (Martin-Laurent et al. 2015), Microbacterium sp. 135 

SDZm4 (Tappe et al. 2013) and Arthrobacter sp. D2 (Deng et al. 2016), suggesting that it might be 136 

dispersed through horizontal exchange in the Actinobacteria phylum (Ricken et al. 2017). Overall, the 137 

widespread distribution of sulfonamide-biodegrading bacteria presumably decreases the 138 

environmental persistence of these antibiotics, and thus the selection pressure for resistance 139 

development. Bioaugmentation of soil with Microbacterium sp. strain C448 decreased the 140 

persistence of SMZ, indicating that bioremediation is an option for dealing with pollution hotspots 141 

(Hirth et al. 2016).  142 
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 143 

In addition to their crucial role in the dissipation of pollutants including SMs, natural microbial 144 

communities in soil and water are responsible for a range of ecosystem functions and services. 145 

However, ecotoxicological effects of antibiotics and notably of SMs on microbial communities are still 146 

understudied, and there is a crucial need to investigate their impact on biogeochemical processes to 147 

further assess their possible adverse effects on ecosystem functioning (Roose-Amsaleg and Laverman 148 

2016). This is notably the case for surface waters such as small rivers draining agricultural areas 149 

including livestock production farms or crop fields amended with manure. In these lotic ecosystems, 150 

most of the microbial activities are assumed by benthic communities which develop on hard and soft 151 

immersed substrates and which are composed of both phototrophic (mainly algae and 152 

cyanobacteria) and heterotrophic (mainly bacteria, fungi, and protozoa) microorganisms. 153 

Pharmaceutical accumulation in these microbial assemblages has been occasionally reported (Writer 154 

et al. 2013; Wunder et al. 2016; Huerta et al. 2016). For instance, SMX tends to progressively 155 

accumulate in river biofilms (Corcoll et al. 2015). Exposure of aquatic microbial communities to 156 

antibiotics spiked at chronical concentration in microcosm was also found to induce resistance 157 

strategies at community level including microbial degradation of antibiotics (Vila-Costa et al., 2017). 158 

Environmental exposure to antibiotics potentiates the environmental reservoir of antibiotic 159 

resistance increasing the threat to both human and animal health (Wright 2010; Ashbolt et al. 2013; 160 

Finley et al. 2013; Berendonk et al. 2015). One can distinguish two kinds of resistance to 161 

sulfonamides. On the one hand, 3- of 6-bp duplication within sulA, the chromosomal gene encoding 162 

for dihydropteroate synthase, was shown to confer resistance to sulfonamides to Streptococcus 163 

pneumoniae (Lopez et al., 1987; Maskell et al. 1997). On the other hand, sulfonamide resistance 164 

involves the acquisition of an additional dihydropteorate synthase (i.e. sul1, sul2 and sul3) on a 165 

mobile genetic element that is not inhibited by this class of antibiotics and that bypass the inhibition 166 

of the enzyme encoded by the chromosomal genes. The sul resistance genes, located within 167 

integrons (Type 1 integrase) and carried on conjugative plasmids, are widely distributed in SM-168 

resistant bacteria (Heuer et al. 2011). These genes have been detected in various aquatic ecosystems 169 

(e.g. Pei et al. 2006; Pruden et al. 2007; Luo et al. 2010; McKinney et al. 2010; Stoll et al. 2012). In 170 

addition, zinc was found to increase the abundance of sul resistance genes in intestine of weaned 171 

pigs fed with high dietary zinc supplementation as an alternative to antibiotics (Vahjen et al. 2015). 172 

This suggests that heavy metals can co-select antibiotic resistances by exerting a selection pressure 173 

favorable to the maintenance of mobile mosaic gene structures harboring both heavy metal and 174 

antibiotic resistances in the environment (Vahjen et al. 2015).  Nevertheless, there are relatively few 175 

studies documenting their dispersal and survival from different sources of contaminations in 176 

agroecosystems microbiota, particularly with respect to the terrestrial to aquatic continuum.  177 
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Ecotoxicological risks and effects of SMs in agroecosystems are also largely understudied. Recently, a 178 

few papers proposed different types of usage pattern-based exposure to prioritize antibiotics to be 179 

considered in environmental risk assessment (ERA) (Di Nica et al. 2015; Menz et al. 2015). These 180 

approaches are based on the calculation of the risk quotient (RQ) as the ratio of predicted 181 

environmental concentration (PEC) over the predicted no effect concentration (PNEC). RQ values 182 

permit to predict the environmental risk for each antibiotic in the phase II of environmental risk 183 

assessment. However, besides a priori ERA of SMs including toxicological test on very sensitive 184 

species such as Anabaena, very few studies report their ecotoxicological impact on microbial 185 

communities. The first studies dealing with the effects of SMs on aquatic microbial communities 186 

focused on bacteria from activated sludge (Xia et al. 2012; Collado et al. 2013). SMX was found to 187 

shift bacterial community structure but did not modify microbial functions such as organic carbon 188 

and nitrogen removal. However, SMs induced large shifts in the transcriptome of microbial 189 

communities in the gene categories related to N, P and C cycling (Yergeau et al. 2012). A negative 190 

exponential relationship between denitrifying gene abundance and SMZ concentrations was 191 

observed in estuarine and coastal sediments (Hou et al. 2015). This decrease in the presence of SMZ 192 

led to a reduction of denitrification rates. A mechanistic model to interpret the toxic effects of SMs 193 

on nitrification in activated sludge system was proposed (Huang et al. 2016). Effects of SM exposure 194 

on fungi and algae co-existing with bacteria in aquatic biofilms are still unknown. In soil, microbial 195 

communities exposed to SMs experienced an overall reduction in the bacteria/fungi biomass ratio 196 

suggesting that fungi consumed nutrients released by bacteria killed by the antibiotic (Gutierrez et al. 197 

2010; Pinna et al. 2012). This response might also occur to microbial communities in antibiotic-198 

contaminated river ecosystems but may be modulated by the difference in proportion of bacteria, 199 

algae and fungi among different benthic substrata (cobbles, sediment, leaves) (Artigas et al. 2009; 200 

Mora-Gomez et al. 2016). Simple additive effects occur with binary mixtures of SMs (SMZ and SMX) 201 

on the growth inhibition of the freshwater green algae P. subcapitata (Yang et al. 2008). Diatoms and 202 

cyanobacteria were found to be more sensitive to pharmaceutical mixtures including SMs than to 203 

single antibiotics (Van der Grinten et al. 2010; Perron and Juneau 2011). Few studies have assessed 204 

how changes in microbial composition and activity of river biofilms in response to antibiotic exposure 205 

could lead to perturbation of ecosystem functions like nutrient cycling. 206 

 207 

3. The ANTIBIOTOX project 208 

Within this context, ANTIBIOTOX (‘Fate of antibiotics and associated resistance genes in 209 

agroecosystems: ecotoxicological risk for functional microbial communities of receiving river 210 

systems) is an innovative project funded by the French ANR (Agence National de Recherche; contract 211 

n° ANR-17-CE34-0003, 2018-2022) which aims to develop a multidisciplinary approach combining 212 
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chemistry, biochemistry, environmental microbiology, bacterial genetics, molecular biology and 213 

ecotoxicology to (i) study transcriptomic and proteomic regulation during the time-course of SMs 214 

biodegradation in Microbacterium sp. C448, (ii) characterize the biodegradation pathways and 215 

estimate the ecotoxicological impact of microbial biodegradation of SMs in aquatic and terrestrial 216 

compartments of agroecosystems, (iii) monitor the dissemination of SM-resistant and SM-degrading 217 

bacteria and genes from agricultural soil to adjacent water resources, (iv) estimate the impact of SM 218 

residues (and transformation products) on the abundance of resistant and degrading microbes and 219 

microbial functions in the aquatic ecosystem and (v) communicate and promote results as well as 220 

contribute to higher education programs in order to disseminate the main outcomes of this research 221 

program. ANTIBIOTOX is focused on two SMs, namely sulfamethoxazole and sulfamethazine which 222 

are used in human medicine and in food animal production. For example,  20% of the veterinary 223 

antibiotics (147 tons of active substance per year) sold in France are in the SM class (ANSES 2015). 224 

Sulfonamides are frequently detected in various aquatic environments ( Deng et al., 2018). Overall, 225 

this multidisciplinary project is expected to provide new insights in the ecotoxicological impact of 226 

veterinary/human antibiotic residues on functional microbial diversity along the soil-water 227 

continuum.  228 
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Table 1. Occurrence of sulfamethoxazole and of sulfamethazine in different environmental matrices 492 

(soil, sediment, surface- and ground-water) and in various sources of contamination (waste water, 493 

digestate and manure)  494 

Antibiotic Matrice Placea (#of studies) Concentrationsb,c Reference 

Sulfamethoxazole Soil Ch (4), Sp (1), US (1) 19.3b  De Vries and Zhang, 2016 

 Sediment Ch (5), US (2), K (1), Sp 

(1) 

0.5b  De Vries and Zhang, 2016 

 Surface water  It  

It  

Ca  

US 

1.8-2.4c  

68 c  

578 c  

150 c 

Grenni et al., 2018 

Grenni et al., 2018 

Yargau et al., 2007 

Kolpin et al., 2002 

 Ground water  Nt(3) 50-75 c   Chitescu et al., 2012 

 Waste water 

Digestate 

Manure 

US (7) 

Ge 

Ge 

98-2200c 

880b 

nd 

Batt et al., 2008 

Ratsak et al., 2013 

Ratsak et al., 2013 

Sulfamethazine Soil Ch (4), US (1), K (1) 3.2 b  De Vries and Zhang, 2016 

 Sediment Ch (6), US (2), K (1) 2.9 b  De Vries and Zhang, 2016 

 Surface water US 

US 

6 c 

20 c 

Bernot et al., 2013 

Kolpin et al., 2002 

 Ground water Nt (2) 21 c  de Weert and Smedes, 2015 

 Waste water 

Digestate  

Manure 

Ch 

Ge 

Ge 

382c 

160b 

700b 

Chunhui et al., 2016 

Ratsak et al., 2013 

Ratsak et al., 2013 

a
China (Ch), Germany (Ge), Korea (K), Netherland (Nt), Spain (Sp), United States (US); 

b
in µg.kg

-1
; 

c
in ng.L

-1
 495 
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Figure Caption 497 

Figure 1. Overview of the main microbial biodegradation pathways of SMX and SMZ (co-metabolic 498 

pathways: brown arrows; metabolic pathways: black arrows). 1: 3-amino-5-methylisoxazole, 2: 4-499 

aminobenzenesulfonamide, 3:4-aminothiophenol, 4: aniline, 5: 4-aminophenol, 6: 2,4-500 

dihydroxyphenol, 7: hydroquinone, 8: N-hydroxymethyl-SMX, 9: N-hydroxyacetyl-SMX, 10: 4-501 

hydroxybenzenesulfonic acid, 11: 3-hydroxylamine-amino-5-carboxyl, 12: 4-hydroxy-N-(5-methyl-3-502 

isoxazole)benzene-1-sulfonamide, 13: 4-aminobenzenesulfonic acid. A: 2-amino-4,6-503 

dimethylpyrimidine.  504 
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