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Abstract. Interest is growing in methods for predicting and detecting regime shifts—changes in the

structure of dynamical processes that cause shifts among alternative stable states. Here, we use locally

linear, autoregressive state-space models to statistically identify nonlinear processes that govern the

dynamics of time series. We develop both time-varying and threshold models. In time-varying

autoregressive models with p time lags, AR( p), and vector autoregressive models for n-dimensional

systems of order p¼ 1, VAR(1), we assume that coefficients vary with time. We can infer an approaching

regime shift if the coefficients indicate critical slowing down of the local dynamics of the system. In self-

excited threshold models, we assume that the time series is governed by two autoregressive processes; the

state variable switches between them when the time series crosses a threshold value. We use the existence

of a statistically significant threshold as an indicator of alternative stable states. All models are fit to data

using a state-space form that incorporates measurement error, and maximum likelihood estimation allows

for statistically testing alternative hypotheses about the processes governing dynamics. Our model-based

approach for forecasting regime shifts and identifying alternative stable states overcomes limitations of

other common metric-based approaches and is a useful addition to the toolbox of methods for analyzing

nonlinear time series.
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INTRODUCTION

Ecological dynamics may experience abrupt

transitions between alternative stable states,

often termed regime shifts (Scheffer et al. 2001,

Carpenter 2003). Although regime shifts are

difficult to predict, recent work has proposed a

series of statistical properties that change in

predictable ways before a system shifts to an

alternate state, and these properties can be used

as generic early warning signals (Scheffer et al.

2009, Clarke and Signorino 2010). Theoretically,

most of these signals are manifestations of critical

slowing down; the return rate of a system

towards one of the stable states slows down as

a bifurcation is approached at which the system

shifts to the alternative state (Wissel 1984,

Strogatz 1994). Generic early warning signals
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include a rise in variance (Carpenter and Brock
2011), a decline in recovery rate after a perturba-
tion (van Nes and Scheffer 2007), an increase in
autocorrelation (Held and Kleinen 2004), and a
peak in skewness (Guttal and Jayaprakash 2008).

An advantage of using these types of generic
metrics as early warning signals is that they are
relatively simple to measure. A disadvantage,
however, is that they are descriptive; they only
describe the increasingly slow dynamics around
a stable state that is gradually forced towards a
regime shift (Scheffer et al. 2009). This leads to at
least four handicaps. First, statistical inference is
problematic; it is difficult, for example, to
statistically test hypotheses about changes in
dynamics, such as whether the dynamics are in
fact slowing down. Second, it is difficult to
interpret changes in the metrics in cases where
there are multiple simultaneous changes (Car-
penter and Brock 2011). For example, as a regime
shift is approached, there could be changes not
only in critical slowing down, but also in the
location (mean value) of a stable state, and these
two patterns need to be separated to obtain a true
measure of the return rate to the stable state.
Third, simple metrics provide no way to account
for measurement error, and variation due to
measurement error can muffle early warning
signals (Carpenter and Brock 2010). Finally,
identifying regime shifts using metrics often
requires long records that are not commonly
available for ecological systems. Thus, it is no
surprise that so far the best empirical examples of
successful early warning metrics come from long
paleoclimate records (Dakos et al. 2008) or from
experimental work where the signals are com-
pared to a control treatment (Drake and Griffen
2010, Carpenter et al. 2011).

Some of these handicaps have been addressed in
part by alternative approaches. For example, null
models have been used as a way to estimate
significance levels for some metrics, such as
autocorrelation measured in paleoclimate time
series (Dakos et al. 2008). Conditional heterosce-
dasticity has been proposed as an alternative
metric to the variance and can be associated with
probability values (Seekell et al. 2011). Generalized
modeling approaches that incorporate multiple
sources of data are suggested as ways to directly
estimate return rates in cases where data are scarce
(Lade and Gross 2012). Nonparametric regression

has been used to fit Drift-Diffusion-Jump models
to time series where the underlying dynamics are
affected by multiple processes (Carpenter and
Brock 2011). Still, these approaches require a
predefined model, do not explicitly account for
measurement error, or need long records.

To try to overcome some of these handicaps,
we developed locally linear state-space models
that can detect changes through time in the
stochastic dynamics of time series. Although this
approach can be used to detect many types of
changes in dynamics, we specifically use it to
detect either critical slowing down of dynamics
approaching a regime shift or ‘‘flickering’’ of a
state variable between alternative states. Concep-
tually, the approach is a stochastic analogue to
performing linear approximations of nonlinear,
deterministic systems to infer the local dynamics
around stationary points (May 1974). Even for
nonlinear deterministic systems, linear stability
analysis is informative about qualitative dynam-
ics and bifurcations. In a similar way, the locally
linear stochastic approach that we take can be
used to infer qualitative changes in nonlinear
stochastic systems. Linear stochastic models can
give good approximations to the variance and
lagged autocorrelations of nonlinear time series
and thereby are useful when insufficient infor-
mation is available to build more-realistic non-
linear models of a system.

We present two specific formulations of locally
linear autoregressive state-space models: (1)
time-varying autoregressive state-space models
of lag order p, TVARSS( p), and (2) self-excited
threshold autoregressive state-space models, SE-
TARSS( p). Time-varying AR( p) models approx-
imate the local dynamics of a time series by
estimating autoregressive coefficients that are
allowed to vary through time. This gives infor-
mation about the ‘‘local stability’’ of the system.
In addition to univariate TVARSS( p) models, we
also develop time-varying vector autoregressive
models of order p¼ 1, TVVARSS(1), that contain
more than one state variable. TVVARSS(1)
models can be fit to multiple time series
simultaneously, assuming time series interact
such that the values of one time series directly
affect the values of another. SETARSS( p) models
are autoregressive models in which the coeffi-
cients switch between different parameter sets,
with the switch occurring when the state variable
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crosses a threshold value; they are the state-space
extension of self-excited threshold autoregressive
models, SETAR( p) (Tong 1990). SETARSS( p)
models could be used, for example, to explore
the existence of alternative stable states, in which
the dynamics within each state are approximated
by a separate AR( p) model and the time series
flickers between the domains of attraction to the
different alternative states.

METHODS

Autoregressive models
To explain the analyses of the time-varying and

threshold AR models, it is useful to begin with a
brief exposition of the properties of standard AR
models. A standard AR( p) model (Box et al.
1994) is

xðtÞ ¼ b0 þ
Xp

i¼1

bi

�
xðt � iÞ � b0

�
þ eðtÞ ð1Þ

where x(t) is the possibly transformed state
variable (e.g., species density), b0 sets the mean
(location) of the time series, bi (i � 1) are the
autoregression coefficients, and e(t) is the envi-
ronmental variability associated with changes in
the state variable; e(t) is assumed to be a
Gaussian random variable with mean zero and
variance r2

e. Although linear, the AR( p) model is
flexible enough to describe many types of
complex dynamics. Even for small values of p,
an AR( p) can well-approximate the variance and
autocorrelations of even highly nonlinear time
series (e.g., Ives and Jansen 1998).

Whereas the coefficient b0 determines the mean
of the time series, the coefficients bi (i � 1)
determine the dynamics around the mean. A
useful quantity in describing these dynamics is
the inverse of the characteristic root (Box et al.
1994), which we denote k. This quantity is
similar to the magnitude of the dominant
eigenvalue of the Jacobian matrix computed at
a stationary point of a deterministic discrete-time
model (Strogatz 1994). Values of k near zero
imply that the state variable is drawn rapidly
towards the mean b0, and as values approach
one, the central tendency of the time series
diminishes (Ives et al. 2003). When k exceeds
one, the process is nonstationary; the variance of
the process increases continuously through time.
This is analogous to the magnitude of the

dominant eigenvalue of the Jacobian matrix
exceeding one, in which case the stationary point
becomes unstable.

The standard AR( p) assumes that the under-
lying process generating a time series does not
itself change. Specifically, the location of the
mean b0, and the inverse of the characteristic root
k (which is determined by the coefficients bi, i �
1) are time invariant. Nonetheless, the properties
of time-invariant AR(p) models have counter-
parts in time-varying and threshold autoregres-
sion models, and can be used to give insights into
the dynamics of time-varying and nonlinear
processes.

TVARSS(p) models
The general form of the suite of TVARSS( p)

models we consider is

xðtÞ ¼ b0ðt � 1Þ þ
Xp

i¼1

biðt � 1Þ

3
�

xðt � iÞ � b0ðt � 1Þ
�
þ eðtÞ

biðtÞ ¼ biðt � 1Þ þ /iðtÞ:

ð2Þ

The top equation is a standard AR( p) model but
with coefficients expressed as functions of time,
and the bottom equation allows the autoregres-
sion coefficients bi(t) (i � 0) to vary as random
walks, with the rates of the randomwalks dictated
by the variances r2

i of /i(t). Although in principle
the values of the autoregressive coefficients are
unbounded (since they follow random walks), the
values are constrained by fitting to the data. In
addition to the process Eq. 2, we assume that there
is a measurement equation

x�ðtÞ ¼ xðtÞ þ aðtÞ ð3Þ

in which x*(t) is the observed value of the state
variable, and a(t) is a Gaussian random variable
with mean zero and variance r2

a depicting
measurement error.

The parameters in this model that must be
estimated are the initial (t ¼ 0) values of the
coefficients bi, the variances in the state variables
r2

e and r2
i, and the measurement error variance

r2
a. This time-varying model is conditionally

Gaussian; conditional on the Gaussian distribu-
tion of state variables at time t � 1, the
distributions of x(t) and bi(t) are Gaussian at
time t. Therefore, the likelihood of parameter
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estimates can be computed exactly using a
Kalman filter (Harvey 1989). This also permits
likelihood ratio tests for statistical inference
about the parameter estimates and likelihood-
based model selection such as Akaike’s Informa-
tion Criterion, AIC (Akaike 1973). In practice, for
realistically short time series (,200 points) and
higher-order models ( p . 1), the likelihoods are
not unimodal (Ives et al. 2010); therefore, caution
is required when numerically computing the
maximum likelihood parameter estimates.

In likelihood ratio tests, because the possible
values of the variances r2 are constrained to be
positive, the asymptotic values of the log-
likelihood ratios computed for the full model
and the model reduced by q parameters are
distributed by a mixture of v2 distributions (Self
and Liang 1987, Stram and Lee 1994). For the
case in which the variances r2

i of /i(t) are
assumed to be independent, the distribution of
the likelihood ratio is asymptotically given by

Xq

k¼0

q
k

� �
2�qv2

k

(case 9 in Self and Liang 1987). For example, for
testing a single parameter (q¼ 1) as in the case of
a TVARSS(1), the test distribution is a 50:50 mix
of v2

0 and v2
1 distributions; thus, the P-values

given by the constrained likelihood ratio test are
one-half the values that would be calculated from
a standard likelihood ratio test using v21.

The Kalman filter propagates estimates of both
the mean and the variance of the state variables
(x(t) and bi(t)) (Harvey 1989). This makes it
possible to calculate the time-dependent confi-
dence intervals of k. For the case of TVARSS(1)
models, k(t)¼ b1(t), and therefore the distribution
of the estimates of k(t) is Gaussian. For
TVARSS( p . 1) models, k(t) depends in a
nonlinear way on bi(t) (i � 1), and therefore the
distribution of its estimate is not Gaussian.
Nonetheless, we can approximate the distribu-
tion of the estimate numerically to give confi-
dence intervals; here, we report the 67%
confidence intervals that coincide with standard
errors (which give the 67% confidence intervals
for Gaussian distributions).

Numerous modifications and constraints can
be added to the model. For example, as formu-
lated above, the variance parameters r2

i are
unbounded above, so that large estimates that

allow rapid changes to the coefficients bi are
possible. Instead, an upper limit on r2

i could be
imposed to force the coefficients to vary smooth-
ly through time. Also, the model assumes that
there is measurement error (r2

a . 0) and
estimates this simultaneously with the other
parameters. If the magnitude of measurement
error is known from independent information,
then this estimate could be used, thereby
alleviating the need to estimate r2

a. This will be
particularly advantageous if the measurement
error changes through time or according to the
values in the time series.

Two related decisions need to be made:
selecting the time step of the time series if it is
very long, and whether to detrend the data. The
state-space structure of the model allows data
points to be unequally spaced by iterating the
process equations (e.g., Eq. 2) without updating
the Kalman filter with the measurement equa-
tions (e.g., Eq. 3) (Harvey 1989). Therefore, for
short time series with unequally spaced samples,
it is best to formulate a model with unequally
spaced sample points rather than select a longer
iteration interval to create equally spaced points.
For very long time series, it might be advanta-
geous to subsample the data, especially if the
measurement error is known to be high, because
in this case variation between sequential points
will largely be caused by measurement error. As
for detrending, this will often be unnecessary,
because the mean location of the time series, b0(t),
is allowed to vary through time. Thus, detrend-
ing is performed as part of the estimation of the
TVARSS model, with the degree of detrending
determined by the maximum likelihood estimate
of r2

0. Nonetheless, if there are strong trends in
the data, then simple linear or quadratic detrend-
ing can be used (e.g., fitting a line x(t) ¼ c0 þ c1t
and analyzing the residuals). We recommend
against using a smoothing algorithm, because it
is unclear how this might affect the estimates of
the parameters of the TVARSS model. Decisions
like these about how to formulate the TVARSS,
and how to transform and initially process the
data, will generally depend on the data set
(Clarke and Signorino 2010).

TVVARSS(1) models
The time-varying vector autoregressive state-

space model, TVVARSS(1), is closely related to
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TVARSS( p) models, although multiple time
series can be analyzed simultaneously. If X(t)
denotes the n-dimensional vector of state vari-
ables xi(t) (i¼ 1, . . . , n), then

XðtÞ ¼ B0ðt � 1Þ þ Bðt � 1Þ

3
�

Xðt � 1Þ � B0ðt � 1Þ
�
þ EðtÞ

bi;jðtÞ ¼ bi;jðt � 1Þ þ /i;jðtÞ ð4Þ

where B0(t) is the n-dimensional vector contain-
ing the coefficients bi,0(t), B(t) is the n 3 n matrix
containing coefficients bi,j(t) (i, j ¼ 1, . . . , n), and
E(t) is the n-dimensional Gaussian random
variable with mean zero and covariance matrix
Re. The coefficients bi,j(t) are assumed to follow
random walks with rates given by the variances
of /i,j, r2

i,j (i ¼ 1, . . . n; j ¼ 0, . . . , n). The state
variables X(t) are assumed to be measured with
error

X�ðtÞ ¼ XðtÞ þ AðtÞ ð5Þ

where A(t) is an n-dimensional Gaussian random
variable with covariance matrix Ra.

We only consider TVVARSS(1) processes,
rather than TVVARSS( p . 1). Although there
are no technical restrictions limiting the approach
to p¼ 1, for most applications p¼ 1 is likely to be
sufficient. Numerous constraints can further be
imposed on the model, such as assuming that
environmental variability and/or measurement
error are independent between state variables
(i.e., Re and/or Ra are diagonal). As with the
TVARSS( p) model, the Kalman filter can be used
to compute the likelihood, allowing maximum
likelihood estimation and statistical inference.

SETARSS(p) models
The self-exciting threshold autoregressive

state-space model, SETARSS( p), assumes that
there are two possible AR( p) models governing
dynamics, with the possibility that the state
variable switches between them when it crosses
a threshold. Specifically,

xðtÞ ¼ b0 þ
Xp

i¼1

bi

�
xðt � iÞ � b0

�
þ eðtÞ

when xðt � 1Þ. c

xðtÞ ¼ b 0
0 þ

Xp

i¼1

b 0
i

�
xðt � iÞ � b 0

0

�
þ eðtÞ

when xðt � 1Þ � c ð6Þ

where the coefficients bi and bi
0 (i ¼ 0, . . . , p)

denote separate sets of coefficients; this is the
SETAR model (Tong 1990) that assumes no
measurement error. Here, we assume that there
is measurement error that does not differ
between the two AR( p) systems and is therefore
given by Eq. 3. As with the time-varying models,
the SETARSS( p) is conditionally Gaussian, and
therefore the Kalman filter can be used to
compute its exact likelihood. In addition to the
two sets of autoregression parameters bi and bi

0,
parameters to be estimated are the threshold c,
the variance of the process error r2

e, and the
variance of the measurement error r2

a.

Data simulations
To illustrate the methods, we used two

stochastic simulation models that produce dif-
ferent types of dynamics. The first, the single-
species harvesting model of May (1977), produc-
es two alternative stable points over a range of
values of the parameter that governs the har-
vesting rate, a. We use this model to produce two
data sets. In the first, we increased the value of a
so that one of the two stable points collapses at a
fold bifurcation; this provides a test for whether
the TVARSS( p) models can detect the impending
collapse before it occurs. In the second, we set a
at a value giving alternative stable points and
added sufficiently high environmental variability
that the population jumps between the domains
of attraction to the two stable points; this
provides a test of the SETARSS( p) models to
identify flickering between alternative stable
states. The second model we used is the
Nicholson-Bailey predator-prey model (Nichol-
son and Bailey 1935) with prey density depen-
dence that undergoes a Neimark-Sacker
bifurcation (discrete-time version of a Hopf
bifurcation). Reducing the strength of prey
density dependence leads to a deterministic
stable limit cycle. The simulated data set consist-
ing of only the density of prey provides a test for
TVARSS( p) models to identify a regime shift to
greater population cyclicity, and the data set
consisting of both prey and predator densities
provides a similar test for the TVVARSS(1)
model.

May harvesting model.—The harvesting model
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of May (1977) describes the discrete-time changes
in density of a population N(t) as

NðtÞ ¼ Nðt � 1Þexp r 1� Nðt � 1Þ
K

� ��

� aNðt � 1ÞQ

Nðt � 1ÞQ þ HQ
þ eNðtÞ

�
ð7Þ

where a gives the harvesting effort, the carrying
capacity K sets the strength of density depen-
dence, r is the intrinsic rate of increase, and H
and Q determine how the harvesting rate
depends on N(t). We assume that there is
environmental variability given by the Gaussian
random variable eN(t) that has mean zero and
variance r2

N. In addition, we assume that there is
lognormal measurement error, so that the ob-
served density N*(t) is

N�ðtÞ ¼ NðtÞexp½aNðtÞ� ð8Þ

where aN(t) is a Gaussian random variable with
mean zero and variance r2

a.
Over a range of values of a, the May harvesting

model has alternative stable points. If the
population is initially in the domain of attraction
to the upper stable point, increasing a will
eventually lead to the annihilation of this point
and a rapid drop in density to the lower stable
point through a fold bifurcation (Fig. 1A). To test

Fig. 1. Two simulation models illustrating different

scenarios that we used to test the locally linear

autoregressive state-space models. (A) The harvesting

model of May (1977) shows alternative stable states

(green lines) over a range of values of the harvesting

rate, a, which in the simulation is increased through

time from a¼ 1 (t¼ 0) to a¼ 3 (t¼ 400). The stochastic

time series initially stays within the domain of

attraction to the upper stable point, but as time (and

a) increases, the upper stable point collapses, and the

time series drops to the lower, persisting stable state

through a fold bifurcation. Other parameters are r ¼
0.75, K¼10, P¼3, H¼1, rN¼0.4, and ra¼0.2. (B) The

 
harvesting model of May (1977) shows flickering

between the domains of attraction to two stable points.

In contrast to (A), in (B) no parameter changes through

time, and the switches between domains of attraction

are cause by the stochasticity of the system. Green lines

give the alternative stable states. Parameter values are r

¼ 0.75, K¼ 10, a¼2, P¼ 3, H¼ 1, rN¼ 0.2, and ra¼ 0.1.

(C) The Nicholson-Bailey predator-prey model shows

cyclic dynamics, and as the carrying capacity of the

prey, K, decreases through time from 12 (t¼0) to 30 (t¼
400), the cycles become more pronounced. The

dominant eigenvalue of the Jacobian matrix around

the stable point (red line) increases through time,

reaching 1 at about t ¼ 300 corresponding to a

Neimark-Sacker bifurcation. With increasing K, the

prey density decreases (black line) while that of the

predator increases (blue line), with the deterministic

stationary point given by the green lines. Other

parameter values are r ¼ 0.75, k ¼ 0.1, rN ¼ 0.1, rP ¼
0.1, and ra ¼ 0.05.
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the ability of TVARSS( p) models to detect this
regime shift, we truncated the data when it
reached the midpoint between the upper and
lower stable points immediately before the
collapse of the upper stable point.

When there is a fixed value of a giving two
stable points, and when the environmental
variance r2

N is large, the population jumps
between the domains of the two stable points
(Fig. 1B). The underlying existence of the stable
points is suggested because densities linger
within each of the domains of attraction for
successive time steps, generating flickering be-
tween the two stable points. We used this
simulated data set to test whether the SE-
TARSS( p) model could detect the existence of
these alternative stable points.

Nicholson-Bailey predator-prey model.—The
Nicholson-Bailey model (1935) is a simple model
of predator-prey interactions in which predators
search for prey randomly, and those prey that are
attacked develop into predators in the following
generation. Because there is a one-to-one match
between prey killed and predators produced, this
model is suited for parasitoid-host systems in
which parasitized hosts give rise to the next
generation of parasitoids. The population dy-
namics of prey N(t) and predators P(t) are given
by

NðtÞ ¼ Nðt � 1Þexp

�
r

�
1� Nðt � 1Þ

K

�

�kPðt � 1Þ þ eNðtÞ
	

PðtÞ ¼ Nðt � 1Þexp

�
r

�
1� Nðt � 1Þ

K

�	

3 1� exp½�kPðt � 1Þ�f gexp½ePðtÞ�
ð9Þ

where prey have intrinsic rate of increase r and
experience density dependence with carrying
capacity K. The proportion of prey that escape
predation is exp[�kP(t)], the zero term in a
Poisson distribution with mean kP(t), and so the
proportion killed is 1 � exp[�kP(t)]. Both prey
and predator experience environmental variabil-
ity incorporated as independent Gaussian ran-
dom variables eN(t) and eP(t) that have means
zero and variances r2

N and r2
P. Furthermore,

both prey and predator densities are assumed to
be measured with error, so that their observed
densities N*(t) and P*(t) are given by

N�ðtÞ ¼ NðtÞexp½aNðtÞ�
P�ðtÞ ¼ PðtÞexp½aPðtÞ�:

ð10Þ

As K increases, prey density dependence
weakens, and the population dynamics show
greater cyclicity. Increasing K eventually leads to
a Neimark-Sacker bifurcation in which the stable
point of the deterministic skeleton of Eqs. 9 (i.e.,
the equations stripped of environmental stochas-
ticity) converts into a stable limit cycle. In the
fully stochastic model, however, there is no
marked transition in dynamics at this bifurcation
(Fig. 1C), as the environmental variability makes
cycles persist before the bifurcation is reached;
nonetheless, increasing K leads to greater intrin-
sically driven cycles. For analyses, we truncated
the data at the bifurcation point. We tested
TVARSS( p) models using only the prey density
and the TVVARSS(1) models with both prey and
predator densities.

RESULTS

TVARSS(p) models
We fit TVARSS( p) models with p¼ 1, 2, and 3

to the data simulated from the May harvesting
model (Fig. 1A); the data were log-transformed,
normalized, and truncated immediately before
the collapse of the stable point. The TVARSS(1)
model (Fig. 2) fit the data best according to the
AIC (DAIC ¼ 0.04 and 0.47 for p ¼ 2 and 3,
respectively). We then fit TVARSS( p) models in
which only the estimate of the mean of the AR
process, b0(t), was allowed to vary through time
(r2

i ¼ 0 for i � 1). The log-likelihood ratio
between the two models with p ¼ 1 was 3.59,
implying that the model allowing the coefficient
b1 to vary was statistically significantly better
(0.5v20 þ 0.5v2

1 ¼ 7.18, P , 0.004). A similar test
for the difference between the models with and
without time variation in bi (i � 1) was significant
for both p¼ 2 (0.25v2

0þ 0.5v2
1þ 0.25v22¼ 6.56, P

, 0.02) and 3 (0.125v20 þ 0.375v21 þ 0.375v22 þ
0.125v23¼ 8.40, P , 0.02). We also estimated the
inverse of the characteristic root, k, of the
TVARSS(1) model and its 67% confidence inter-
val (standard errors) at each point in the time
series from the estimates of b1(t). As the time
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series approached the collapse of the upper
stationary point, the inverse of the characteristic
root approached and exceeded 1 (Fig. 2). Values
of k approaching 1 imply critical slowing down,
since the tendency of x(t) to return towards the
mean is lowered. Values of k . 1 imply loss of
stationarity, with x(t) being pushed away from
the mean value given by b0(t).

In this analysis, the confidence interval of the
estimate of k includes 1 as the regime shift is
closely approached at the end of the time series.
Therefore, if we were to ask whether the
prediction of an impending regime shift is
statistically significant, we would conclude no.
This is not surprising, however, because the
regime shift has not yet occurred, so the
statistical power to identify a loss of stationarity
at the final point in the time series is low. At the
same time, however, there is strong statistical
support for time-varying autoregression coeffi-
cients, and the estimate of k from these coeffi-
cients increases towards nonstationarity. In a real
data set, we would use this as evidence that an

imminent regime shift is possible, although
without detailed knowledge of the nonlinearities
of the system, we could not ascribe a degree of
certainty to this prediction. Because the confi-
dence bounds on k are fairly wide, any conclu-
sion about whether the time series has actually
become nonstationary must be made cautiously;
while the best (i.e., maximum likelihood) esti-
mates from the time series imply nonstationarity,
considerable uncertainty in the nonstationarity
still exists. Unfortunately, the system will not stay
in a nonstationary state very long and, if there is
a regime shift, it will occur quickly. Therefore,
from a management perspective, if there is a way
to mitigate a regime shift, a manager will not
have the leisure to wait for statistical significance.

These results are given only for a single,
example time series. A full exploration of the
method requires detailed analyses of simulated
data. We are strong advocates of simulation
studies, yet simulation studies are most informa-
tive when they are tailored for specific data sets
that a researcher has in hand; the researcher can

Fig. 2. Illustration of a TVARSS(1) model fit to simulated data from the harvesting model of May (1977) (Eqs. 7

and 8). The harvesting rate a increases through time to cause the collapse of the upper stable point through a fold

bifurcation (Fig. 1A). (A) Differences between the fitted trajectory (blue line) and the simulated data (black dots)

are attributed in the model to measurement error. The green line gives the time-varying estimate of b0(t) from the

TVARSS(1). (B) The inverse of the characteristic root for the TVARSS(1) is simply jb1(t)j, which is plotted through

time with its 67% confidence interval (dashed lines). Parameter estimates are: initial b0¼ 0.737, initial b1¼ 0.241,

re ¼ 0.558, ra¼ 0.328, r1 ¼ 0.039, and r2 ¼ 0.016, and the log likelihood is �288.85.
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then produce simulations that mimic the real
data to explore the power and possible bias of a
given statistical method. To illustrate the type of
analyses we think should routinely be per-
formed, we simulated the May harvesting model
to generate 500 simulated data sets under the
same parameter values as Fig. 2. For each
simulated data set, we estimated parameters of
a TVARSS(1) under the null hypothesis H0 that
coefficient b1 did not change (r2

1¼ 0) and under
the hypothesis H1 that b1(t) varied through time
(Fig. 3). In only 212 of the 500 simulated data sets
was H0 rejected at the a ¼ 0.05 level. Thus, the
statistical power of the test for this particular
model is not high. In no case was the estimate of
b1 under H0 greater than 1 (Fig. 3A); for this
model, jb1(t)j equals the inverse of the character-
istic root k, so no data set was identified as
nonstationary when analyzed under the null
hypothesis. In contrast, when fit under H1, 36%
of the estimates of k were greater than 1 at the
last time point in the data set. For those 212/500
data sets for which H0 was rejected, 68% had
estimates of k . 1 at the last time point,
suggesting that the time series was at a regime
shift. Even for data sets that did not have the final
values of k . 1, for the data sets for which H0

was rejected, 98% had a value of k at the last time
point greater than the value at the first time
point, indicating that the time series was becom-
ing less stationary and suggesting an approach-
ing regime shift. Our intent in presenting these
simulations is to illustrate the value of simula-
tions when assessing the results of these or any
methods of analyzing time series; however,
because the power and performance of our
methods will depend on the length of data sets
and the strength of signal within them, we would
not expect the results from our simulations to be
representative of other applications.

We also performed simulations to test whether
the TVARSS( p) models might give false positives
(type I errors), rejecting the null hypothesis (no
change through time) when it is in fact true. We
simulated 500 data sets under the null hypothesis
by fixing a¼ 1 in Eq. 7, and then fit each data set
to a TVARSS(1) model and performed a likeli-
hood ratio test against the null hypothesis that b1
is time-invariant. The null hypothesis was reject-
ed (the time-varying model was significantly
better) in 10/500 data sets, giving a incorrectly

low rejection rate of 0.02 at the a-level of 0.05.

Thus, in this scenario the TVARSS(1) model did

not reject as many data sets as it should have,

suggesting low power. In many situations, it is

statistically preferable to err on the side of false

negatives than false positives, so that we do not

infer patterns that in fact are not real. However,

in the case of regime shifts, erring on the side of

false positives is probably more often preferable;

if the consequences of a regime shift are

Fig. 3. Simulation study of the TVARSS(1) model.

Five hundred data sets were simulated from the May

harvesting model under parameter values as in Fig. 1A

that produce a regime shift, with the data sets

truncated before the regime shifts occurred (when the

population dropped to the midpoint between the

upper and lower stationary points immediately before

the alternative states collapse). (A) The distribution of

the resulting 500 estimates of the inverse of the

characteristic root, k, when fitting the null model

assuming the autoregressive coefficient b1 does not

change. (B) The distribution of k estimated at the last

time point in the time series for the full model with

time-varying estimates of b1(t). In (B), the 212/500

simulations for which the null hypothesis was rejected

are shown in black. For simulations, the parameter a¼
1 (t ¼ 0) to a ¼ 3 (t ¼ 400), and the other parameter

values are r¼ 0.75, k¼ 0.1, rN¼ 0.1, rP¼ 0.1, and ra¼
0.05.
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sufficiently great, missing a warning should be
avoided. Therefore, we suggest that researchers
do not take as dogma an a-level of 0.05 but
instead select a (higher) a-level consistent with
the risks of a regime shift, and then perform
simulations using a model tailored to their
specific system to assess possible type I and II
errors.

In addition to simulations of the May harvest-
ing model, we investigated whether TVARSS( p)
models could identify changes in the dynamics
leading up to the Neimark-Sacker bifurcation in
the predator-prey model (Fig. 1C) using only the
time series for the prey. The TVARSS(2) model
which allowed all coefficients bi to vary through
time was selected over the models with p ¼ 1
(DAIC ¼ 212) and p ¼ 3 (DAIC ¼ 0.97). The
TVARSS(2) allowing the coefficients bi(t) (i � 1) to
vary provided a statistically better fit than the
TVARSS(2) model that treated these coefficients
as fixed (0.25v20 þ 0.5v21 þ 0.25v2

2 ¼ 12.98, P ,

0.001), implying that the dynamics of the time

series changed through time. Performing the
same comparison for the pair of TVARSS(3)
models similarly rejected the hypothesis that
the coefficients bi (i � 1) were constant (0.125v2

0þ
0.375v21þ 0.375v22þ 0.125v2

3¼ 13.97, P , 0.001);
we did not perform this comparison for the
TVARSS(1) models, because their fits to the data
were poor, presumably because they could not
capture the cyclicity in the data. The time-
varying estimate of the inverse of the character-
istic root, k, exceeded one as the Neimark-Sacker
bifurcation was approached, suggesting loss of
stationarity of the AR(2) process (Fig. 4). Al-
though the 67% confidence intervals of the
estimates of k were fairly narrow, never did the
lower bound exceed 1, and therefore never was it
significantly greater than 1 even at the a ¼ 0.33
level.

In addition to the TVARSS( p) models, we also
applied the TVVARSS(1) model using both prey
and predator time series (Fig. 5). For the fitting,
we assumed that both Re and Ra were diagonal.

Fig. 4. Illustration of a TVARSS(2) model fit to simulated data for prey from the Nicholson-Bailey predator-prey

model (Eqs. 9 and 10). The carrying capacity of the host, K, increases through time to cause a Neimark-Sacker

bifurcation at about t¼ 300 (Fig. 1C). (A) Differences between the fitted trajectory (blue line) and the simulated

data (black dots) are attributed in the model to measurement error. The green line gives the time-varying estimate

of b0(t) from TVARSS(2). (B) The inverse of the characteristic root for the AR(2) is computed from b1(t) and b2(t),

which is plotted through time with its 67% confidence interval (dashed lines). Parameter estimates are: initial b0¼
0.096, initial b1¼ 0.961, initial b2¼�0.429, re¼ 0.302, ra¼ 0.253, r0¼ 0.0094, r1¼ 0.027, and r2¼ 0.026, and the

log likelihood is �206.92.
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The model in which the autoregression coeffi-
cients bi,j(t) (i, j � 1) were allowed to vary fit the
two time series much better than the model
keeping these coefficients fixed (

P4
k¼0ð

4
kÞ2�4v2

k ¼
57.7, P , 0.0001). The statistical strength of this
result was much greater than the case in which
only the single time series for the prey is
analyzed (Fig. 4); this is not surprising, because
the predator data set added more information.
As found for the analysis of only the prey time
series, the inverse of the characteristic root k
increased through time, approaching 1 close to
the Neimark-Sacker bifurcation, although the
lower bound of the 67% confidence interval
never exceeded 1. The estimate of k was very
similar between the TVARSS(2) and TVVARSS(1)
models (compare Figs. 4B and 5B).

Finally, we fit the SETARSS( p) model to the
data set simulated with the harvesting model of
May (1977) in which the time series flickered
between domains of attraction to the two

alternative states (Fig. 1B). The best-fitting model
was SETARSS(1), with less-good fits for p ¼ 2
(DAIC¼ 0.4) and p¼ 3 (DAIC¼ 2.84). Comparing
the SETARSS(1) to a simple AR(1) fit in the same
manner, the fit of the SETARSS(1) was signifi-
cantly better (v23¼ 24.2, P , 0.0001) (Fig. 6). The
tests of the same comparison were similarly
significant for the SETARSS(2) (v2

4 ¼ 26.0, P ,

0.0001) and SETARSS(3) (v2
5¼ 20.2, P , 0.002).

Potential advantages of locally linear
state-space models

The approaches that we have presented using
locally linear state-space models to anticipate
regime shifts and to identify alternative stable
states have potential advantages over existing
metric-based methods. The existence and magni-
tude of these advantages will vary according to
which methods are compared and what types of
data are analyzed. We have not tested whether
these advantages are realized in specific situa-

Fig. 5. Illustration of a TVVARSS(1) model fit to the two time series simulated from the Nicholson-Bailey

predator-prey model (Eqs. 9 and 10). The carrying capacity of the host, K, increases through time to cause a

Neimark-Sacker bifurcation (Fig. 1C). (A) Differences between the fitted trajectory (blue line) and the simulated

data (black dots) are attributed in the model to measurement error. The green lines give the time-varying

estimates of b1,0(t) and b2,0(t). (B) The inverse of the characteristic root for the TVVARSS(1) is computed from

b1,1(t), b1,2(t), b2,1(t) and b2,2(t) (Box et al. 1994), which is plotted through time with its 67% confidence interval

(dashed lines). Parameter estimates are: initial b1,0 ¼ 0.0132, initial b2,0 ¼�0.198, initial b1,1 ¼ 0.467, initial b1,2 ¼
0.472, initial b2,1¼�0.0827, initial b2,2¼0.880, re,1¼0.388, re,2¼0.314, ra¼0.0862, r1,0¼0.0080, r2,0¼0.0080, r1,1

¼ 0.0202, r1,2 ¼ 0.0160, r2,1 ¼ 0.0000, and r2,2 ¼ 0.0153, and the log likelihood is �255.52.
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tions, but instead list them as speculations. Many
of these potential advantages are shared with
other model-based approaches (Clarke and Si-
gnorino 2010, Livina et al. 2010, Carpenter and
Brock 2011). We strongly recommend that
multiple methods be applied to any data set,
and that simulations be performed to compare
the potential advantages of the methods in the
context of the data set.

A first potential advantage is that the ap-
proaches we have presented are model-based,
with the analyses producing a structurally simple
linear autoregressive model with statistically
fitted parameters. Autoregressive models can
avoid challenges and subjective decisions that
are inherent in metric-based approaches, such as
deciding whether and how to filter or detrend
data, and choosing the best rolling window for
calculating the metric (Dakos et al. 2008), as both
filtering and rolling window size may have a
strong influence on whether a metric predicts a
regime shift (Lenton 2011, Dakos et al. 2012,
Lenton et al. 2012). For time-varying AR( p) and
VAR(1) models (Eqs. 2, 4), detrending is per-
formed de facto by allowing b0 to change through
time (although simple detrending can also be
used; see Methods). The rate at which b0 changes,
and hence the effective magnitude of detrending,

is given by the maximum likelihood estimates of
the parameter r2

0 and therefore is determined as
part of the overall fitting procedure. Thus, the
approach gives statistical descriptions of the
different properties of the time series (changes
in the location b0, changes in the dynamics
around b0 given by bi, i � 1). How these
properties are used to infer regime shifts is then
left up to the researcher. For example, in some
models (e.g., Fig. 1A) the deterministic equilibri-
um of the process changes more rapidly as a
regime shift is approached, and a researcher
could decide to use this information to infer a
regime shift. This carries the risk, however, that
changes in the location are caused by some
environmental trend that has no effect on the
dynamics and therefore should not be used to
infer a regime shift. Our approach has been to
use only information about the dynamics around
the (possibly temporally varying) mean of the
process to infer a regime shift.

Second, our model-based approaches uses
maximum likelihood estimation, thereby admit-
ting a full range of statistical inference, including
hypothesis testing, confidence intervals on coef-
ficients, and model selection. Statistical inference
makes it possible to directly compare between
alternative hypotheses, such as whether or not

Fig. 6. Illustration of a SETARSS(1) model fit to a time series simulated from the harvesting model of May

(1977) in which all parameters are fixed and stochasticity causes the population x(t) to switch between domains

of attraction to two stable points (Fig. 1B). (A) Differences between the fitted trajectory (blue line) and the

simulated data (black dots) are attributed in the model to measurement error. The green lines give the estimates

of b0(t) and b0’(t), and the yellow line gives the threshold c which separates the two AR(1) processes. Parameter

estimates are: b0 ¼�0.537, b00 ¼ 1.09, b1 ¼ 0.444, b1
0 ¼ 0.706, c ¼ 0.184, re ¼ 0.469, and ra ¼ 0.216, and the log

likelihood ¼�155.05.
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the coefficients that govern dynamics in a an
AR( p) vary through time. For metric-based
approaches, the only way to test whether trends
in a metric are statistically significant is to
perform simulations, comparing the change in
the metric computed from the data with the
distribution of changes in the metric computed
from data simulated under the null hypothesis
that the dynamics of the system do not change
(i.e., non-bifurcating systems) (Dakos et al. 2012).
The difficulty with this approach is that it is often
not clear how to formulate an appropriate null
model to be used to simulate data, and the
chances of rejecting the null hypothesis will
depend on decisions made about how the null
model is constructed. For example, a natural null
model might be a time-invariant AR(1), yet this
would be inappropriate for data with cyclic
dynamics (e.g., Fig. 1C) for which an AR( p)
model would be more appropriate. Furthermore,
the presence of measurement error would make
an ARMA( p,p) a better null model than an AR( p)
(Staudenmayer and Buonaccorsi 2005, Ives et al.
2010). In our model-based approach, determin-
ing the appropriate null model is more straight-
forward and statistically coherent, because we
can compare the same model with and without
time-varying coefficients, or with and without a
threshold between alternative stable states.

Third, as a state-space model, measurement
error can be included as either user-defined input
or, as we have illustrated here, a parameter
estimated in the model. Measurement error
introduces short-term (non-autocorrelated) vari-
ation to time-series data, yet critical slowing
down by definition involves autocorrelated
variation. In effect, in our models measurement
error is smoothed out of the time series during
the fitting with the Kalman filter (Harvey 1989).
Factoring out measurement error should better
reveal the long-term patterns of variation, lead-
ing to fewer false negatives in the identification
of impending regime shifts. While this in general
is likely to be true, measurement error could have
more complicated effects, especially if the mag-
nitude of measurement error varied with the
values in the time series or showed systematic
changes through time; these complications
would best be handled by, if possible, obtaining
independent estimates of the measurement error
and incorporating these directly into the model

(i.e., not estimating measurement error in the
time-series analysis). Metric-based approaches
do not account for measurement error, which is
likely to lead to false negatives in the identifica-
tion of early warning signals (Carpenter and
Brock 2010).

Fourth, our approach should have good
statistical power, because it incorporates the full
information about the time series. This being
said, the power of any statistical method will
depend on the length and the underlying signal
of a time series. As we illustrated (Fig. 3), power
analyses can and should be conducted to assess
the results of any analyses, and to compare the
power of multiple approaches in the context of
the data set in hand.

DISCUSSION

In this paper, we illustrated how locally linear
state-space models can be used to measure
changes in dynamics prior to regime shifts and
to identify alternative stable states in time series.
We showed that a rise in the dominant eigenval-
ue of a fitted time-varying autoregressive model,
TVARSS( p), can be used as an early warning
signal in time series approaching a regime shift
through a fold or a Neimark-Sacker bifurcation
(Figs. 2, 4, 5). We also used a threshold
autoregressive model, SETARSS( p), to identify
alternative states in a time series that flickers
between alternative stable points (Fig. 6). These
model-based approaches have several potential
advantages over metric-based approaches that
currently dominate analyses of time series for
regime shifts and alternative stable states.

Although the approaches we presented are
model-based, they are nonetheless simple, gen-
eral models of time series. If sufficient informa-
tion exists about a system, a potentially better
strategy is to fit system-specific, nonlinear,
biologically explicit models in order to investi-
gate the possibility of alternative states (e.g., Ives
et al. 2008, Schooler et al. 2011). This typically
requires time series that are rich in dynamical
patterns taken from systems that are biologically
well-understood. In the absence of such require-
ments, or when performing a comparative
analysis of the dynamics of many time series
(e.g., Turchin and Taylor 1992, Murdoch et al.
2002, Ziebarth et al. 2010), simpler, non-system-
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specific models are appropriate.
Although locally linear state-space models

have advantages over existing metric-based
approaches, they are not immune to problems
that infect all approaches for detecting early
warning signals (Scheffer et al. 2009, Hastings
and Wysham 2010, Carpenter and Brock 2011).
State-space models cannot distinguish between
strong nonlinear changes in dynamics that lead
to regime shifts from similarly strong nonlinear
changes that do not. Furthermore, they will be
difficult to apply to very short or very noisy time
series. As there is no universal solution to the
challenges of analyzing complex time series,
multiple approaches should still be applied when
trying to detect regime shifts.

Although we have presented locally linear
state-space models as tools to identify regime
shifts and alternative stable states, this is only a
subset of the problems to which they can be
applied. The time-varying models should be
capable of identifying any type of change in the
dynamical characteristics of time series, and the
threshold models could be formulated to identify
regions of state space that differ dynamically.
Thus, they may prove useful additions to the
general arsenal of tools currently available for
time-series analyses.
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SUPPLEMENTAL MATERIAL

SUPPLEMENT

Matlab source code for performing TVARSS ( p), TVVARSS (1), and SETARSS ( p) model fitting
(Ecological Archives C003-006-S1).
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