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Signi�cance Little is known on whether structurally diverse ecological networks may
respond abruptly to anthropogenic stress and even less on our ability to detect such
responses in advance. By simulating mutualistic communities en route to a tipping point,
we show how critical slowing down indicators may be used as early warnings for the
collapse of ecological networks. Our �ndings not only con�rm the existence of the generic
dynamical signatures of tipping points in ecological networks, but also suggest a novel
way for identifying most vulnerable components in a broad class of networks at the brink
of collapse.
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Tipping points are crossed when small changes in external condi-1

tions cause abrupt unexpected responses in the current state of a2

system. In the case of ecological communities under stress, the risk3

of approaching a tipping point is unknown, but its stakes are high.4

Here we test recently developed critical slowing down indicators as5

early-warning signals for detecting the proximity to a potential tip-6

ping point in structurally complex ecological communities. We use7

the structure of 79 empirical mutualistic networks to simulate a sce-8

nario of gradual environmental change that leads to an abrupt �rst9

extinction event followed by a sequence of species losses until the10

point of complete community collapse. We �nd that critical slowing11

down indicators derived from time series of biomasses measured at12

the species and community level signal the proximity to the onset13

of community collapse. In particular, we identify specialist species14

as likely the best-indicator species for monitoring the proximity of15

a community to collapse. In addition, trends in slowing down indi-16

cators are strongly correlated to the timing of species extinctions.17

This correlation o�ers a novel way for mapping species resilience and18

ranking species risk to extinction in a given community. Our �ndings19

pave the road for combining theory on tipping points with patterns20

of network structure that might prove useful for the management21

of a broad class of ecological networks under global environmental22

change.23

Keywords: Resilience | Critical transition | Mutualism | Ecological networks24
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Systems as complex as the climate (1), �nancial markets (2), or ecosystems (3) have1

experienced tipping points in the past and may do so in the future. Tipping points are2

crossed when small changes in external conditions trigger the sudden collapse of a system3

to an undesirable state that is usually di�cult to reverse. For example, the shutdown4

of the thermohaline circulation in the North Atlantic (4), or the occasional switches of5

shallow lakes from clear to turbid waters (5) are examples of sudden transitions that might6

have been caused by gradual changes in external conditions. It is this �small changes can7

have big e�ects� pattern that makes tipping points important to study but notoriously8

di�cult to detect. Nonetheless, recent work has suggested that the possibility of detecting9

nearby tipping points may not be that distant (6).10

According to theory, prior to tipping points, systems tend to recover slowly back to11

equilibrium upon a random disturbance (7). This phenomenon of �critical slowing down�12

appears to be generic for a wide class of local bifurcations (8), at which the current13

equilibrium state of a system loses stability before being replaced by another equilibrium14

state. Critical slowing down may be captured by two simple statistical signals in the15

dynamics of complex systems (6): increasing variance and rising correlation. These signals16

can be used to indicate the proximity of a system to a tipping point and are suggested17

to serve as indicators of loss of resilience, or, more broadly, as early-warning signals for18

the impending transition (6). Critical slowing down indicators (CSD indicators hereafter)19

have been experimentally shown to detect abrupt transitions between alternative states20

in yeast cultures (9), plankton chemostats (10), zooplankton populations (11), or even21

whole lake communities (12). Yet, these indicators have been mostly studied in systems22

with single populations or few aggregated components that lack the complexity that23

characterizes structurally heterogeneous systems of interacting species, such as ecological24

networks.25
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Although ecological networks have been experiencing an increasing amount of anthro-1

pogenic pressures, it is still unclear how strongly they may respond to this stress. Re-2

sponses might range from local extinctions and species distribution shifts (13), to whole3

community reorganisation and massive biodiversity losses (14). In the best-case scenar-4

ios, these responses will be gradual, predictable, or even reversible. But little is known5

on whether ecological networks could also respond in abrupt and unexpected ways (15).6

Theoretical work shows that gradual environmental change in mutualistic communities7

may have di�erent e�ects on species tolerance to stress but the path to extinction appears8

to be gradual (16). Only recently, it has been suggested that strongly nested mutualistic9

networks may run a high risk of experiencing a tipping point (17). For these latter cases,10

the challenge is to detect if they are approaching a tipping point in advance.11

Here, we explore whether we can detect tipping points in structurally diverse ecologi-12

cal networks with CSD indicators. We used the structure of 79 mutualistic communities13

reconstructed from empirical plant-pollinator and plant seed-disperser networks to sim-14

ulate dynamical scenarios of gradual environmental change that lead to species loss and15

community-wide collapses. We demonstrate that CSD indicators derived from monitoring16

biomasses at the species and community level may signal the proximity to the onset of17

community collapse. We investigate how species structural traits in�uence the predictive18

performance of the indicators at the species level. Lastly, we suggest that species-level19

indicators may be used to rank species risk to extinction even before the onset of commu-20

nity collapse. Despite the challenge of identifying these patterns in empirical dynamics of21

observed populations, our work o�ers a �rst theoretical framework for detecting tipping22

points and mapping species resilience in mutualistic communities that can help to detect23

potential abrupt transitions in a broad class of ecological networks.24

25
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Results and Discussion1

The abrupt onset of community collapse2

We estimated changes in CSD indicators, variance and autocorrelation at lag 1, in sim-3

ulated time series of 79 empirically described bi-partite plant-pollinator and plant seed-4

disperser mutualistic communities before their collapse. We assumed that species compete5

weakly with each other but coexist due to their mutualistic bene�ts (i.e., obligate mutu-6

alism). We simulated community dynamics in the presence of environmental noise, and7

we exposed all communities to a scenario of gradual environmental stress. Although our8

simulations do not necessarily capture the complexity of observed dynamics, they serve9

as a good �rst approximation. We slowly decreased the strength of mutualistic interac-10

tions between plant and animal species. This led to species extinctions until the complete11

community collapsed. Our scenario follows the overall weakening or even disruption of12

mutualistic interactions (18) that has been observed in declining visitation rates (19),13

or phenological mismatching (20) due to habitat fragmentation or changes in seasonal14

temperature patterns.15

Fig. 1 demonstrates a simulated example of a collapsing plant-pollinator community16

from the Chilean Andes (Fig. 1A). As bene�ts from species mutualistic interactions17

gradually declined, species were progressively decreasing in biomass. In our communities,18

we assumed a trade-o� between the strength of mutualistic interactions and the number19

of species interactions. This meant that specialists bene�ted strongly from their partners20

whereas generalists did not (Materials and Methods). As a result, all species su�ered21

proportional losses up to a point where the �rst extinction event suddenly occured (Fig.22

1B). We de�ned this �rst extinction event as the tipping point that marked the onset23

of the complete collapse of the community. We observed an abrupt onset of community24
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collapse in all 79 communities.1

What makes such tipping points important to detect is that they happen without2

any prior substantial loss in species biomass (Supporting Information S1). Obviously,3

a gradually declining trajectory towards extinction would by itself be evidence that the4

community is at risk. At the moment, we are largely unaware of how general an abrupt5

onset of community collapse is, although there is theoretical evidence that the nested6

pattern of mutualistic networks would favor the occurrence of abrupt transitions (17). In7

that case CSD indicators can prove useful for anticipating abrupt transitions. Comparing8

time series of species far and close to the onset of community collapse, we found that both9

their variability and correlation increased (Fig. 1C, D). A similar pattern was also found10

when looking at aggregate measures of total community biomass (Fig. 1C, D), implying11

that CSD indicators can indeed be used to identify the onset of collapse in structurally12

complex mutualistic communities.13

14

Critical slowing down indicators at species and community level15

We con�rmed increasing patterns in critical slowing indicators in all our 79 communities16

prior to the onset of community collapse. We measured variance as coe�cient of variation17

(CV = std_dev

mean
), and autocorrelation at lag 1 (AR1) as the correlation of the time series to18

itself shifted by one time step. As CV and AR1 tend to smoothly change up to the onset19

of collapse (Fig. S1), we reported only their relative changes (natural log di�erences) at20

the start of the simulation and just before the onset of community collapse (Fig. S1,21

Materials and Methods). Indicators increased both at species and community level (Fig.22

2), regardless of being estimated for plant or animal species (Fig. S2). We also found23

similar patterns when we estimated the change in indicators 10 steps instead of just 124
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step prior to collapse (Fig. S3). AR1 trends were stronger than CV trends (paired t-test1

206.45, P < 0.05, df = 11194). However, AR1 trends at the species level were occasionally2

negative, while CV always increased (Fig. 2A). Instead, AR1 and CV trends estimated3

at the community rather than the species level were always positive as di�erences across4

species smoothed out at the aggregate level (Fig. 2).5

6

Best-indicator species for detecting community collapse7

Although these results broadly support that CSD indicators could announce abrupt tran-8

sitions in a community, they are constrained by the need of collecting high resolution time9

series for all species. However, a closer look at indicator trends across species shows that10

some species have better re�ected community proximity to the collapse than others (Fig.11

2). Such species could qualify as best-indicator species of community collapse (i.e. the12

ones with the potential to demonstrate the strongest changes in CSD indicators). We13

searched for the pro�le of these best-indicator species by estimating correlations between14

indicator trends and species structural traits. We selected two commonly used structural15

traits: degree (i.e. number of the interactions of a species), and contribution to nestedness16

(i.e. the level of shared interacting partners in the community). We chose these traits17

based not only on the fact that they have been related to the persistence of mutualistic18

communities (21), but also because they can be easily derived from species interaction19

matrices.20

We found negative correlations between CV trends and species degree, and negative21

but weak correlations between AR1 trends and species degree (Fig. 3). Similar but more22

variable patterns were observed for correlations between indicator trends and contribution23

to nestedness (Fig. 3). Despite the variation in the correlations, specialists (and to a less24
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extent least contributors to nestedness) tended to be best-indicator species of community1

collapse. This can be best explained by the fact that specialists were generally the �rst2

to collapse (Fig. S4 A, B), and that specialists' dynamics were less mu�ed by noise as3

opposed to generalists whose dynamics were a�ected by the multiple noisy dynamics of4

their partners. These observations imply that declining community resilience might be5

strongly re�ected in CSD indicators when measured from peripheral species in a network.6

Although this quali�es specialists as target species for monitoring community resilience,7

CSD indicators from specialist dynamics might not always re�ect community-wide risk of8

collapse. As specialists are usually most vulnerable to disturbances, changes in their dy-9

namics might just imply individual rather then community-wide risk of extinction. Thus,10

monitoring a mix of specialists and generalists in a network may help avoid such potential11

false positives. Still, the challenge will be to strike the right balance between monitoring12

the minimum number of species in a network and the e�ort required for robustly estimat-13

ing community resilience.14

15

From detecting tipping points to mapping species resilience16

The fact that most species indicated the proximity to the onset of community collapse17

implies that di�erences in indicator trends across species might re�ect how close a species18

is to its own point of extinction or more general how resilient a species is. In the ex-19

ample of the plant-pollinator community from Fig. 1, we ordered species according to20

their timing of extinction, and we colored them based on the magnitude of the change21

in their CVs (Fig. 4, white re�ects weak, black re�ects strong changes). As expected,22

species that went �rst extinct showed the strongest changes in CV. This was generally true23

for specialists. We con�rmed such correlations between the timing of species extinctions24
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and trends in CSD indicators in all 79 communities. Correlations for CV were stronger1

than for AR1 (Fig. S4 C,D). This �nding implies that we could rank species risk to ex-2

tinction before any event of collapse by just comparing species' relative changes in CV.3

Such across-species comparisons of CV have been proposed earlier for estimating species4

resilience (22), and have been used for exploring population vulnerability, for instance,5

to overexploitation in �sh stocks (23, 24). Nonetheless, these comparisons are based on6

snapshot measurements that might be compromised by di�erences in species traits (like7

mortality or growth rates). Instead, comparing relative changes in CSD indicators might8

reduce such biases and allow direct across-species comparisons given that all species in a9

community are experiencing similar environmental stress.10

11

Challenges to detecting tipping points in mutualistic communities12

Although our results show that we could implement CSD indicators for mapping species re-13

silience and detecting abrupt community transitions, we are still largely ignorant whether14

abrupt collapses are the rule or rather the exception in mutualistic communities. Theory15

suggests that the nested structure of mutualistic networks would increase the probability16

of abrupt transitions (17), but it is unresolved how the overall parameter space a�ects17

the probability of community collapse and the performance of the CSD indicators. For18

example, it has been demonstrated that species tend to reorganize their interactions in19

a community, especially under stress (25). Such adaptation would probably minimize20

the probability of an abrupt collapse. Additionally, it has been theoretically shown that21

species responses to environmental stress in mutualistic communities are largely depen-22

dent on how mutualistic strengths are assigned between species (16). For example, in23

our communities we assumed a trade-o� between mutualistic strength and the number24
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of species interactions (δ = 1) (26, 27). Under such trade-o�, the gradual decrease in1

mutualistic strength caused the abrupt onset of community collapse as all species suf-2

fered proportional losses (Fig. 5A, plant-pollinator community from Fig. 1). Had we,3

however, assumed no trade-o� for the same community (δ = 0), generalists would enjoy4

mutualistic bene�ts proportional to the number of their mutualistic partners and su�er5

less losses than specialists. Consequently, we would expect specialists to �rst go extinct6

probably in a gradual rather than abrupt way (Fig. 5B). Indeed, only in 21 out of the7

79 communities the onset of community collapse remained abrupt when we assumed no8

mutualistic trade-o� while keeping the rest of the parameters the same. Nonetheless, even9

in the case of gradual transitions, we still found positive CSD trends mostly at the species10

(Fig. 5D, F) rather than community level (Fig. 5C, E).11

Regardless of the type of transition, our ability to detect CSD in a network is con-12

sequent with monitoring stochastic community dynamics around an underlying stable13

equilibrium (6). However, observed population dynamics usually follow erratic, highly14

variable patterns driven by a mix of nonlinear and stochastic e�ects (28, 29), at times15

interrupted by long transients far from equilibrium (30). This may question whether16

CSD indicators could be identi�ed at all under such non-equilibrium conditions (31). Or17

it might be challenging to conclude whether CSD indicators are consequence of the pro-18

gressive approach to a tipping point or due to the natural patterns of variability in real19

populations (32). Despite the real topologies we used, our simulated communities repro-20

duced dynamics that are far from the variability found in empirical data (Fig. S5). Such21

di�erence challenges the capacity of interpeting natural patterns of variability from a CSD22

perspective. Instead, at the moment, the theory behind CSD indicators only allows us to23

explore how CSD indicators may be identi�ed in structurally complex communities under24

stable equilibrium dynamical regimes in the presence of weak stochasticity.25
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Clearly, our work is only a �rst step when it comes to assessing our ability to detect1

community collapses. Although we con�rmed our conclusions also under an alternative2

stress scenario (Fig. S6), there are more cases to be explored. For instance, species will3

most likely be di�erentially a�ected by changing conditions (18). Similarly, variation in4

stochastic e�ects across species will a�ect indicators' performance, as CSD indicators have5

been shown to be sensitive to the magnitude and color of environmental noise (33, 34).6

Further studies would need to test the possibility of detecting tipping points under such7

conditions and to expand the current �ndings to other types of networks like food webs,8

competition communities, or metapopulations.9

10

Conclusions11

In this study, we showed that critical slowing down indicators can be used to infer prox-12

imity to tipping points and to map species risk to extinction in systems as structurally13

diverse as mutualistic networks. No doubt we remain largely ignorant of whether such14

networks will respond abruptly to increasing pressure at all. However, in the case they15

do, the generality of the dynamical signatures of tipping points implies that critical slow-16

ing down indicators may be used for identifying vulnerable system components and for17

detecting abrupt transitions in networks ranging from ecological communities to globally-18

linked �nancial markets.19

20

Materials and Methods21

Empirical networks. Our mutualistic plant-pollinator and plant seed-dispersal net-22

works were accessed from the Web of Life database (www.web-of-life.es). We only selected23
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networks that have more than 20 species. This resulted in 79 networks covering a wide1

geographic range across all continents and climatic zones and with a high variation in2

their architectural properties. Table S1 summarizes the ranges of the most important3

structural properties of these communities.4

5

Model. The empirical mutualistic networks provided the skeleton that we used to sim-6

ulate the dynamics of our communities. The dynamics of plants P and animals A (i.e.7

pollinators, seed dispersers) were given by a model presented by Ref (35):8

dPi

dt
= Pi(αPi −

∑
j βPijPj +

∑
j γPijAj

1+h
∑

j γPijAj
) + u

dAk

dt
= Ak(αAk −

∑
j βAkjAj +

∑
j γAkjPj

1+h
∑

j γAkjPj
) + u

for i = [1, n], k = [1,m],

(1)

9

where both plant and animal biomasses grow with rate α, compete within their respective10

guilds with interspeci�c rate β, and enjoy a mutualistic bene�t following a saturating11

function with handling time h (= 0.1) and mutualistic strength γ between plants and12

animals. We slightly modi�ed the model by assuming that there is a small immigration13

rate u (= 10−5) for all species. Parameter u does not a�ect the dynamics of the model,14

but helps to avoid the occurrence of under�ow errors in the presence of environmental15

noise.16

To account for asymmetries in the strength of interactions between generalist and17

specialist species (36), we used a trade-o� γij that de�nes the mutualistic dependence18

between species j and i and that depends on species degree (number of mutualistic links)19

(16):20
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γij =
γoyij
kδi

. (2)

γo represents the average level of mutualistic strength, ki the degree of species i, and1

yij = 1 if species i and j interact and zero otherwise. Parameter δ modulates the trade-o�2

and determines the actual mutualistic interaction strength of plant (animal) species i and3

the j animal (plant) species in the community (16). Here, we adopt a scenario of equal4

total strengths for all species by assuming an inversely proportional mutualistic strength5

to species degree (δ = 1) that can be justi�ed by classical empirical (26) and theoretical6

work (27).7

Lastly, to ensure that our communities are feasible (all species present) before we8

impose any stress, and to minimize the chance that transitions are driven by the direct9

competition within plants or animals (β), we did not allow interspeci�c competition to10

exceed intraspeci�c competition (
∑

j (βij ≤ 1 (i 6= j)) (37). We did this by sampling com-11

petition coe�cients βij for each plant and animal guild from a uniform distribution with12

minimum 0.001 and mean β̄ = 1
n(A),(P )) where n

(P ),(A)) are the number of plant or animal13

species respectively until the assumption
∑

j βij ≤ βii (i 6= j) was ful�lled. Intraspeci�c14

competition βii was set to 1.15

16

Collapsing mutualistic communities by declining mutualistic strength. In our17

numerical experiments, we slowly decreased mutualistic strength γo for all plant-animal18

interactions (16). We started simulations assuming conditions of obligate mutualism (38),19

which implies that species can survive only in the presence of strong mutualistic bene�ts.20

We imposed obligate mutualism by drawing negative growth rates for plants and animals21

α(P ),(A) uniformly from [-0.5, -0.1].22

To ensure that the level of mutualistic strength that we chose was relative to the23
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actual size and structure of each community, we assigned mutualistic strengths γo to be1

higher than the limit τ (γo = 8τ) at which mutualistic bene�ts exceeded competitive2

costs for all communities (16). Under these conditions we randomly initialized species3

biomasses from a uniform distribution ([0, 10]) and let communities reach equilibrium. We4

only selected parameterizations that allowed all species to be present in each community5

(feasible equilibrium). If that condition was not satis�ed, we resampled competition and6

growth rate terms and repeated the initialization. Once we attained parameters that7

allowed for a feasible equilibrium, we gradually decreased γo to zero in 200 equal steps.8

At each step, we discarded transients by simulating for 500 timesteps before recording9

equilibrium species biomasses. We assumed that species went extinct when their biomass10

was lower than 10 times the immigration rate u (i.e. < 10−4). The gradual decrease of11

mutualistic strength led to the progressive loss of species until the collapse of the com-12

plete community. At each extinction event, we recorded the level of mutualistic strength13

γo and the identity of species that went extinct. We categorized the �rst extinction event14

as abrupt or gradual depending on the slope of the decline in species biomasses (where15

the slope was given by
N(t)−N(t−1)

γ(t)−γ(t−1)
and t was the time index corresponding to the �rst16

extinction event). If the slope was larger than 15, we characterised the onset of com-17

munity collapse as abrupt (17). If that condition was not satis�ed, we characterised the18

transition as gradual. We repeated the above procedure to attain an abrupt transition in19

all communities for 10 of the total 79 networks (on average 3.6 times for each).20

21

Critical Slowing Down Indicators as Early Warnings for the onset of com-22

munity collapse. We quanti�ed CSD indicators in the mutualistic communities to test23

whether they can provide early warnings for the proximity to the onset of community24

collapse. We measured variance (expressed as CV = std_dev

mean
) (39) and autocorrelation at25
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lag 1 (AR1, as the corr(xt, xt+1), where xt denotes a point in the time series) (40).1

To estimate these indicators, we simulated a stochastic version of our di�erential2

equations 1:3

dPi = f(Pi, Ak)dt+ σPidWi

dAk = f(Pi, Ak)dt+ σAkdWk
(3)

4

where f() is the deterministic part of eq 1 and dW is a Wiener process uncorrelated5

across all species with mean 0 and variance scaled by σ(= 0.025) and species biomasses6

(multiplicative noise). We used Euler integration with timestep 0.01 following Ito calculus7

to solve the equations and to generate the stochastic time series for all species in the8

community.9

We chose CV as an unbiased measure of variability rather than the commonly used10

standard deviation (39) to account for the scaling e�ect of environmental stochasticity11

to species biomass (multiplicative noise). Multiplicative noise can alter patterns in vari-12

ance when studying critical slowing down indicators (34). We discuss this issue in the13

Supporting Information S3.14

Previous studies have shown that CSD indicators change smoothly prior to bifurca-15

tion points (8, 41). We con�rmed smooth changes in CV and AR1 in our mutualistic16

communities under a gradual decline of mutualistic strength (Fig. S1). Based on these17

observations, we only estimated CV and AR1 far (i.e., γo = 8τ) and close (i.e., one step18

before the threshold γo = γthr−1) to the onset of community collapse. We did this by19

simulating communities for 100 time steps far and close to the �rst tipping event starting20

from equilibrium conditions. To reduce random e�ects due to noise, we repeated this21

20 times. For each repetition, we estimated CV and AR1 and used average values to22

estimate indicators for each species. We also measured CV and AR1 on total community23
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biomass by aggregating plant and animal biomasses. We lastly computed a community1

level multivariate index of variability based on the maximum eigenvalue of the variance-2

covariance matrix of all species biomasses at equilibrium (42) that is commonly used in3

multivariate analysis of community changes (e.g. Principal Component Analysis). We4

quanti�ed the strength of the change in the indicators as the natural log di�erence of the5

indicator values close and far from the onset of collapse (ln( indicatorthr−n

indicatoro
)) for each species6

in all communities.7

8

Structural traits. We used Spearman rank correlation to explore correlations between9

changes in CSD indicators and structural traits for identifying potential best-indicator10

species. The two structural traits were degree (number of mutualistic links) and contri-11

bution to nestedness. Contribution to nestedness for each species quanti�es the amount12

to which nestedness compares with the nestedness when randomizing the interactions of13

that particular species (21). In calculating nestedness contributions, the interactions of14

a species are randomized according to the null model speci�ed in (43); we used 1,00015

random replicates.16

17

We did all analyses in MATLAB (R2010b, The Mathworks) using Grind for MATLAB18

(available online at http://www.sparcs-center.org/grind).19
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Figure Captions

Fig. 1. Detection of the abrupt onset of collapse using critical slowing down indicators

(CSD) in mutualistic communities. (A) A plant-pollinator community from Cor-

don del Cepo, Chile. Black boxes represent mutualistic links between plants and

animals. We used the structure of 79 empirical mutualistic networks to simulate

their dynamics and potential collapse under gradual environmental change. (B)

Decreasing mutualistic strength γ stresses species biomasses until unexpectedly an

abrupt transition is induced. This �rst transition marks the onset of a sequence of

extinctions until the collapse of the complete community. (C, D) Identifying critical

slowing down at the species and community level. Close to the onset of commu-

nity collapse, variance and correlation tend to increase. This increase is evident

measured both from species biomasses and from the aggregated total community

biomass.

Fig. 2. Performance of critical slowing down (CSD) indicators measured at the species

(N = 11,195) and community (N = 79) level in 79 mutualistic communities. Per-

formance was estimated as the natural logarithmic ratio of autocorrelation at lag 1

(AR1) and coe�cient of variation (CV ) close and far from the onset of community

collapse. The multivariate index of variability was estimated on the community

biomass variance-covariance matrix. Positive values indicate an increase in the indi-

cators before the onset collapse. Boxplots include the median, box edges represent

the 5 and 95 percentiles, and box whiskers indicate the minimum and maximum

values.

Fig. 3. Structural traits and critical slowing down (CSD) indicators. Spearman

rank correlations between species traits (degree and contribution to nestedness) and

21



species indicators performance. Boxplots include the median, box edges represent

the 25 and 75 percentiles, and box whiskers indicate the 5 and 95 percentiles.

Fig. 4. Mapping species resilience based on critical slowing down (CSD) indicators.

Each node represents a species in the plant-pollinator community from Fig. 1.

Species are ranked according to their order of extinction (from left to right), their size

corresponds to the number of their interactions (degree), and are colored according

to their changes in CV before the onset of community collapse. Black colors indicate

strong increases in CV . We used color boxes to group species that went co-extinct.

We found a positive correlation between the magnitude of the CV change and the

order of species extinctions. Similar patterns were con�rmed in all 79 communities

(Fig. S4). This information can be used to rank species risk to extinction.

Fig. 5. The e�ect of trade-o�s in mutualistic strengths on critical slowing down in-

dicators. (A) In the presence of a trade-o�, mutualistic strengths are inversely

proportional to the number of species interactions (δ = 1). All species su�er similar

losses to the decreasing mutualistic strength and the onset of community collapse

usually occurs abruptly. (B) In the absence of a mutualistic trade-o� (δ = 0, all

the rest of the parameters are the same as in A), mutualistic strengths are the same

across all species. As a result, mutualistic bene�ts are proportional to the number

of their interactions and the onset of community collapse is gradual. (C, E) Com-

munity level CV and AR1 indicators clearly increase up to the onset of collapse in

the presence of the trade-o� (δ = 1). (D, F) Indicators at species level have mostly

positive trends but perform poorer in the absence of the mutualistic trade-o� (δ =

0).
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