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On BMRN∗-colouring of planar digraphs

Julien Bensmaila, Foivos Fioravantesa

aUniversité Côte d’Azur, CNRS, Inria, I3S, France

Abstract

In a recent work, Bensmail, Blanc, Cohen, Havet and Rocha, motivated by applications for
TDMA scheduling problems, have introduced the notion of BMRN∗-colouring of digraphs,
which is a type of arc-colouring with specific colouring constraints. In particular, they
gave a special focus to planar digraphs. They notably proved that every planar digraph
can be 8-BMRN∗-coloured, while there exist planar digraphs for which 7 colours are needed
in a BMRN∗-colouring. They also proved that the problem of deciding whether a planar
digraph can be 3-BMRN∗-coloured is NP-hard.

In this work, we pursue these investigations on planar digraphs, in particular by answer-
ing some of the questions left open by the authors in that seminal work. We exhibit planar
digraphs needing 8 colours to be BMRN∗-coloured, thus showing that the upper bound of
Bensmail et al. cannot be decreased in general. We also generalize their complexity result
by showing that the problem of deciding whether a planar digraph can be k-BMRN∗-
coloured is NP-hard for every k ∈ {3, ..., 6}. Finally, we investigate the connection between
the girth of a planar digraph and the least number of colours in its BMRN∗-colourings.

Keywords: BMRN∗-colouring; planar digraphs; TDMA scheduling.

1. Introduction

The colouring concepts studied in this work are motivated by the following real-life
problem. Suppose we have a network of entities communicating via radio waves. One par-
ticular of our entities, the center of command, continuously, through time, emits messages
that must be propagated to all entities of the network. Because all entities might not be
in the range of the center of command, these transmissions are performed in a multi-hop
fashion. That is, for each entity (different from the center of command), a preferred entity
is defined, from which the messages will be received. Entities and their respective preferred
entity thus define a set of links, which is commonly referred to as the network’s backbone,
along which the messages of the center of command will be broadcasted.

In an ideal world, an entity receiving a message from its preferred entity via its link
would just forward the message right away to some close entities. In practice, however, this
cannot be done that simply because of particular types of physical rules. For instance, since
messages are forwarded via radio waves, an entity a will not only receive messages from
its preferred entity, but also from any other entity that has a in its range. In other words,
interferences might occur, resulting in unexpected and unwanted alterations of messages.

In the TDMA method, this issue is overcome by dividing time into several successive
units of time, called time slots, during each of which only some of the backbone links
become active. The goal is then to design a scheduling of the links which will prevent
interferences during transmissions. A downside of this method, however, is that links now
become active during a short period of time only, i.e., during the time slot they are active
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(a) A 2-BMRN-colouring. (b) A 3-BMRN∗-colouring.

Figure 1: Examples of BMRN-arc-colouring and BMRN∗-arc-colouring for a given spanned digraph. In
each picture, the white vertex is the root of the backbone. Thick solid arcs are backbone arcs. Thin dashed
arcs are interference arcs.

in. The main objective is thus to find a scheduling of the links with minimum number of
slots, so that the waiting time of links is minimized.

The problem above can be studied under a graph colouring formalism. The network is
modelled by a digraph D whose vertices are the entities, while the presence of an arc (u, v)
indicates that v is in the emission range of u. The backbone is modelled by a subdigraph
B of D being a spanning subdigraph in which all connected components are out-trees, i.e.,
oriented trees with all arcs oriented from a root r (modelling a local center of command)
towards the leaves. We call the pair (D,B) a backboned digraph, the arcs of B being
the backbone arcs and the arcs in A(D) \ A(B) being the interference arcs. In case B is
connected, i.e., its underlying undirected graph und(B) has only one connected component,
we call (D,B) a spanned digraph. Since, in the problem above, we are assuming that the
center of command is unique, the notion of spanned digraph is the precise one modelling
our network context; however, the notion of backboned digraph is more general and will
be of great use in most of our investigations in this paper.

A scheduling of the backbone links is modelled by an arc-colouring of the arcs of B
verifying certain properties. In [3], Bensmail, Blanc, Cohen, Havet and Rocha introduced
the notion of BMRN-colourings of backboned digraphs, which are arc-colourings φ without
the following two configurations occuring:

• Direct conflict: two ”consecutive” backbone arcs (u, v), (v, w) with φ((u, v)) =
φ((v, w)).

• Indirect conflict: an interference arc (u1, v2) such that (u1, v1), (u2, v2) are two
backbone arcs with φ((u1, v1)) = φ((u2, v2)).

Direct conflicts model the fact that, regarding the TDMA scheduling problem above, an
entity v should not both receive and emit messages during a same time slot. This is because
entities can be assumed to be very simple devices, that are not able to perform both actions
at the same time. Indirect conflicts model interferences due to some entities being in the
range of other emitting entities: during a given time slot, an entity v2 should not receive
a message from both its preferred entity v1 and another entity u1 also sending a message.

For a backboned digraph (D,B), the least number of colours in a BMRN-colouring
is called the BMRN-index of (D,B), denoted by BMRN(D,B). The authors of [3] also
considered the following slightly modified variation: a BMRN∗-colouring of (D,B) is a
BMRN-colouring where it holds that, for every vertex v of D with δ+B(v) ≥ 1, all backbone
arcs of B out-going from v are assigned the same colour. The BMRN∗-index of (D,B) is
then the least number of colours (denoted BMRN∗(D,B)) in a BMRN∗-colouring of (D,B).
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Figure 2: A planar spanned digraph (D,T ) with BMRN∗(D,T ) = 7. The white vertex is the root of the
backbone. Thick solid arcs are backbone arcs. Thin dashed arcs are interference arcs.

In the concrete network problem above, finding a BMRN∗-colouring would be equivalent
to finding a link scheduling where all entities send their messages during a unique time
slot.

Refer to Figure 1 for an illustration of these concepts; in particular, note that the
colouring on picture (a) is not a BMRN∗-colouring, as the white vertex does not have all
of its incident out-going backbone arcs assigned a same colour.

In [3], the authors gave a number of general results on both the BMRN-index and the
BMRN∗-index of digraphs. Note that BMRN(D,B) ≤ BMRN∗(D,B) always holds. Al-
though the authors proved that the BMRN∗-index of a given spanned digraph can be arbi-
trarily larger than its BMRN-index, they observed that, at least for particular classes of di-
graphs, considering BMRN∗-colourings can be a way to deduce optimal BMRN-colourings,
which is a reason why this modified notion is useful. They also considered algorithmic
aspects related to the problem of determining the BMRN-index or the BMRN∗-index of
a given spanned digraph, which in general is NP-hard, even if one is allowed to construct
the backbone from a given root. Also, they gave a number of more specific results for
particular classes of digraphs, such as bounded-degree digraphs, outerplanar digraphs, and
more generally planar digraphs.

An interesting aspect of BMRN∗-colouring is its connection with the notion of distance-
2 colourings of undirected graphs, which are vertex-colourings where no two vertices at
distance at most 2 are assigned the same colour. For an undirected graph G, we denote by
χ2(G) the least number of colours in a distance-2 colouring of G. It was noticed in [3] that,
for any backboned digraph (D,B), a distance-2 colouring φ of und(D) yields a BMRN∗-
colouring of (D,B) (by assigning, for every vertex v, colour φ(v) to all its incident out-going
backbone arcs); this is because having no two adjacent vertices receiving the same colour
by φ takes care of direct conflicts, while having no two vertices at distance 2 receiving the
same colour takes care of indirect conflicts. Then, BMRN∗(D,B) ≤ χ2(und(D)). Although
these two chromatic parameters seem related, there are actually cases where they differ a
lot. A good illustration is the case of planar graphs: while χ2(G) is bounded below by
∆(G) + 1 for every planar graph G, on the other hand we have BMRN∗(D,B) ≤ 8 for
every backboned digraph (D,B) (see below). This phenomenon is quite intriguing, and
one of our aims in this work is thus to understand BMRN∗-colourings further.

The current paper is devoted to investigating further the case of planar digraphs, more
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precisely the behaviour of the BMRN∗-index for these digraphs, as many questions raised
in [3] remain open to date. Focusing further on this class of digraphs is motivated by the
central role they play in colouring problems, and by the fact that, regarding the practical
problem introduced earlier, planar digraphs stand as a rather realistic class to consider.
Making use of the Four-Colour Theorem [1, 2], the authors of [3] proved that for every
planar backboned digraph (D,B), we have BMRN∗(D,B) ≤ 8. They also noticed that
there exist planar spanned digraphs (D,T ) with BMRN∗(D,T ) = 7, such as that one
depicted in Figure 2. An interesting property of this example is that its backbone is a
directed path; on the one hand, this implies that even BMRN(D,T ) = 7 holds, while, on
the second hand, it illustrates the fact that, even in a planar backboned digraph, having
a simple backbone topology does not prevent the BMRN-index and BMRN∗-index from
being relatively large. Yet, the authors left open the question of whether their upper bound
is tight or not.

Question 1.1 ([3]). Do we have BMRN(D,T ) ≤ 7 for every planar spanned digraph
(D,T )? Similarly, do we always have BMRN∗(D,T ) ≤ 7?

As a first result in this paper, we answer negatively to Question 1.1 by exhibiting, in
Section 2, a planar spanned digraph (D,T ) verifying BMRN(D,T ),BMRN∗(D,T ) = 8.
This shows that the upper bound above is tight.

We then consider algorithmic aspects in Section 3. In [3], the authors proved that
deciding if BMRN∗(D,B) ≤ 3 (and similarly BMRN(D,B) ≤ 3) holds for a given planar
backboned digraph (D,B) is NP-hard, even when restricted to planar spanned digraphs. As
mentioned earlier, we know that the BMRN-index and BMRN∗-index of a planar backboned
digraph can be as large as 8, and it thus makes sense investigating, for such a planar
backboned digraph (D,B), the complexity of deciding whether BMRN∗(D,B) ≤ k (and
similarly BMRN(D,B) ≤ k) for k ∈ {4, .., 7}.

Question 1.2 ([3]). For every k ∈ {4, 5, 6, 7}, what is the complexity of the Planar k-
BMRN∗-Colouring problem? What is that of the Planar k-BMRN-Colouring problem?

Towards Question 1.2, we prove that deciding whether BMRN∗(D,B) ≤ k holds for a given
planar backboned digraph (D,B) is NP-hard for every k ∈ {4, ..., 6}, even when restricted
to planar spanned digraphs.

For a planar backboned digraph, the BMRN∗-index can be as large as 8. In all our
extremal examples (such as those in Figure 2 and upcoming Figure 3) we note that small
cycles are one of the main reasons why the number of needed colours is that high. Thus,
it seems judicious to investigate the behaviour of the BMRN∗-index of planar backboned
digraphs when small cycles are excluded, which is a classical aspect in graph colouring
theory. In that line, Section 4 is devoted to investigating the effects of a large girth on the
BMRN∗-index of a planar backboned digraph.

Conclusions and perspectives are gathered in Section 5.

Definitions, notation and terminology
For a given digraph D, we denote by V (D) and A(D) its vertex and arc sets, respec-

tively. The in-degree (resp. out-degree) d−D(v) (resp. d+D(v)) of a vertex v of D is the
number of in-coming (resp. out-going) arcs incident to v. The subscript in this notation
will be omitted whenever no ambiguity is possible. The minimum in-degree (resp. mini-
mum out-degree) δ−(D) (resp. δ+(D)) of D is the minimum in-degree (resp. out-degree)
over the vertices of D. Conversely, the maximum in-degree (resp. maximum out-degree)
∆−(D) (resp. ∆+(D)) of D is the maximum in-degree (resp. out-degree) over the vertices
of D.
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Abusing notions and notations, we voluntarily employ some terms or notations usually
defined for undirected graph in the context of digraphs. Whenever we do so for a digraphD,
it should be understood that we are referring to und(D), the undirected graph underlying
D. In particular, we consider that D is connected as soon as und(D) is. The degree of a
vertex v of D is its degree in und(D). The maximum degree ∆(D) of D is the maximum
degree of und(D). We say D is planar if und(D) itself is planar. Given a planar embedding
of D in the plane, we denote by F (D) the set of faces. The degree d(f) of a face f is the
length of a walk enclosing f (in particular, if f is incident to a pendant arc, then that arc
is counted twice). The girth g(D) of D is the girth of und(D), which is the length of its
smallest cycles.

In turn, whenever referring to a digraph notion or notation for a backboned digraph
(D,B), we implicitly refer to the corresponding notion or notation for D.

2. Planar spanned digraphs with BMRN-index 8

Answering Question 1.1 negatively, we point out that there exist planar spanned di-
graphs with BMRN-index (and BMRN∗-index) 8. Thus, according to the upper bound
exhibited in [3], the maximum value of BMRN(D,T ) (and BMRN∗(D,T )) over all planar
spanned digraphs (D,T ) is 8. Our result is built upon the following straight observation:

Observation 2.1. Let (D,B) be a backboned digraph. For every backboned surdigraph
(D′, B′) (i.e., V (D′) = V (D) and A(D) ⊆ A(D′)), we have BMRN(D,B) ≤ BMRN(D′, B′)
and BMRN∗(D,B) ≤ BMRN∗(D′, B′).

The proof of Observation 2.1 is obvious, as adding backbone arcs or interference arcs to a
backboned digraph can only make its BMRN-index and BMRN∗-index increase.

Now consider the planar backboned digraph depicted in Figure 3.

Observation 2.2. The backboned digraph depicted in Figure 3 is a planar backboned di-
graph with BMRN-index 8.

Proof. As shown via the embedding depicted in the figure, this backboned digraph (D,B) is
indeed planar. The backbone B has exactly eight arcs, and it can be checked that no two of
them can be assigned the same colour by a BMRN-colouring, either because of a backbone
arc or because of an interference arc. In particular, for every backbone arc (u, v), we have
precisely d−B(u) + d+D−A(B)(u) + d+B(v) + d−D−A(B)(v) = 7. Thus, BMRN(D,B) = 8.

Theorem 2.3. There exist planar spanned digraphs with BMRN-index 8.

Proof. Consider the planar backboned digraph in Figure 3 (which has BMRN-index 8 by
Observation 2.2). It can easily be turned into a planar spanned digraph by adding, for
instance, a backbone arc from v2 to v6, and a backbone arc from v2 to v9. Since, in the
depicted embedding, v2 and v6 belong to a common face, and similarly v2 and v9 belong
to a common face, adding these two arcs does not break planarity. Then the backbone
becomes an out-tree with root v1. By Observation 2.1 the resulting planar spanned digraph
retains BMRN-index 8.

3. On the complexity of Planar k-BMRN∗-Colouring

Throughout this section, for any k ≥ 1 the k-BMRN∗-Colouring problem is that where a
backboned digraph (D,B) is given, and the task is to determine whether BMRN∗(D,B) ≤
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v1 v2 v3 v4 v5

v6 v7 v8

v9

v10 v11

Figure 3: A planar backboned digraph (D,B) with BMRN(D,B) = 8. Thick solid arcs are backbone arcs.
Thin dashed arcs are interference arcs.

k. The Planar k-BMRN∗-Colouring problem is the restriction of k-BMRN∗-Colouring to
planar backboned digraphs.

In [3], the authors noticed that k-BMRN∗-Colouring is equivalent to the usual k-Colouring
problem (where one aims at deciding, for a given undirected graph G, whether χ(G) ≤ k,
i.e., whether G admits proper k-vertex-colourings), and is thus polynomial-time solvable
for k = 1, 2, and NP-hard for every k ≥ 3 even when restricted to spanned digraphs.
Regarding Planar k-BMRN∗-Colouring, they proved that Planar 3-BMRN∗-Colouring is also
NP-hard, even when restricted to planar spanned digraphs. As seen in previous Section 2,
planar spanned digraphs can have BMRN∗-index as large as 8, and it thus makes sense
wondering about those digraphs with BMRN∗-index exactly k for every k ∈ {4, ..., 7} (recall
Question 1.2).

3.1. Auxiliary tools, and main result
The complexity results above were established using the following construction (illus-

trated in Figure 4). Given an oriented graph ~G, let (D ~G,M ~G) be the backboned digraph
obtained from ~G as follows:

• For every vertex a of ~G, add a backbone arc (ua, va) to M ~G, where ua, va are two
new vertices.
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a b

c

d

(a) An oriented graph ~G.

ua va

uc vc

ub vb ud vd

(b) The matched digraph (D~G,M~G).

Figure 4: An oriented graph ~G and the corresponding matched digraph (D~G,M~G). In figure (b), thick
solid arcs are backbone arcs. Thin dashed arcs are interference arcs. The colours show a proper 3-vertex-
colouring of und(~G) (a) and the equivalent 3-BMRN∗-colouring of (D~G,M~G) (b).

• For every arc (a, b) of ~G, add the interference arc (ua, vb) to A(D ~G) \A(M ~G).

We call the resulting backboned digraph (D ~G,M ~G) the matched digraph (associated to ~G).
In that backboned digraph, to every vertex of ~G is associated a backbone arc, while to every
arc of ~G is associated an interference arc. There is then a straight equivalence between
finding a proper k-vertex-colouring of und(~G) and a k-BMRN∗-colouring of (D ~G, B ~G).

Observation 3.1. For every oriented graph ~G, we have χ(und(~G)) = BMRN∗(D ~G,M ~G).

Note that (D ~G, B ~G) can be far from planar, in particular if ~G itself is far from planar.
The other way around, the authors of [3] proved that, given that ~G is planar, also (D ~G, B ~G)
is planar. Since the Planar 3-Colouring problem is NP-hard [5], this implies that Planar 3-
BMRN∗-Colouring is NP-hard. A simple connecting operation, to be described later, implies
that this problem remains NP-hard for planar spanned digraphs as well.

Since all planar graphs are 4-colourable [1, 2], the same arguments cannot be used to
prove that Planar k-BMRN∗-Colouring is NP-hard for any k > 3, as it would require the
corresponding Planar k-Colouring problem to be NP-hard as well. To overcome this point,
we come up with an improved reduction scheme, which allows us to establish the NP-
hardness of Planar k-BMRN∗-Colouring for every k ∈ {3, 4, 5, 6}, even when restricted to
planar spanned digraphs. This is by means of an adaptation of so-called crossover gadgets,
which were, to the best of our knowledge, first used by Garey, Johnson and Stockmeyer
to establish the NP-hardness of the Planar 3-Colouring problem [5]. Crossover gadgets are
graphs with certain colouring properties that can be used to “replace” edge crossings in a
non-planar embedding of a graph, with preserving the k-colourability of the whole graph.

Before defining what is a crossover gadget in our context, we first need to introduce a
particular way to draw a matched digraph defined over an acyclic oriented graph. Let ~G
be an acyclic orientation of an undirected graph G. This orientation defines an ordering
w1, ..., wn of the vertices of ~G, such that all arcs are directed “to the right” (i.e., if (wi, wj)

is an arc, then i < j). We now consider the matched digraph (D ~G,M ~G) associated to ~G,
which we here draw in the plane in a specific way (see Figure 5), which we call a good
drawing. Let us assume (ui, vi) denotes the backbone arc of (D ~G,M ~G) associated to vertex
wi of ~G. We first draw (u1, v1) vertically, having some length `. We then draw (u2, v2)
vertically too, of length `, but positioned at some horizontal distance x to the right of
(u1, v1) and at some vertical distance x above (u1, v1). We draw all (ui, vi)’s this way, i.e.,
each (ui, vi) is drawn vertically, of length `, positioned at horizontal distance x to the right
of (ui−1, vi−1) and at vertical distance x above (ui−1, vi−1).

We now draw the interference arcs. By the orientation ~G, for every arc (wi, wj) of ~G,
we want to add to (D ~G,M ~G) an interference arc (ui, vj), where vj is located somewhere
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(a) An acyclic oriented graph ~G. (b) A good drawing of (D~G,M~G).

Figure 5: An acyclic oriented graph ~G, and a good drawing of the matched digraph (D~G,M~G). The colours
show, for every vertex of ~G, the corresponding backbone arc of (D~G,M~G). In the picture (b), thick solid
arcs are backbone arcs. Thin dashed arcs are interference arcs. Note that the tails of the backbone arcs
of (D~G,M~G) lie on the outer face, and that the arc crossings involve interference arcs originating from
different backbone arcs.

above and at the right of ui. We draw this interference arc (ui, vj) in the following way:
We make the arc leave ui from the right, then immediately go vertically until the altitude
of vj is attained, and then going straight horizontally to vj . Note that this way we may
have lots of arc crossings involving at least three arcs, and many pairs of interference arcs
intersecting on more than just one point. However, we can make the interference arcs go to
their destination in a clean way, as follows (see Figure 5). For every two interference arcs
(ui, vj) and (ui, vk) out-going from ui, we make them leave ui with different angles so that
they do not intersect and there is some horizontal “delay” before they start going vertically,
in a non-intersecting parallel way. This delay, to avoid any further crossing involving these
two arcs, is as follows: if j < k, i.e., the destination of (ui, vk) is farther to the right than
that of (ui, vj), then we grant more horizontal delay to (ui, vj), as this arc will stop its
ascension and “turn” right first. Reversely, we do not make every two interference arcs
(ui, vk), (uj , vk), both supposed to reach vk, attain vk following a same horizontal line.
Instead, assuming i < j, i.e., ui is somewhere on the left of uj , we add some vertical delay
to (ui, vk) to the moment it stops its ascension and turns right.

By this good drawing of (D ~G,M ~G), all interference arcs are drawn following an “S”
shape, and it is thus easy to see that all ui’s lie on the “outer face” (to be more formal, in
the digraph obtained by replacing all arc crossings by new vertices). Also, all arc crossings
are perpendicular, involve exactly two interference arcs originating from different vertices,
and the intersection between any two interference arcs is a set of points.

Let us now define what a crossover gadget is. In our context, a k-crossover gadget (for
some k ≥ 3) will be a backboned digraph (D,B) with the following properties:
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(a) Initial configuration. (b) Copying backbone arcs.

(c) Adding crossover gadgets. (d) Replacing interference arcs.

Figure 6: Getting rid of arc crossings via crossover gadgets. Thick solid arcs are backbone arcs. Thin dashed
arcs are interference arcs. Backbone arcs with the same colour are copies of a same initial backbone arc.
Gray boxes are crossover gadgets, where the four incident backbone arcs are their corner arcs.

1. B has four particular pending corner arcs e, e′, f, f ′ (i.e., they are each incident to a
degree-1 vertex), were e, e′ (and similarly f, f ′) are said to be opposite.

2. D has planar embeddings such that all of e, e′, f, f ′ have their both sides being
incident to the outer face, and, as going along the outer face, no two opposite corner
arcs appear consecutively (i.e., the sequence of appearance must be e, f, e′, f ′, or
reversely).

3. In every k-BMRN∗-colouring φ of (D,B), we have φ(e) = φ(e′) and φ(f) = φ(f ′).

4. There exist k-BMRN∗-colourings φ of (D,B) where φ(e) = φ(e′) = φ(f) = φ(f ′).
Also, there exist k-BMRN∗-colourings φ of (D,B) where φ(e) = φ(e′) 6= φ(f) =
φ(f ′).

Such gadgets will be used in the following way (see Figure 6). Assume we have a non-
planar matched digraph (D,M) that we want to k-BMRN∗-colour. To ease the following
explanations, let us consider a good drawing of (D,M) on the plane. As pointed out earlier,
all arcs crossing involve two interference arcs crossing perpendicularly, and originating from
different vertices. Furthermore, no three arcs cross on a same point, and the intersection (if
any) between any two arcs is a point. Let us now consider every interference arc (ua, vb) in
turn (as in the definition of matched digraphs, for convenience we here write all backbone
arcs of (D,M) under the form (ua, va)). Since (ua, vb) is an interference arc, it means
that (ua, va) and (ub, vb) are backbone arcs, drawn vertically by assumption. Let us now
go along (ua, vb), from ua towards vb. Each time we encounter an arc crossing (involving
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(ua, vb)), let us add to the backboned digraph a copy of (ua, va), being a new backbone
arc (u′a, v

′
a) drawn vertically in such a way that u′a is located on (ua, vb) right after the

crossing, before the next crossing involving (ua, vb) (if any), and before vb. Free to make
(u′a, v

′
a) as small as desired, we might assume that this new backbone arc does not intersect

anything (with the exception of its tail lying on (ua, vb) at the moment).
We perform this transformation for all interference arcs of (D,M), resulting in an

auxiliary backboned digraph (D′,M ′) (Figure 6 (b)). For every original backbone arc
(ua, va) of (D,M) and each interference arc (ua, vb) out-going from ua, we have thus added
x copies of (ua, va) to the digraph, where x denotes the number of arc crossings in which
(ua, vb) was involved. There are thus a certain number of copies of (ua, va) in (D′,M ′),
including the original copy of (ua, va), that are “surrounding” the crossings (meaning that,
for every interference arc (ua, vb) that is crossed, there is a copy of (ua, va) lying on (ua, vb)
before and after every arc crossing involving (ua, vb)).

Let us now modify (D′,M ′) further. To each arc crossing of (D,M) involving two in-
terference arcs (ua, vb) and (uc, vd), we associate, in (D′,M ′), four “surrounding” backbone
arcs, being, as going from ua to vb, the copy of (ua, va) located before the crossing and
the copy of (ua, va) located after the crossing, and, as going from uc to vd, the copy of
(uc, vc) located before the crossing and the copy of (uc, vc) located after the crossing. We
are now ready to get rid of the conflicts of (D,M). In (D′,M ′), remove all interference
arcs that are, in (D,M), involved in arc conflicts. Then, for every arc crossing of (D,M)
that involves two interference arcs (ua, vb) and (uc, vd), add, in (D′,M ′), a new k-crossover
gadget where the crossing was occurring, and embed that gadget in such a way that its
four corner arcs fully lie in the face surrounding the gadget, and so that no two opposite
corner arcs appear consecutively in that face. Next, identify two opposite corner arcs of the
gadget with the two copies of (ua, va) associated to the crossing, and identify the two other
opposite corner arcs with the two copies of (uc, vc) associated to the crossing (Figure 6 (c)).
Once this has been done for all arc crossings, finally consider every interference arc (ua, vb)
that is involved in some crossings in (D,M), and, denoting (u′a, v

′
a) the last copy of (ua, va)

(as going from ua to vb) in (D′,M ′), add the interference arc (u′a, vb) to (D′,M ′) (Figure 6
(d)). Assuming we do have a k-crossover in hand, we denote by UC(D,M) the backboned
digraph obtained from (D,M) in this way, where that k-crossover gadget is implicitly used
to replace the arc crossings.

We now prove that, assuming we do have a k-crossover gadget, using it to construct
UC(D,M) from (D,M) results in UC(D,M) having the desired properties.

Theorem 3.2. Let (D,M) be a matched digraph drawn in a good way, and assume we have
a k-crossover gadget for some k ≥ 3. Then, the backboned digraph (D′,M ′) = UC(D,M),
constructed as described above using copies of that gadget, admits a planar embedding.
Furthermore, BMRN∗(D,M) ≤ k if and only if BMRN∗(D′,M ′) ≤ k.

Proof. The first part of the claim follows from arguments used to describe the construction
of UC(D,M). When adding to (D′,M ′) the backbone arcs that will later become the
corner arcs of the crossover gadgets, we note that, by how these arcs are positioned, when
removing all interference arcs involved into arc crossings we get a plane digraph. Adding the
gadgets does not create new arc crossings, as these gadgets admit planar embeddings with
their four corner arcs being fully in the outer face (by definition), and, when identifying
their corner arcs to four existing arcs, we can “shape” the gadget so that it is roughly
drawn like the arc crossing it is locally replacing. This way, we make sure that no arc of
the gadget is involved in a new arc crossing.

We now focus on proving the last part of the statement.
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• First assume that we have a k-BMRN∗-colouring φ of (D,M). We derive one φ′ of
(D′,M ′). For every backbone arc (ua, va) of (D,M), we set φ′((ua, va)) = φ((ua, va)).
Now, for every other copy (u′a, v

′
a) of (ua, va) in (D′,M ′), we set φ′((u′a, v′a)) =

φ((ua, va)). Note that this does not create any indirect conflict involving two back-
bone arcs (a, b) and (c, d), via, say, the interference arc (a, d). Indeed, either (a, b) and
(c, d) both belong to (D,M), in which case (a, d) also does and we have φ((a, b)) =
φ((c, d)), an indirect conflict that is a contradiction to the definition of φ. Otherwise,
we have, say, that (a, b) is actually a copy of an original backbone arc (a′, b′). By
the existence of (a, d), we deduce that, in (D,M), there is an interference arc (a′, d),
which is involved in arc crossings that resulted in the addition of (a, b) to (D′,M ′).
By construction of φ′, we have φ′((a′, b′)) = φ′((a, b)), while, if (a, b) and (c, d) are
in conflict, φ′((a, b)) = φ′((c, d)). Thus, we have φ((a′, b′)) = φ((c, d)), while (a′, d)
exists in (D,M), which is an indirect conflict by φ. This is a contradiction.

The only backbone arcs of (D′,M ′) that remain to be coloured are those of the k-
crossover gadgets. Consider such a gadget in (D′,M ′), where (u′a, v

′
a), (u′′a, v

′′
a) are

its first two opposite corner arcs and (u′b, v
′
b), (u

′′
b , v
′′
b ) are its two last opposite corner

arcs, being copies of some original backbone arcs (ua, va) and (ub, vb), respectively,
of (D,M). By construction of φ′ so far, we have φ′((u′a, v′a)) = φ′((u′′a, v

′′
a)) and

φ′((u′b, v
′
b)) = φ′((u′′b , v

′′
b )). By the definition of a k-crossover gadget, φ′ can be ex-

tended to the gadget provided each pair of its opposite corner arcs are assigned the
same colour, which is the case here. Thus, φ′ can be extended to all gadgets used to
construct (D′,M ′), which thus admits φ′ as a k-BMRN∗-colouring.

• Now assume that we have a k-BMRN∗-colouring φ′ of (D′,M ′), which we wish to
extend to one φ of (D,M). Every backbone arc (ua, va) of (D,M) also exists in
(D′,M ′); then we simply set φ((ua, va)) = φ′((ua, va)). Now consider, in (D,M), two
backbone arcs (ua, va) and (ub, vb) such that (ua, vb) is an interference arc. If that
interference arc is also present in (D′,M ′), then we have φ′((ua, va)) 6= φ′((ub, vb))
and so, by φ, the backbone arcs (ua, va) and (ub, vb) are not involved in an indi-
rect conflict. Now, if (ua, vb) is not an interference arc of (D′,M ′), then it must
be that this arc is involved in arc crossings in (D,M). By construction, there is a
copy (u′a, v

′
a) of (ua, va) in (D′,M ′) (located right after the last arc crossing involv-

ing (ua, vb) in (D,M)) such that (u′a, vb) is an interference arc (replacing (ua, vb)).
Then φ′(((u′a, v′a))) 6= φ′((ub, vb)). By the definition of a k-crossover gadget, we have
φ′((ua, va)) = φ′((u′a, v

′
a)). From this, we deduce that φ((ua, va)) 6= φ((ub, vb)), and

that there cannot be indirect conflicts by φ.

We now show how to deduce the NP-hardness of Planar k-BMRN∗-Colouring from the
previous results and observations (assuming a k-crossover gadget exists).

Theorem 3.3. If k-crossover gadgets exist, then Planar k-BMRN∗-Colouring is NP-hard.

Proof. The proof is by reduction from the k-Colouring problem, which is NP-hard. Let
G be an undirected graph; we build a planar backboned digraph (D,B) such that G admits
a proper k-vertex-colouring if and only if (D,B) admits a k-BMRN∗-colouring.

Let ~G be an acyclic orientation of G, and let (D ~G,M ~G) be the matched digraph of
~G. Consider a good drawing of (D ~G,M ~G), and, from it, build (D,B) the backboned
digraph UC(D ~G,M ~G) obtained from (D ~G,M ~G) by removing arc crossings using copies of
a k-crossover gadget. Note that the whole construction is achieved in polynomial time; in
particular, by the properties of a good drawing of a matched digraph, at most a quadratic
number of k-crossover gadgets must be used to get rid of all conflicts.
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Figure 7: The core of the 6-crossover gadget, and one of its 6-BMRN∗-colourings. Thick solid arcs are
backbone arcs. Thin dashed arcs are interference arcs.

By Theorem 3.2, (D,B) is planar. Furthermore, it preserves the BMRN∗-colourability
of (D ~G,M ~G), while, in (D ~G,M ~G), finding a k-BMRN∗-colouring is equivalent to finding
a proper k-vertex-colouring of G (Observation 3.1). Thus, G admits a proper k-vertex-
colouring if and only if (D,B) admits a k-BMRN∗-colouring.

In what follows, we prove that 6-crossover gadgets exist. At the end of this section, we
will show how to derive, from that gadget, k-crossover gadgets for any k ∈ {3, 4, 5}.

3.2. A 6-crossover gadget
The 6-crossover gadget we exhibit is made of several pieces with particular colouring

properties, which we introduce little by little to ease the understanding.
The core of our 6-crossover gadget is the backboned digraph depicted in Figure 7. Its

main property of interest is the following one, where, in the statement and further, we deal
with its vertices and arcs using the terminology from the figure:
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Figure 8: A tower of the 6-crossover gadget, and one of its 6-BMRN∗-colourings. Thick solid arcs are
backbone arcs. Thin dashed arcs are interference arcs.

Theorem 3.4. Let (D,B) be the backboned digraph depicted in Figure 7. In every 6-
BMRN∗-colouring φ of (D,B), we have φ((f1, f2)) = φ((f5, f6)) 6= φ((f3, f4)) = φ((f7, f8)).

Proof. Let φ be a 6-BMRN∗-colouring of (D,B). To avoid a direct conflict, we must
have φ((e1, e2)) 6= φ((e2, e3)). Similarly, no two of (a1, a2), (a2, a3), (a3, a4), (a4, a5) can be
assigned the same colour: either to avoid a direct conflict (case of two consecutive arcs),
or an indirect conflict (otherwise). Furthermore, the colour of (e1, e2) cannot be assigned
to any (ai, ai+1) of these four arcs because of the interference arc (ai, e2), while the colour
of (e2, e3) cannot be assigned to (ai, ai+1) because of the interference arc (e2, ai+1). Thus,
all six arcs (e1, e2), (e2, e3), (a1, a2), (a2, a3), (a3, a4), (a4, a5) are assigned different colours
by φ. Now, we note that none of the colours of (a1, a2), (a2, a3), (a3, a4), (a4, a5) can be
assigned to (f1, f2), because of the four interference arcs joining these arcs. A consequence
is that φ((f1, f2)) ∈ {φ((e1, e2)), φ((e2, e3))}.

Repeating these arguments towards (f3, f4), (f5, f6), (f7, f8), we get that each of the arcs
(f1, f2), (f3, f4), (f5, f6), (f5, f6) must be assigned a colour from {φ((e1, e2)), φ((e2, e3))}.
Because of the interference arcs (f1, f8), (f3, f2), (f5, f4), (f7, f6), we must have φ((f1, f2)) 6=
φ((f3, f4)) 6= φ((f5, f6)) 6= φ((f7, f8)). Thus, we must have φ((f1, f2)) = φ((f5, f6)) 6=
φ((f3, f4)) = φ((f7, f8)).

Our 6-crossover gadget will also be made of towers, being copies of the backboned
digraph depicted in Figure 8. The backbone arcs (i3, i4), (i4, i5), (g3, g4), (g4, g5) are its four
left-side arcs, while the backbone arcs (i1, i2), (i2, i

∗
2), (g1, g2), (g2, g

∗
2) are its four right-side
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arcs. Its backbone arc (f1, f2) is the base arc. It has the following properties (where, again,
we deal with its vertices and arcs following the terminology used in the figure):

Theorem 3.5. Let (D,B) be the backboned digraph depicted in Figure 8. In every 6-
BMRN∗-colouring φ of (D,B), we have:

1. all of (g1, g2), (g2, g3), (g3, g4), (g4, g5) have different colours by φ, and similarly for
all of (i1, i2), (i2, i3), (i3, i4), (i4, i5);

2. {φ((g1, g2)), φ((g2, g3)), φ((g3, g4)), φ((g4, g5))} = {φ((i1, i2)), φ((i2, i3)), φ((i3, i4)), φ((i4, i5))};

3. all of (g1, g2), (g2, g3), (i1, i2), (i2, i3) have different colours by φ, and similarly for all
of (g3, g4), (g4, g5), (i3, i4), (i4, i5);

4. φ((f1, f2)) 6∈ {φ((g1, g2)), φ((g2, g3)), φ((g3, g4)), φ((g4, g5))}.

Proof. The first item is because no two arcs from these sets of four arcs can have the same
colour by φ, either because they are consecutive (direct conflict), or because they are joined
by an interference arc (indirect conflict).

The second item is because φ((h1, h2)) and φ((h2, h3)) must be different from all
of φ((g1, g2)), φ((g2, g3)), φ((g3, g4)), φ((g4, g5)), and similarly φ((h1, h2)) and φ((h2, h3))
must be different from all of φ((i1, i2)), φ((i2, i3)), φ((i3, i4)), φ((i4, i5)). This is because
of all interference arcs between h1, h2, h3 and these eight arcs. Thus, by the first item,
φ((g1, g2)), φ((g2, g3)), φ((g3, g4)), φ((g4, g5)) are four different colours, and φ((h1, h2)), φ((h2, h3))
are the last two colours. All of φ((i1, i2)), φ((i2, i3)), φ((i3, i4)), φ((i4, i5)) must be distinct
colours (still by the first item), and must be different from φ((h1, h2)), φ((h2, h3)).

The third item is because of the four interference arcs (g2, i
′
2), (g2, i2), (i2, g2), (i1, g2).

These interference arcs force the four colours φ((g2, i
′
2)), φ((g2, i2)), φ((i2, g2)), φ((i1, g2)) to

be different. By the first and second items, we then deduce that {φ((i3, i4)), φ((i4, i5))} =
{φ((g1, g2)), φ((g2, g3))}, and similarly that {φ((i1, i2)), φ((i2, i3))} = {φ((g3, g4)), φ((g4, g5))}.
Thus, the four left-side arcs receive different colours, that are exactly the colours received
by the four right-side arcs.

The fourth item is because of previous arguments, and because of the presence of the
interference arcs (f1, g2), (g2, f

′
1), (f1, g4), (g4, f2). That is, we have φ((g1, g2)) 6= φ((f1, f2))

because of (f1, g2), we have φ((g2, g3)) 6= φ((f1, f2)) because of (g2, f
′
1), we have φ((g3, g4)) 6=

φ((f1, f2)) because of (f1, g4), and we have φ((g4, g5)) 6= φ((f1, f2)) because of (g4, f2).

Our 6-crossover gadget is depicted in Figure 9. The central octagon C is the core from
Figure 7. Each of the four peripheral backbone arcs of C serves as the base arc of a tower
from Figure 8. Note that, going anticlockwise, all four towers T0, ..., T3 are “oriented” the
same way (with respect to the four base arcs). The four backbone arcs (y0, z0), ..., (y3, z3)
with both sides on the outer face are the corner arcs. The tail yi of each such arc (yi, zi)
is joined, via out-going interference arcs only, to the base arc of a tower Ti, to the four
left-side arcs from that tower Ti, and to the four right-side arcs from the next tower Ti+1

(modulo 4).

Theorem 3.6. The backboned digraph (D,B) depicted in Figure 9 is a 6-crossover gadget.

Proof. Figure 9 shows that (D,B) indeed admits planar embeddings where its four corner
arcs have both sides on the outer face. It remains to show that (D,B) has the desired
colouring properties, i.e.,:

• (D,B) has 6-BMRN∗-colourings;
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Figure 9: The 6-crossover gadget, and one of its 6-BMRN∗-colourings. Thick solid arcs are backbone arcs.
Thin dashed arcs are interference arcs. The central octagon is the core of the gadget, to which four towers
are attached. Dashed edges show the outer face in the planar embedding of the core and towers we are
considering.

• in every 6-BMRN∗-colouring of (D,B), every two opposite corner arcs are assigned
the same colour;

• there exist 6-BMRN∗-colourings of (D,B) where all four corner arcs are assigned the
same colour;

• there exist 6-BMRN∗-colourings of (D,B) where two opposite corner arcs are assigned
some colour, that is different from the colour assigned to the remaining two opposite
corner arcs.

Figure 9 shows an example of an arc-colouring which is a 6-BMRN∗-colouring of (D,B).
Let us now prove thoroughly that (D,B) has the desired properties, by describing how
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a 6-BMRN∗-colouring φ of (D,B) behaves, starting from the core C, continuing with
its attached towers T0, ..., T3, and propagating to the corner arcs (y0, z0), ..., (y3, z3). For
simplicity, we assume below that φ assigns colours in {1, ..., 6}.

By Theorem 3.4, the four backbone arcs of the core are assigned two different colours
only, in such a way that no two consecutive of them are assigned the same colour. Let us
thus assume that the backbone arcs of the core that are the base arcs of T0 and T2 are
assigned colour 1, while the backbone arcs of the core that are the base arcs of T1 and T3
are assigned colour 2. Let us now focus on T0. By Theorem 3.5, the four left-side arcs
of T0 must be assigned four different colours different from 1. We distinguish two cases,
depending on whether 2 is one of these colours or not.

• Assume 2 is not one of these colours. Then the four colours assigned to the left-side
arcs of T0 are 3, 4, 5, 6. Still by Theorem 3.5, we deduce that the four right-side arcs
of T0 are also assigned colours 3, 4, 5, 6. By construction, we note that (y0, z0) cannot
be assigned a colour assigned to the four left-side arcs of T0 and to its base arc. Thus,
we must have φ((y0, z0)) = 2. Similarly, (y3, z3) cannot be assigned a colour assigned
to the four right-side arcs of T0 and to the base arc of T3; the only available colour for
(y3, z3) is thus 1. In the tower T3, the four left-side arcs must be assigned different
colours, that must be different from that of (y3, z3) (because of interference arcs) and
that of the base of T3. Thus, the four left-side arcs of T3 are assigned colours 3, 4, 5, 6,
which are also the colours of the four right-side arcs of T3 by Theorem 3.5.

Repeating these last arguments to T2 and then T1, we successively deduce that (y2, z2)
must be assigned colour 2, the left-side arcs (and right-side arcs) of T2 must be
assigned colours 3, 4, 5, 6, the arc (y1, z1) must be assigned colour 1, and the left-side
arcs (and right-side arcs) of T1 must be assigned colours 3, 4, 5, 6. Then φ is a 6-
BMRN∗-colouring where 1 = φ((y1, z1)) = φ((y3, z3)) 6= φ((y0, z0)) = φ((y2, z2)) = 2.

• Assume 2 is one of the four colours assigned to the four left-side arcs of T0. Without
loss of generality, we may assume that these colours are 2, 3, 4, 5. By Theorem 3.5,
these colours are also those of the right-side arcs of T0. By the interference arcs leaving
from y0 to T0, the colour assigned to (y0, z0) must be different from 1, 2, 3, 4, 5, and it
must thus be 6. We now consider T1: its four right-side arcs must be assigned distinct
colours different from that of (y0, z0) and that of the base arc of T1. Then the four
right-side arcs of T1 are assigned colours 1, 3, 4, 5, and these are also the colours of the
four left-side arcs of T1. Then (y1, z1) must be assigned a colour different from that
of the four left-side arcs of T1 and that of the base arc of T1. Then φ((y1, z1)) = 6.
That colour cannot be assigned to the right-side arcs of T2; since these colours must
be different from that of the base arc of T2, they are 2, 3, 4, 5. These colours are also
the colours of the left-side arcs of T2 by Theorem 3.5.

Going on that way, we deduce that (y2, z2) must be assigned colour 6, the left-side
arcs (and right-side arcs) of T3 must be assigned colours 1, 3, 4, 5, and the arc (y3, z3)
must be assigned colour 6. This results in φ being a 6-BMRN∗-colouring where
φ((y0, z0)) = φ((y1, z1)) = φ((y2, z2)) = φ((y3, z3)) = 6.

3.3. Summarizing and going farther
From our 6-crossover gadget we can easily deduce, for any k ∈ {3, 4, 5}, a k-crossover

gadget in which the same colouring mechanisms apply. For instance:

• For k = 5, remove the arcs (a4, a5), (b4, b5), (c4, c5), (d4, d5) from the core, and the
arcs (i4, i5), (g1, g2) from the tower.
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• For k = 4, additionally remove the arcs (a3, a4), (b3, b4), (c3, c4), (d3, d4) from the
core, and the arcs (i1, i2), (g4, g5) from the tower.

• For k = 3, additionally remove the arcs (a2, a3), (b2, b3), (c2, c3), (d2, d3) from the
core, and the arc (h1, h2) from the tower.

It can easily be seen that, under those modifications, we do end up with a k-crossover gadget
in each case, essentially because some particular sets of arcs (with size k − 2 decreasing
as k gets smaller) must be assigned different colours. From this and Theorem 3.3, we
immediately get that Planar k-BMRN∗-Colouring is NP-hard for every k ∈ {3, 4, 5}.

Theorem 3.7. Planar k-BMRN∗-Colouring is NP-hard for every k ∈ {3, 4, 5, 6}.

With some extra effort, we can also prove that, for k ∈ {3, 4, 5, 6}, Planar k-BMRN∗-
Colouring remains NP-hard when restricted to planar spanned digraphs. Note that the
reduced backboned digraphs we construct in the proof of Theorem 3.7 are far from being
spanned, as the backbones we get have many connected components (already note that the
core of each copy of the 6-crossover gadget generates nine such connected components). In
the next result, we explain how to make these backbones connected without altering the
general colouring properties. We show this for k = 6 below, which is the most intricate
case, but the arguments also apply for the modified k-crossover gadgets with k ∈ {3, 4, 5}
mentioned earlier.

Theorem 3.8. Planar 6-BMRN∗-Colouring is NP-hard when restricted to planar spanned
digraphs.

Proof. Consider the reduction from the proof of Theorem 3.3, performed using copies of the
6-crossover gadget exhibited in Theorem 3.6. Then (D,B) is a planar backboned digraph
(obtained from G in polynomial time), and G has a proper 6-vertex-colouring if and only if
(D,B) has a 6-BMRN∗-colouring. Furthermore, in the good drawing of (D,B), by shaping
all crossover gadgets similarly to the crossings they replace, we still retain the property
that the ui’s lie on the outer face.

We now explain how to turn (D,B) into a planar spanned digraph (D′, T ), in such a
way that the colouring equivalence with G is preserved. We first add a vertex r at the
very bottom of the drawing, under all ui’s. This r will be the root of our eventual out-tree
T . Our goal now, is to repeatedly add, starting from r, directed paths from a connected
component of B to another one, so that a bigger connected component (actually an out-
tree) results, until all connected components are absorbed to a unique out-tree T . The
crucial point is the following. Assume (a, b), (c, d) are backbone arcs; if we add a long
directed path (made up of backbone arcs only) from, say, b to c, then we note that these
added arcs do not interfere with the colouring of (a, b) and (c, d) in a 6-BMRN∗-colouring.
This is because the inner arcs of such a directed path, if long enough, are subject to only
two colour constraints. In other words, assuming (a, b) and (c, d) are coloured, we can
easily extend the colouring to the joining directed path (assuming again it is long enough).

So the question now is whether, starting from r, we can add long directed paths (made
up of new backbone arcs) going to all connected components of B (more precisely to their
unique vertex with no in-coming backbone arc), thus making only one out-tree, without
breaking planarity. Since all ui’s belong to the outer face, we can freely add, for every ui,
a long directed path from r to ui, so that all (ui, vi)’s now belong to a single connected
component (being an out-tree with root r) of T . It now remains to reach the connected
components of the crossover gadgets. As can be seen in the drawing of Figure 9, assuming
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the corner arc (y0, z0) belongs to T , from y0 we can easily add three long directed paths
navigating in faces and going to the vertices i1, g1, f1 of the next tower T1, thus adding
three connected components of that tower to T . Once the vertex i2 of T1 is part of T ,
we can then easily add a long directed path to its vertex h1 of that tower to add the
last connected component of T1 to T . After that, assuming (y1, z1) (the other corner arc
adjacent to T1) is not already part of T , we can freely add a long directed path from, say,
the vertex i5 of T1 (navigating in a common face) to y1, so that (y1, z1) is added as well.
From (y1, z1), we can easily reach the next tower T2, and so on. From this, we deduce that
all copies of the original backbone arcs of (D ~G,M ~G) can be added to T , and similarly the
connected components of B belonging to the towers of the crossover gadgets. For every
crossover gadget, it just remains to connect to T the five inner connected components of
its core, which is easy to do assuming f1, f3, f5, f7 (which are incident to the base arcs of
the towers) are already part of T . Namely, navigating inside faces to preserve planarity,
we can add a long directed path from f2 to a1, from f4 to d1, from f6 to c1, from f8 to b1,
and finally from a1 to e1.

Repeating this procedure to all crossover gadgets, we can make sure that T eventually
is an out-tree with root r, and we end up with a planar spanned digraph (D′, T ) such
that G has a proper 6-vertex-colouring if and only if (D′, T ) has a 6-BMRN∗-colouring. In
particular, note that the number of connecting directed paths we must add is polynomial.
Thus, the whole construction is achieved in polynomial time.

4. Connection between BMRN∗-index and girth

The planar backboned digraph depicted in Figure 3 has “large” BMRN∗-index (for a
planar one), mainly due to its several short cycles (with length 2 or 3). In this section, we
investigate the effects on the BMRN∗-index of forbidding small cycles in a planar backboned
digraph.

We prove that, as one could expect, the BMRN∗-index of planar spanned digraphs
decreases as the girth grows. We prove this in the general case, i.e., when no further
backbone restrictions are imposed. Under an additional structural condition (backbone
with bounded maximum degree), we give a result involving a stronger girth assumption.
To summarize, our results are as follows:

Theorem 4.1. Let (D,B) be a planar backboned digraph. Then:

• if g(D) ≥ 5 and ∆+(B) ≤ 1, then BMRN∗(D,B) ≤ 7;

• if g(D) ≥ 7, then BMRN∗(D,B) ≤ 6;

• if g(D) ≥ 16, then BMRN∗(D,B) ≤ 4;

• if g(D) ≥ 21, then BMRN∗(D,B) ≤ 3;

• there is no k such that if g(D) ≥ k, then BMRN∗(D,B) < 3.

4.1. General case
Throughout this section, we deal with vertices having certain degrees. A k-vertex is a

vertex having degree precisely k. A k−-vertex (resp. k+-vertex ) is a vertex having degree
at most (resp. at least) k. For some ` ≥ 1, an `-thread refers to a path (v1, ..., v`+2) where
the ` inner vertices v2, ..., v`+1 are 2-vertices. Under a mild minimum degree assumption,
threads are well-known to exist in planar graphs with large enough girth:

18



Theorem 4.2 (e.g. [4]). Every planar graph with with minimum degree at least 2 and girth
at least 5`+ 1 contains an `-thread.

In some of the upcoming proofs, we will need the fact that trees have low BMRN∗-index:

Theorem 4.3. Let (D,B) be a backboned digraph. If D is a tree, then BMRN∗(D,B) ≤ 2.

Proof. The proof is by induction on |V (D)| + |A(D)|. As the claim can easily be verified
for trees with small order, we focus on the general case. In particular, we may assume
that all vertices of D are part of the backbone, as otherwise we could remove “useless”
vertices, and a 2-BMRN∗-colouring of the remaining backboned digraph would also be one
of (D,B). Also, we may assume that no interference arc (u, v) is “useless”, i.e., we have
d+B(u) ≥ 1 and d−B(v) = 1.

If B has only one connected component, then (D,B) has no interference arcs (as oth-
erwise D would have cycles). In this case, we only have to deal with direct conflicts, which
can be done by simply considering the bipartition (V1, V2) of D, and, for i = 1, 2, assigning
colour i to all backbone arcs originating from a vertex in Vi. Thus, we may assume that
B has several connected components, connected via interference arcs. If we contract, in
D, all connected components of B to vertices, resulting in an oriented multigraph ~G, then
und(~G) cannot have cycles as otherwise D would as well. This implies that ~G is actually
an oriented graph, and that two connected components of B are joined by at most one
interference arc.

Since (D,B) is assumed to have no useless interference arcs, und(~G) is actually con-
nected, and is thus an oriented tree. For every vertex v of ~G, let C(v) denote the connected
component of B corresponding to v. We deduce a 2-BMRN∗-colouring of each connected
component of B, one after another, such that all colourings comply with each other and
give a 2-BMRN∗-colouring of the whole (D,B). This is done by considering the connected
components of B as the corresponding vertices of und(~G) are encountered during a BFS
performed from an arbitrary root r of ~G.

We thus start with r. Since nothing is coloured yet, we can freely choose, as a 2-BMRN∗-
colouring of C(r), any 2-BMRN∗-colouring, which exists by the induction hypothesis. Let
us now consider the general case, i.e., that during the BFS of und(~G), we are now dealing
with a vertex v, whose parent in und(~G) (by the BFS ordering) is u. Recall that either
(u, v) or (v, u) can be the corresponding arc in ~G. We assume in what follows that (u, v)
is the arc, but the arguments can be symmetrized in case the arc is (v, u). Let xu denote
the vertex of C(u) from which the corresponding interference arc originates in (D,B), and
xv denote the vertex of C(v) at which the interference arc terminates in (D,B). By the
induction hypothesis, C(v) admits a 2-BMRN∗-colouring. Free to permute the colours, we
may assume that the colour assigned to the unique backbone arc in-coming to xv is different
from the unique colour assigned to the backbone arcs out-going from xu. Then, there is
no indirect conflict raised, and the whole partial colouring is a partial 2-BMRN∗-colouring
of (D,B).

Going on like this until all vertices of ~G have been treated by the BFS, we end up with
a 2-BMRN∗-colouring of (D,B).

We now prove all results (but the first one, postponed to the next subsection) in The-
orem 4.1, by dedicating a theorem or observation to each item. We voluntarily modify the
order in which these results are delivered, as some of the proofs depend on other ones.

We start off by observing that, in general, planar spanned digraphs with arbitrarily
large girth might require at least three colours in a BMRN∗-colouring:
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Observation 4.4. There is no k such that spanned digraphs (D,T ) with girth at least k
have BMRN∗(D,T ) < 3.

Proof. This is because large girth does not prevent a spanned digraph to have an odd
number of backbone arcs being constraining each other in a “cyclic” way (i.e., which would
correspond to an odd-length cycle for proper vertex-colouring of undirected graphs). Such
backbone arcs force the use, in a BMRN∗-colouring, of at least three colours. This occurs,
for instance, when a planar spanned digraph (D,T ) contains the following configuration.
Let k ≥ 3 be any odd integer. For every i ∈ {0, ..., k − 1}, assume (D,T ) has a backbone
arc (vi, v

′
i), and, modulo k, the interference arc (vi, v

′
i+1). Then it is easy to see that

two “consecutive” backbone arcs (vi, v
′
i) and (vi+1, v

′
i+1) must receive different colours by

a BMRN∗-colouring. Since there is an odd number of arcs in that “cycle”, at least three
colours are needed.

We now prove that, in general, if the girth of a planar backboned digraph is larger than
some threshold, then its BMRN∗-index becomes less than some value.

Theorem 4.5. Let (D,B) be a planar backboned digraph. If D has girth at least 21, then
BMRN∗(D,B) ≤ 3.

Proof. Assume the statement is wrong, and let (D,B) be a planar backboned digraph with
girth at least 21 verifying BMRN∗(D,B) > 3. We consider a such (D,B) that is minimum
in terms of |V (D)|+|A(D)|. This property implies thatD is connected. It also implies that,
for every interference arc (u, v), we must have d+B(u) ≥ 1 and d−B(v) = 1, as otherwise this
arc could not be involved in any indirect conflict, and we could just remove it from (D,B),
and deduce a 3-BMRN∗-colouring of the remaining backboned digraph (in which every
connected component is either a backboned oriented tree, which has 3-BMRN∗-colourings
by Theorem 4.3, or a smaller planar backboned digraph with girth at least 21) that is also
one of (D,B), a contradiction. This in turn implies that every vertex v of D must be part
of B, as otherwise we could find, in (D,B), interference arcs that are useless.

Our aim is to find a 4-thread in D by means of Theorem 4.2. That theorem tells us
that the existence of such threads is, despite the girth of D, not guaranteed if δ(D) = 1.
We thus first need to investigate how 1-vertices behave in D.

First off, we note that if v is a vertex of D adjacent to 1-vertices, then v is adjacent to
at most two 1-vertices. Indeed, if v is adjacent to three 1-vertices u1, u2, u3, then we must
have two arcs, say (v, u1), (v, u2), being backbone arcs. This is because every vertex must
be incident to a backbone arc (by minimality of (D,B)), and every vertex has in-degree
at most 1 in the backbone. In that case, we consider (D′, B′) the backboned digraph
obtained when removing u1 from D. Since (D′, B′) is a planar backboned digraph with
girth at least 21 that is smaller than (D,B), it has a 3-BMRN∗-colouring which we can
extend to (v, u1) by simply assigning the colour of (v, u2) to (v, u1). This is correct since
these two backbone arcs are subject to the same colour constraints. Thus, we get a 3-
BMRN∗-colouring of (D,B), a contradiction. Consequently, if a vertex v of D is adjacent
to 1-vertices, then it is adjacent to at most two 1-vertices. Furthermore, if u1, u2 are two
1-vertices adjacent to v, then, without loss of generality, (u1, v) and (v, u2) are backbone
arcs.

Assume now that D has a 1-vertex u, and let v be its unique neighbour. By minimality
of (D,B), vertices v and u must be joined by a backbone arc. Assume (v, u) is that
backbone arc. We claim that v must be a 4+-vertex. Indeed, consider the backboned
digraph (D′, B′) obtained from (D,B) by removing u; again, (D′, B′) admits a 3-BMRN∗-
colouring. If we cannot extend it to (v, u), thus to (D,B), then this means that the three
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colours appear “around” v. The colours that cannot be assigned to (v, u) are the following:
that assigned to the unique backbone arc (w, v) (if any), and, for every interference arc
(v, w) incident to v, that assigned to the unique backbone arc in-coming to w (if any). In
other words, every arc incident to v in (D′, B′) prevents us from assigning at most one
colour to (v, u). Thus, for the three colours to be not assignable to (v, u), it must be that
v has degree at least 3 in (D′, B′), and thus at least 4 in (D,B). These arguments also
hold in the case where (u, v) is a backbone arc ((u, v) cannot be assigned the unique colour
assigned to the backbone arcs out-going from v (if any), and, for every interference arc
(w, v), the unique colour assigned to the backbone arcs out-going from w).

Now, assume that D has a vertex v adjacent to two 1-vertices u1, u2. By arguments
above, we may assume that (u1, v) and (v, u2) are backbone arcs of (D,B). We claim
that v is a 6+-vertex. Indeed, first consider the backboned digraph (D′, B′) obtained when
removing u1 from (D,B). Again, (D′, B′) has a 3-BMRN∗-colouring. We try to extend it
to (u1, v). The colour assigned to (u1, v) must be different from that of (v, u2). It must
also be different, for every interference arc (w, v), from the unique colour assigned to the
backbone arcs out-going from w, if any. Thus, so that the colouring cannot be extended to
(u1, v), in which case we would get a contradiction, there must be at least two interference
arcs in-coming to v. Now consider (D′, B′) the backboned digraph obtained from (D,B)
by removing u2. By symmetric arguments, for a 3-BMRN∗-colouring of (D′, B′) to be not
extendable to (v, u2), there must be at least two interference arcs out-going from v. We
thus deduce that v has degree at least 6 in D.

We are now ready to combine all these arguments for deducing the existence of a 4-
thread in D. We apply the following simple iterative procedure: As long as D has a
1-vertex, we just remove it. Let D′ denote the resulting digraph once all 1-vertices have
been peeled off (and thus no 1-vertex remains). It is easy to see that D′ cannot be a tree,
unless D was one (as the presence of any cycle in D makes it impossible for D′ to be a tree,
and removing 1-vertices from a graph cannot disconnect it). Also, D′ cannot be empty.
Then D′ is a (connected) planar digraph with girth at least 21 and δ(D′) ≥ 2. Then, by
Theorem 4.2, D′ has a 4-thread (v1, ..., v6), where v2, ..., v5 are its 2-vertices. The crucial
point is that this 4-thread is also a 4-thread in D. This is because, although seemingly
iterative, the process of removing 1-vertices from D while possible actually only removes
vertices that were already of degree 1 in D. This is because vertices of D are adjacent
to at most two 1-vertices, and vertices v of D adjacent to 1-vertices are of large degree.
Indeed, either v is adjacent to only one 1-vertex in D, in which case v is a 4+-vertex in D
and it becomes a 3+-vertex once its adjacent 1-vertex has been removed, or v is adjacent
to two 1-vertices in D, in which case v is a 6+-vertex in D and thus it becomes a 4+-vertex
once its two adjacent 1-vertices have been removed. Hence, all 2-vertices v2, ..., v5 of the
4-thread in D′ are also 2-vertices in D, and this thread is thus also a 4-thread in D.

We now deal with this 4-thread (v1, ..., v6) in (D,B). Assume first that (v3, v4) is a
backbone arc. If (v3, v2) is not a backbone arc, then we consider the backboned digraph
(D′, B′) obtained by removing (v3, v4) from (D,B). By arguments similar to that above,
(D′, B′) admits a 3-BMRN∗-colouring, which we wish to extend to (v3, v4). This is possible
because (v3, v4) is subject to at most two colour constraints. Indeed, since (v3, v2) is not
a backbone arc, by minimality of (D,B) this arc (v3, v2) must be an interference arc, and
(v1, v2) must be a backbone arc. Then (v3, v4) must be assigned a colour different from
that unique one assigned to the backbone arcs out-going from v1 (that of (v1, v2)), and
that of (v4, v5) (case where this is a backbone arc), or that of (v5, v6) (otherwise: if (v4, v5)
is not a backbone arc, then (v5, v4) must be an interference arc, and thus (v5, v6) must be
a backbone arc). This is a contradiction.
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Now assume that both (v3, v2) and (v3, v4) are backbone arcs. We here consider (D′, B′)
to be the backboned digraph obtained after removing (v3, v2), (v3, v4). Again, it admits
a 3-BMRN∗-colouring which we wish to extend to the two removed arcs, assigning them
a same colour. We claim that, here as well, at most two colours only must be avoided.
Indeed, we cannot assign to (v3, v2), (v3, v4) the colour of (v2, v1) (case where that arc is
a backbone arc), or the unique colour assigned to the backbone arcs out-going from v1
(otherwise: if (v2, v1) is not a backbone arc, then (v1, v2) must be an interference arc by
minimality of (D,B)). Similarly, we cannot assign to (v3, v2), (v3, v4) the colour of (v4, v5)
(case where it is a backbone arc), or the colour of (v5, v6) (otherwise: if (v4, v5) is not a
backbone arc, then (v5, v4) must be an interference arc, and (v5, v6) must be a backbone
arc). Thus one of the three colours is not used around, and we can freely assign it to
(v3, v2), (v3, v4), resulting in a 3-BMRN∗-colouring of (D,B), a contradiction.

The last case to consider is when the arc joining v3 and v4 is an interference arc. By
symmetry, we may assume that (v3, v4) is an interference arc. Then, by minimality of
(D,B), both (v3, v2) and (v5, v4) are backbone arcs. In that case, we consider (D′, B′) the
backboned digraph obtained when removing (v3, v2) from (D,B). A 3-BMRN∗-colouring
of (D′, B′) can be extended to (v3, v2), thus to (D,B), because this arc is subject to at
most two colour constraints only: either the colour of (v2, v1) (if it is a backbone arc) or
the unique colour assigned to the backbone arcs out-going from v1 (otherwise), and the
colour of (v5, v4). This is yet another contradiction, which concludes the proof.

Theorem 4.6. Let (D,B) be a planar backboned digraph. If D has girth at least 16, then
BMRN∗(D,B) ≤ 4.

Proof. The proof starts similarly as that of Theorem 4.5. Let (D,B) be a minimum
counterexample to the claim. Since we are now working with four colours, from arguments
we have used earlier the following properties of D and D′ (the digraph obtained when
removing all 1-vertices from D) can be deduced:

• every vertex of D is adjacent to at most two 1-vertices;

• every vertex of D adjacent to a 1-vertex is a 5+-vertex;

• every vertex of D adjacent to two 1-vertices is an 8+-vertex;

• D′ has 3-threads, each of which is a 3-thread of D.

Let (v1, ..., v5) be a 3-thread of D, where v2, ..., v4 are its 2-vertices. Note that we
may assume that v1, v5 are 3+-vertices, as otherwise D would have a 4-thread, from which
we could deduce a 4-BMRN∗-colouring of (D,B) just as in the proof of Theorem 4.5. In
most cases, a 4-BMRN∗-colouring of (D,B) can be deduced from this 3-thread (v1, ..., v5).
Actually, only one case is not reducible. Let us first prove that all other cases are indeed
reducible.

Assume first that v3 is incident to out-going backbone arcs. There are two cases to
consider. First, assume that both (v3, v2) and (v3, v4) are backbone arcs. We here remove
v3 from (D,B); the remaining backboned digraph admits a 4-BMRN∗-colouring that can
be extended to (v3, v2) and (v3, v4), a contradiction. Indeed, we must avoid either the
colour of (v2, v1) (if it is a backbone arc) or the unique colour assigned to the backbone
arcs out-going from v1 (otherwise), and the colour of (v4, v5) (if it is a backbone arc) or the
unique colour assigned to the backbone arcs out-going from v5 (otherwise). Second, assume
that only (v3, v2) is a backbone arc. By minimality of (D,B), (v3, v4) is an interference
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arc, and (v5, v4) is a backbone arc. We here remove only (v3, v2) from (D,B). Here,
for extending a 4-BMRN∗-colouring of the remaining backboned digraph to (v3, v2), we
must avoid either the colour of (v2, v1) (if it is a backbone arc) or the colour assigned to
the backbone arcs out-going from v1 (otherwise), and the unique colour assigned to the
backbone arcs out-going from v5 (i.e., the colour of (v5, v4)). Since we have four colours in
hand, we can find an open colour for (v3, v2), a contradiction.

Thus, we now assume that v3 is incident to only one in-coming backbone arc. Assume
(v2, v3) is that backbone arc. Then (v4, v3) must be an interference arc, and, in turn, (v4, v5)
is a backbone arc. Again, if (v2, v1) is an interference arc, then we are done, because we
can just remove (v2, v3) from (D,B), deduce a 4-BMRN∗-colouring, an extend it to (v2, v3)
as this arc is subject to at most two colour constraints (the colour of the unique backbone
arc in-coming to v1 (if any), and the colour of (v4, v5).

It can be checked that the remaining type of 3-thread (v1, ..., v5), which is when
(v2, v1), (v2, v3), (v4, v5) are backbone arcs while (v4, v3) is an interference arc, cannot be
reduced that simply, via counting arguments only. Such 3-threads, we call bad threads.
Before going on, we need to exhibit a few properties of these bad threads in (D,B).

A first important property is deduced from the fact that, for a bad 3-thread (v1, ..., v5),
we have the backbone arcs (v2, v1) and (v4, v5). This means that, in (D,B), a vertex v
can be incident to at most one bad thread, as otherwise v would have two backbone arcs
coming in. Another property is that v1 and v5 must be 4+-vertices; this is again deduced
by removing either (v2, v1) and (v2, v3) (for establishing the bound on the degree v1), or
(v4, v5) (for establishing the bound on the degree of v5), and counting the number of colour
constraints around. Lastly, for a 3-thread (v1, ..., v5) of (D,B), the vertex v1 (and similarly
v5) can be adjacent to at most one 1-vertex (via an out-going backbone arc), and, in that
case, we recall that v1 (resp. v5) is a 5+-vertex.

We are now ready to conclude. Start from (D,B), and, as in the proof of Theorem 4.5,
remove 1-vertices as long as possible. The remaining digraph (D′, B′) cannot be a tree,
remains connected, it is planar with girth at least 16, and, as mentioned earlier, it has
minimum degree 2. (D′, B′) thus has a 3-thread T1 = (v1, ..., v5), which is also a 3-thread
in (D,B). If T1 is not bad, then we are done. So assume that T1 is a bad 3-thread. Back
in (D′, B′), we remove the vertices v2, v3, v4, resulting in a backboned digraph (D′′, B′′).
Recall that, in (D,B), both v1 and v5 are 4+-vertices, and, if any of them is also adjacent
to a unique 1-vertex, then it is even a 5+-vertex. This implies that, in (D′′, B′′), both
v1 and v5 are 3+-vertices, and they do not have any backbone arc coming in. Also, D′′

remains of minimum degree at least 2.
Although D′′ might have several connected components, they all have girth at least 16.

Thus, in D′′, by Theorem 4.2 we can again find a 3-thread T2, which is also a 3-thread in
D. Again, if T2 is not a bad 3-thread in (D,B), then we are done. Thus we may assume
that T2 is bad, and, by the properties we have on the first and last vertices of bad threads,
we know that T1 and T2 do not intersect. Next, we again remove the inner degree-2 vertices
of T2 from the current digraph; it remains of minimum degree at least 2, and it remains a
planar digraph whose all connected components have girth at least 16.

We continue this process as long as possible. That is, for a backboned digraph obtained
from D after removing the 1-vertices and the inner vertices from some bad 3-threads
T1, ..., Tk of (D,B), we deduce another 3-thread Tk+1 by Theorem 4.2, which is also present
in (D,B). If Tk+1 is not a bad thread, then we are done. Otherwise, we remove its three
inner vertices from the current digraph, and we go on. We know that the two ends of
Tk+1 remain of degree strictly more than 2, and thus so do all vertices. Furthermore, all
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resulting connected components remain of girth at least 16. Also, recall that no two threads
Ti, Tj can share vertices (because any vertex of (D,B) can be incident to at most one bad
thread, and after removing a bad thread no new 2-vertex can be created). The process
will thus end up with finding a 3-thread that is no bad. Back in (D,B), this is a 3-thread
that can be reduced, and from its existence we get that (D,B) has 4-BMRN∗-colourings;
a contradiction.

Theorem 4.7. Let (D,B) be a planar backboned digraph. If D has girth at least 7, then
BMRN∗(D,B) ≤ 6.

Proof. This is proved by designing a particular vertex-colouring φ of D. To every vertex
v of D with d+B(v) ≥ 1, we assign a 2-element colour φ(v) = {c1(v), c2(v)} so that, when
assigning colour φ(v) to all backbone arcs out-going from v, the resulting “derived” arc-
colouring forms a BMRN∗-colouring of (D,B). The function c1 will take value in {1, 2},
while c2 will take value in {1, 2, 3}, so that φ is a 6-colouring.

We construct φ in the following way. Let (V1, V2) denote the bipartition of B. For
every vertex v ∈ V1, we set c1(v) = 1, while we set c1(v) = 2 for every v ∈ V2. This way,
note that, in (D,B), already we cannot have direct conflicts by the arc-colouring derived
from φ (because no two consecutive backbone (u, v), (v, w) arcs originate from vertices in
the same partite set). It remains to deal with indirect conflicts, which is done by defining
c2 appropriately.

For i = 1, 2, we denote by Di the digraph obtained from (D,B) and c1 as follows.
The vertices of Di are the vertices v of D verifying c1(v) = i. The arcs of Di model
the potential indirect conflicts in (D,B) between vertices v with c1(v) = i. That is, for
every two vertices u, v with c1(u) = c1(v) = i, we add the arc (u, v) to Di if (u, v′) is an
interference arc of (D,B), where (v, v′) is a backbone arc. That is, the presence of the arc
(u, v) in Di indicates that u and v should receive distinct colours by a BMRN∗-colouring
of (D,B) (to avoid an indirect conflict), while its direction indicates the direction of the
corresponding interference arc (it goes from u to an out-neighbour of v). Note that Di, in
general, is a multidigraph.

It can be noted that each Di is a planar digraph. Indeed, seen differently, Di was
obtained from D by deleting all arcs out-going from vertices in V3−i, and contracting all
backbone arcs out-going from vertices in Vi. This means that Di is a minor of D; since D
was assumed planar, so is Di, as planar graphs form a minor-closed family of graphs.

Let us now focus on D1. Recall that its arcs join vertices (with the same colour by c1)
whose out-going backbone arcs must not be assigned the same colour in a BMRN∗-colouring
of (D,B) (to avoid some indirect conflict). Thus, by the arc-colouring derived from φ, no
colour conflict involving two vertices of D1 will arise as soon as c2, when restricted to D1,
is a proper vertex-colouring. We claim that, because D has girth at least 7, D1 itself has
girth at least 4, and thus admits a proper 3-vertex-colouring by Grötzsch Theorem [6].

Assume the contrary, i.e., that D1 has a 2-cycle or 3-cycle C.

• If C = (u, v, u) has length 2, then there are two possible orientations for C in D1.

– On the one hand, assume there are two arcs from u to v in D1. Since D is
simple, this means that there are two interference arcs (u, v1), (u, v2) in (D,B),
where (v, v1), (v, v2) are two backbone arcs. Then (u, v1, v, v2, u) is a 4-cycle of
D, a contradiction to it having girth at least 7.

– On the second hand, assume D1 has two arcs (u, v) and (v, u). This means that
(D,B) has two interference arcs (u, v′), (v, u′), where (u, u′), (v, v′) are backbone
arcs. Then (u, u′, v, v′, u) is a 4-cycle, a contradiction.
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• If C = (u, v, w, u) has length 3, then there are two possible (non-isomorphic) orien-
tations in D1:

– On the one hand, assume the three arcs are (u, v), (v, w), (w, u). This means that
(D,B) has three interference arcs (u, v′), (v, w′), (w, u′), where (u, u′), (v, v′), (w,w′)
are three backbone arcs. Then (u, v′, v, w′, w, u′, u) is a 6-cycle in D, a contra-
diction.

– On the other hand, assume that the three arcs are (u, v), (v, w), (u,w). This
means that, in (D,B), one of the following two situations occurs:

∗ (D,B) has three interference arcs (u, v′), (u,w′), (v, w′), where (v, v′), (w,w′)
are two backbone arcs. Then (u, v′, v, w′, u) is a 4-cycle, a contradiction.
∗ (D,B) has three interference arcs (u, v′), (u,w′), (v, w′′), where (v, v′), (w,w′), (w,w′′)

are two backbone arcs. Then (u, v′, v, w′′, w, w′, u) is a 6-cycle, a contradic-
tion.

Thus, D1 has girth at least 4, meaning it admits a proper 3-vertex-colouring. Simi-
larly, D2 admits a proper 3-vertex-colouring as well. These two colourings yield our
c2.

4.2. Bounded-degree backbone
One notable property of the spanned digraph (D,T ) in Figure 2 is that T is a directed

path, i.e., it has maximum outdegree 1. This indicates that having, in a planar backboned
digraph, the backbone arcs inducing a very simple topology is sometimes sufficient to have
“large” BMRN∗-index. The other way around, in planar spanned digraphs the interference
arcs are sufficient to make the number of colours large. Yet, in the following result we
show how to take advantage of a simple backbone to prove that Question 1.1 is true for
planar spanned digraphs with even smaller girth, and that eight colours are not necessary
to colour them.

Theorem 4.8. Let (D,B) be a planar backboned digraph. If D has girth at least 5 and
∆+(B) ≤ 1, then BMRN∗(D,B) ≤ 7.

Proof. Assume the claim is wrong, and consider (D,B) a smallest counterexample to the
claim (in terms of |V (D)|+ |A(D)|). By minimality, we may suppose that D is connected,
that all vertices are part of the backbone, and that there are no useless interference arcs.

We might as well suppose that D has no bridge, say (u, v), such that none of u, v is a 1-
vertex. Indeed, on the one hand, if (u, v) is a backbone arc, then we can remove (u, v) from
(D,B), resulting in the disjoint union of two backboned digraphs (D1, B1), (D2, B2), where
B1, B2 are the restrictions of B to D1, D2. Because none of u, v is a 1-vertex, note that both
(D1+(u, v), B1+(u, v)) and (D2+(u, v), B2+(u, v)) admit a 7-BMRN∗-colouring (either by
induction or Theorem 4.3). It is then easy to see that, when permutting the colours of these
two colourings so that (u, v) gets the same colour in each of them, a 7-BMRN∗-colouring
of (D,B) is obtained. On the second hand, if (u, v) is an interference arc, then we can just,
by freely permutting the colours, consider 7-BMRN∗-colourings of (D1, B1) and (D2, B2)
such that the unique colour assigned to the backbone arcs outgoing from u is different from
the colour of the unique backbone arc in-coming to v. This forms a 7-BMRN∗-colouring
of (D,B), a contradiction. Thus, omitting its arcs incident to 1-vertices, we may assume
that D has no bridge.
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We get to a contradiction to the existence of (D,B) through the use of the so-called
discharging method, which consists in the following steps. We first prove that some con-
figurations (subdigraphs with certain properties) are reducible in (D,B), meaning that
if (D,B) had one of these reducible configurations, then we would find a way to deduce
a 7-BMRN∗-colouring of (D,B) from it, a contradiction. Next, through the discharging
phase itself, we will supply a precise amount of charge to elements (vertices and faces) of
(D,B) and, because of the reducible configurations, show that, upon only moving charges
between elements in a very specific way, a contradiction to the initial provided amount of
charges is obtained.

1. First reducible configurations

As a general tool, we start off by proving that, in (D,B), two vertices with small degree
cannot be joined by a backbone arc.

Claim 1. Let (u, v) be a backbone arc of (D,B). Then

d−B(u) + d+D−B(u) + d+B(v) + d−D−B(v) ≥ 7.

Proof of the claim. Assume to the contrary that (D,B) has a backbone arc (u, v) where
d−B(u) + d+D−B(u) + d+B(v) + d−D−B(v) < 7. Let (D′, B′) be the planar backboned digraph
obtained by removing (u, v) from (D,B). By minimality of (D,B), this (connected, by
previous arguments) digraph (D′, B′), which is still of girth at least 5 with ∆+(B′) ≤ 1,
admits a 7-BMRN∗-colouring φ. We show below that φ can be extended to (u, v), thus to
(D,B), a contradiction.

By the definition of BMRN∗-colouring, those colours around (u, v) that cannot be
assigned to (u, v) are the following (assuming they all exist):

• the colour of the backbone arc in-coming to u;

• the colour of the backbone arc out-going from v;

• for every interference arc (u,w) out-going from u, the colour of the backbone arc
in-coming to w;

• for every interference arc (w, v) in-coming to v, the colour of the backbone arc out-
going from w.

It can easily be seen that any other arc incident to u or v does not yield any colouring
constraint for extending φ to (u, v). Also, any constraining arc incident to u or v constrains
the assignation of at most one colour to (u, v). Since each of the seven colours we are playing
with must be not assignable to (u, v), the result follows. ♦

In particular through Claim 1, we deduce properties of small-degree vertices in (D,B).

Claim 2. Let v be a vertex of (D,B) being adjacent to 1-vertices; then:

1. v is adjacent to at most two 1-vertices;

2. every arc between v and a 1-vertex is a backbone arc;

3. if v is adjacent to a one 1-vertex, then d(v) ≥ 8;

4. if v is adjacent to exactly two 1-vertices, then d(v) ≥ 14; moreover, the two backbone
arcs joining v and these two 1-vertices have opposite directions.
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Proof of the claim. The first and second items, as well as the last part of the fourth
item, are because every vertex of (D,B) must be incident to a backbone arc, and we
have ∆+(B) ≤ 1. The third item and the first part of the fourth item follow from a
direct application of Claim 1. Recall in particular that removing a backbone arc from
(D,B) results in a connected digraph (since bridges are incident to 1-vertices, by previous
arguments), which implies that the girth restriction is preserved upon removing single arcs.
♦

Claim 3. D has no 3-thread.

Proof of the claim. Assume D has a 2-vertex v adjacent to two 2-vertices u,w. By
minimality of (D,B), v must be incident to a backbone arc; assume (u, v) is that backbone
arc. Then we get a contradiction to Claim 1, since both u and v have degree 2. ♦

From Claim 3, we know that all `-threads in (D,B), if there are any, verify ` ∈ {1, 2}.
Some of these threads are reducible because of Claim 1. The remaining irreducible threads,
which we cannot reduce immediately via the degree condition in the claim, have the fol-
lowing properties:

Claim 4. An irreducible thread of (D,B) is either:

• A 2-thread (v1, v2, v3, v4); in that case, (v1, v2) and (v3, v4) (resp. (v4, v3) and (v2, v1))
are backbone arcs, while (v3, v2) (resp. (v2, v3)) is an interference arc. Furthermore,
both v1 and v4 are 7+-vertices.

• A 1-thread (v1, v2, v3); in that case, at least one of (v1, v2), (v2, v1), (v3, v2), and
(v2, v3) is a backbone arc. Furthermore, each of v1, v3 incident to such a backbone
arc is a 7+-vertex.

Proof of the claim. First assume (v1, v2, v3, v4) is a 2-thread of (D,B). Note that the
arc joining v2 and v3 cannot be a backbone arc, as otherwise Claim 1 would yield a
contradiction. Thus that arc must be an interference arc, say (v2, v3) without loss of
generality. By minimality of (D,B), this arc cannot be removed, which means that (v2, v1)
and (v4, v3) must be backbone arcs. Now, knowing that both (v2, v1) and (v4, v3) are
backbone arcs, and v2, v3 are 2-vertices, the last part of the first item follows from Claim 1.

Now assume (v1, v2, v3) is a 1-thread. If none of its two arcs is a backbone arc, then v2
could be just removed from (D,B), contradicting its minimality. So one of its two arcs is
a backbone arc, and its end different from v2 must be a 7+-vertex by Claim 1. ♦

For an irreducible 2-thread (v1, v2, v3, v4), we define v1 (resp. v4) as the support vertex
of v2 (resp. v3). For an irreducible 1-thread (v1, v2, v3), we know that at least one of the
two arcs is a backbone arc; the end different from v2 of that arc (if the two of v1, v3 are
candidate, we choose any of them) we define as the support vertex of v2. For every 2-vertex
of D, we have thus defined a support vertex, which is a 7+-vertex.

Similarly as for the previous claims, Claim 1 can be used to prove the following:

Claim 5. Let v be a vertex of (D,B) supporting some 2-vertices; then:

1. v supports at most two 2-vertices;

2. the number of 1-vertices adjacent to v plus the number of 2-vertices supported by v is
at most 2;
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3. if v is adjacent to a 1-vertex and a 2-vertex it supports, then d(v) ≥ 13;

4. if v is adjacent to two 2-vertices it supports, then d(v) ≥ 12.

Proof of the claim. The first item is because ∆+(B) ≤ 1 and, by definition, vertices
support adjacent 2-vertices via backbone arcs. The second item follows from these reasons,
and the fact that the only arc incident to a 1-vertex must be a backbone arc, by the
minimality of (D,B). The third and fourth items follow from Claim 1, by considering the
two backbone arcs incident to v going to the two vertices with degree 1 or 2 (recall that
these two backbone arcs have different directions with respect to v, due to the backbone
restrictions). ♦

2. First discharging process

To every vertex v of D, we assign an initial charge ω(v) = 2d(v)− 6. To every face f ,
we assign an initial charge ω(f) = d(f)− 6. Playing with Euler’s formula, we get∑

v∈V (D)

ω(v) +
∑

f∈F (D)

ω(f) =
∑

v∈V (D)

(2d(v)− 6) +
∑

f∈F (D)

(d(f)− 6) = −12

This means that the total amount of charge is strictly negative. Throughout this proof,
the goal is, without creating any new charge, to move charge from elements to elements,
before proving that the total amount of charge eventually gets negative, a contradiction.

The discharging rules of the first discharging phase are the following:

R1. Every face sends 2 to each of its incident 1-vertices.

R2. Every vertex sends 2 to each of its adjacent 1-vertices.

R3. Every vertex sends 2 to each of its adjacent 2-vertices it supports.

For every element (vertex or face) e of D, let us denote by ω′(e) the charge of e once
rules R1 to R3 above have been performed. Let us now study the value of ω′(e) for each
element e.

First assume that e = v is some vertex. Note that, by rules R1 to R3, only 1-vertices
and 2-vertices receive some charge. According to Claims 2 and 4, only 7+-vertices can send
charge, because only these types of vertices neighbour 2−-vertices. By Claim 5, vertices can
send charge to at most two adjacent vertices, and, from Claims 2 and 5, only 12+-vertices
send charge to two adjacent vertices. Thus:

• If v is a 1-vertex, then v does not send any charge. It however receives 2 from its
unique neighbour, via rule R2, and 2 from the unique face to which v is incident (rule
R1). Thus ω′(v) = ω(v) + 2× 2 = −4 + 4 = 0.

• If v is a 2-vertex, then, through rule R3, it receives 2 from its supporting vertex,
while it does not send any charge. Thus ω′(v) = ω(v) + 2 = −2 + 2 = 0.

• If v is a k-vertex for k ∈ {3, ..., 6}, then v does not send nor receive charge; thus
ω′(v) = ω(v) = 2k − 6 ≥ 0.

• If v is a k-vertex for k ∈ {7, ..., 11}, then v sends 2 to at most one adjacent 1-vertex
or 2-vertex it supports (through rule R2 or R3), while v does not receive any charge.
Thus ω′(v) = ω(v)− 2 ≥ (2k − 6)− 2 = 2k − 8 ≥ 14− 8 = 6.
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• If v is a k-vertex with k ≥ 12, then v sends 2 to at most two adjacent 1-vertices or
2-vertices it supports (through rule R2 or R3). Also v does not receive any charge.
Thus ω′(v) = ω(v)− 2× 2 ≥ (2k − 6)− 4 = 2k − 10 ≥ 24− 10 = 14.

Let us finally assume that e = f is a face. Note that, through rules R1 to R3, f does
not receive any charge; but f sends 2 to each 1-vertex incident to it. Let f ′ denote the
face obtained from f by deleting all its incident 1-vertices, say there are x such. Since
D has girth at least 5, we have d(f ′) ≥ 5. Actually, we have d(f) = d(f ′) + 2x. Thus,
ω′(f) = ω(f) − 2x, and f , after applying the discharging rules, eventually has the same
charge ω′(f) that a face with length d(f ′) would get by ω. Thus, ω′(f) < 0 only when f ′

is a 5-face, in which case we actually have ω′(f) = −1.

We note that, at this point, the only elements e of D that verify ω′(e) < 0 are faces
f whose support, i.e., the cycle obtained after removing the 1-vertices incident to f , is a
5-cycle. More precisely, ω′(f) = −1 for such a face. In what follows, we apply additional
discharging rules to make sure that also such faces have non-negative charge, to get our
final contradiction. The main argument we will use is the fact that, for every vertex v with
d(v) > 3, its remaining charge ω′(v) is rather large. That is, all vertices v with d(v) ≥ 4

verify ω′(v)
d(v) > 0. More specifically, we note that ω′(v)

d(v) ≥ 1 whenever d(v) ∈ {6, 8, 9, ...},
while, when d(v) ∈ {4, 5, 7}, we have ω′(v)

d(v) ≥
1
2 . Even more specifically, we note that a

7-vertex v verifies ω′(v)
d(v) < 1 only when v is the support of exactly one adjacent 2-vertex

(recall Claim 4), in which case ω′(v)
d(v) = 6

7 . Such a 7-vertex is said weak below.

3. More reducible configurations

We focus on the 5-faces of D (which cannot be incident to 1-vertices, since D has girth
at least 5) having most of their vertices being of small degree. More precisely, we say that
a 5-face is bad if it has at most one vertex that is not a 3−-vertex, and, if that vertex exists,
it is a 4-vertex, 5-vertex or weak 7-vertex. In other words, a 5-face is not bad as soon as
it has at least two 4+-vertices, or whenever it has a 6-vertex, non-weak 7-vertex, or any
k-vertex with k ≥ 8. Conversely, a face (of any length) of D is said heavy if it contains
at least three 4+-vertices, including two 6+-vertices. A face of D is said almost heavy if
it contains at least three 4+-vertices, including a 6+-vertex and a 5-vertex that does not
belong to a bad 5-face.

Claim 6. (D,B) has no bad 5-face f = (v1, ..., v5, v1) where v1 is a 2-vertex, v2 is a weak
7-vertex, and v3, v4, v5 are 3-vertices.

Proof of the claim. Assume (D,B) has such a bad 5-face f . For each vi of v3, v4, v5, we
denote by v′i its unique neighbour not on f .

By minimality of (D,B) and by Claim 1, the arc joining v1 and v2 must be a backbone
arc (as otherwise the one joining v2 and v3 would be one, and Claim 1 would bring a
contradiction). Let us assume that (v1, v2) is a backbone arc. By minimality of (D,B),
(v1, v5) is an interference arc. By the same arguments, we deduce sequentially that (v′5, v5)
and (v4, v

′
4) are backbone arcs, while (v4, v5) and (v4, v3) are interference arcs (this is

because two 3-vertices cannot be joined by a backbone arc, as otherwise Claim 1 would
yield a contradiction). Again by minimality, we know that one of the two arcs incident to
v3 must be a backbone arc directed toward v3; there are two possibilities:

• (v′3, v3) is a backbone arc, in which case (v2, v3) must be an interference arc, by
minimality of (D,B). Then we get a contradiction when applying Claim 1 onto
(v1, v2), as this arc is subject to at most six colour constraints.
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• (v2, v3) is a backbone arc, in which case, applying Claim 1 onto (v1, v2), we deduce
that the remaining five arcs incident to v2 must be interference arcs directed toward
v2. We then get a contradiction when applying Claim 1 onto (v2, v3).

The case where (v2, v1) is a backbone arc can dealt with in a very similar way, using
symmetric arguments. ♦

Claim 7. (D,B) has no bad 5-face f = (v1, ..., v5, v1) where all vi’s are 3-vertices.

Proof of the claim. Assume (D,B) has such a bad 5-face f . According to Claim 1, none
of the arcs of f can be a backbone arc. By minimality of (D,B), this means that, for each
vi, its unique incident arc not belonging to f must be a backbone arc. For each vi, let us
denote by v′i its unique neighbour not in f . Assume without loss of generality that (v1, v

′
1)

is a backbone arc. By minimality of (D,B), we deduce that the two interference arcs
incident to v1 (thus on f) are directed towards v5 and v2. Again by minimality, we deduce
that both (v′2, v2) and (v′5, v5) are backbone arcs, and thus that (v3, v2) and (v4, v5) are
interference arcs. Going on this way, we deduce that (v3, v

′
3) and (v4, v

′
4) are backbone arcs.

We finally get to a contradiction, because the interference arc joining v3 and v4, whatever
be its direction, cannot be involved in an indirect conflict. This is a contradiction to the
minimality of (D,B). ♦

Claim 8. (D,B) has no bad 5-face f = (v1, ..., v5, v1) where v1 is a weak 7-vertex, and
v2, ..., v5 are 3-vertices.

Proof of the claim. For i = 2, 3, 4, 5, we denote by v′i the neighbour of vi not on f .
Similarly as in the proof of Claim 7, without loss of generality we may assume that (v3, v

′
3)

and (v′4, v4) are backbone arcs, while (v3, v2), (v3, v4) and (v5, v4) are interference arcs.
Since v1 is weak, it is adjacent to a 2-vertex v′1, thus not on f . Also, the arc joining v1 and
v′1 is a backbone arc, since v1 supports v′1.

Assume (v1, v
′
1) is a backbone arc. By Claim 1, at least five of the other six arcs incident

to v1 must be interference arcs out-going from v1. If (v5, v1) or (v2, v1) is a backbone arc,
then we get a contradiction by applying Claim 1 onto it. Thus, both (v1, v2) and (v1, v5)
are interference arcs. In that situation, no matter what direction the backbone arc joining
v5 and v′5 is, we get that one of (v5, v4) and (v1, v5) is useless, contradicting the minimality
of (D,B).

Lastly, if (v′1, v1) is a backbone arc, then reversing the arguments used to deal with the
previous case also gives a contradiction in all cases. ♦

Claim 9. If (D,B) has a bad 5-face f = (v1, ..., v5, v1) where v1 is a 4-vertex and v2, ..., v5
are 3-vertices, then v1 is also incident to a heavy face.

Proof of the claim. For i = 2, 3, 4, 5, we denote by v′i the neighbour of vi not on f .
Similarly as in the proof of Claim 7, without loss of generality we may assume that (v3, v

′
3)

and (v′4, v4) are backbone arcs, while (v3, v2), (v3, v4) and (v5, v4) are interference arcs.
Also, since v1 is is a 4-vertex, still by Claim 1 none of the arcs joining v5 and v1, and
v2 and v1 can be a backbone arc. By minimality of (D,B), we deduce that (v5, v

′
5) and

(v′2, v2) must be backbone arcs, while (v5, v1) and (v1, v2) are interference arcs. Still by
minimality of (D,B), the presence of these two arcs imply that the two remaining arcs
incident to v1 must be backbone arcs, one (v1, v

′
1) being directed away from v1, one (v′′1 , v1)
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being directed toward v1. Claim 1, applied to these arcs, now implies that v′1 and v′′1 are
both 6+-vertices. The face that contains v1, v′1, v′′1 is then the desired heavy face. ♦

Claim 10. If (D,B) has a bad 5-face f = (v1, ..., v5, v1) where v1 is a 5-vertex and v2, ..., v5
are 3-vertices, then v1 is also incident to a heavy face or to an almost-heavy face.

Proof of the claim. As in the proof of Claim 9, we may assume that (v′2, v2), (v3, v
′
3),

(v′4, v4) and (v5, v
′
5) are backbone arcs, while (v3, v2), (v3, v4), (v1, v2), (v5, v4) and (v5, v1)

are interference arcs. Again by minimality of (D,B), two of the three remaining arcs
incident to v1 must be backbone arcs, one being directed toward v1, one being directed
away from v1. Let us thus denote (v1, v

′
1) and (v′′1 , v1) the two backbone arcs incident to

v1. Without loss of generality, we may assume that (v1, v
′′′
1 ) is an interference arc, where

v′′′1 6= v′1, v
′′
1 does not belong to f .

Note that, for any i ∈ {2, ..., 5}, applying Claim 1 on the arc joining vi and v′i yields that
v′i must be a 6+-vertex. Applying Claim 1 on (v′′1 , v1), we deduce that v′′1 is a 6+-vertex.
Applying the claim on (v1, v

′
1), we deduce that v′1 is a 5+-vertex. If v′1 is a 6+ vertex, then

we are done, because either v1, v′5 and one of v′1, v′′1 all belong to a same heavy face, or
v1, v

′
2 and one of v′1, v′′1 all belong to a same heavy face. Thus, we may assume that v′1 is a

5-vertex. Again, we note that the two faces containing the arc (v′′1 , v1) cannot include one
or v′2 or v′5, as otherwise we would get a heavy face including v1, v′′1 and v′2 or v′5. Thus,
we may assume that one face incident to (v1, v

′
1) contains v′5, while one face incident to

(v1, v
′′′
1 ) contains v′2. Now, after removing (v1, v

′
1) from (D,B), if a 7-BMRN∗-colouring of

the remaining backboned digraph cannot be extended to (v1, v
′
1), then it means that each

of the other four arcs incident to v′1 must be either a backbone arc out-going from v′1, or
an interference arc in-coming to v′1. This prevents v′1 from being part of a bad 5-face, as,
as seen so far, a 5-vertex being the only 4+-vertex of a bad 5-face must be incident to an
out-going interference arc and an in-coming interference arc (just as v1 in f). Since v′1 does
not belong to any bad 5-face, we have that the face containing v1, v′1, v′5 is an almost-heavy
face containing v1. ♦

The arguments used in the proofs of Claims 9 and 10 yield another property of bad
5-faces having a 4-vertex or a 5-vertex.

Claim 11. If (D,B) has a bad 5-face f = (v1, ..., v5, v1) where v1 is a 4-vertex or 5-vertex
and v2, ..., v5 are 3-vertices, then v1 is not incident to another bad 5-face.

Proof. By the arguments used in the proof of Claim 10, if v1 is a 4-vertex or 5-vertex being
the only 4+-vertex of a bad 5-face f , then the two arcs incident to v1 on f must be one
out-going interference arc and one in-coming interference arc. Furthermore, two of the
other arcs incident to v1 must be one out-going backbone arc and one in-coming backbone
arc. Also, f must have its five arcs being interference arcs, and the four arcs incident to
the four 3-vertices of f must be backbone arcs. From all these arguments, it is easy to
check that the statement is true. In particular, one way to see this is that, under all these
assumptions, all faces (different from f) containing v1 include a backbone arc.

4. Second discharging process

For the second discharging phase, we apply, from the charge function ω′, these rules:

R4. Every 4+-vertex v that is not a 4-vertex or a 5-vertex incident to a bad 5-face sends
ω′(v)
d(v) to each of the at most d(v) faces it is incident to.
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R5. Every 4-vertex or 5-vertex v incident to a bad 5-face sends ω′(v)
d(v) to each of the at

most d(v) non-heavy and non-almost-heavy faces it is incident to. Furthermore, v
sends another ω′(v)

d(v) to each bad 5-face it is incident to.

For every vertex or face e of D, let us denote by ω′′(e) the charge of e once rules R4 and
R5 have been applied. We now analyze how ω′(e) was altered to ω′′(e), for each element e.

First, assume e = v is a vertex. Note that, by the rules, no vertex receives charge, and
thus we necessarily have ω′′(v) ≤ ω′(v). If d(v) ≤ 3, then no charge is sent by v, which
means that ω′′(v) = ω′(v) = 0. If v is not a 4-vertex or 5-vertex incident to a bad 5-face,
then, by rule R4, v splits its charge between the at most d(v) faces it is incident to. Thus
ω′′(v) ≥ ω′(v)−d(v)× ω′(v)

d(v) = 0. Now, if v is a 4-vertex or 5-vertex incident to a bad 5-face,
then, by Claims 9, 10 and 11, v is incident to at most one bad 5-face f and at least one
heavy or almost-heavy face f ′. By rule R5, v sends ω′(v)

d(v) to each incident face (including

f) but f ′, and instead sends another ω′(v)
d(v) to f . Thus v sends ω′(v)

d(v) at most d(v) times,

and ω′′(v) ≥ ω′(v)− d(v)× ω′(v)
d(v) = 0.

Second, assume e = f is a face. By rules R4 and R5, no face sends charge. Thus
ω′′(f) ≥ ω′(f). Furthermore, as stated earlier we already have ω′(f) ≥ 0 whenever the
support of f is not a 5-cycle. So, we may now focus on those cases where the support of f
is a 5-cycle, in which case ω′(f) = −1. If f is not a 5-face, then f is incident to a 1-vertex
u. By Claim 2, the neighbour v of u is an 8+-vertex, and v also is incident to f . By rule
R4, vertex v sends ω′(v)

d(v) ≥ 1 to f , and thus ω′′(f) ≥ ω′(f) + ω′(v)
d(v) ≥ −1 + 1 = 0.

The last case to consider is when f is actually a 5-face. First assume that f is not
bad. If f is not heavy and almost-heavy, then f contains at least two 4+-vertices v, v′

which, through rule R4, send ω′(v)
d(v) ,

ω′(v′)
d(v′) ≥

1
2 to f . Thus ω′′(f) ≥ ω′(f) + ω′(v)

d(v) + ω′(v′)
d(v′) ≥

−1 + 2× 1
2 = 0. If f is heavy or almost-heavy, then f contains either two 6+-vertices v, v′,

or a 6+-vertex v and a 5-vertex v′ that does not belong to any bad 5-face. By rule R4, v
and v′ send ω′(v)

d(v) ,
ω′(v′)
d(v′) ≥

1
2 to f . Thus ω′′(f) ≥ ω′(f) + ω′(v)

d(v) + ω′(v′)
d(v′) ≥ −1 + 2× 1

2 = 0.
We may thus lastly assume that f is a bad 5-face. By definition, f thus has at most

one 4+-vertex. By Claim 7, f cannot have only 3-vertices. By Claim 4, f cannot have
two consecutive 2-vertices (a 2-thread), as otherwise f would have at least two 7+-vertices,
and would thus not be bad. If f has a 2-vertex, then, by the same claim, f must have a
7+-vertex v, which we may assume is a 7-vertex by definition of a bad 5-face. We may
also assume that v is weak, as otherwise, by rule R4, v would send ω′(v)

d(v) ≥ 1 to f , and

thus ω′′(f) ≥ ω′(f) + ω′(v)
d(v) ≥ −1 + 1 = 0. Now, because v is the only 4+-vertex of f , a

second 2-vertex of f must be adjacent to v (still by Claim 4). Furthermore, v must be the
support of these two 2-vertices (by definition of a supporting vertex); this is a contradiction
to Claim 5, which states that a vertex adjacent to two 2-vertices must be a 12+-vertex.
Consequently, if f is a bad 5-face containing a 2-vertex, then this 2-vertex is adjacent to a
weak 7-vertex (that supports it) in f , and the remaining three vertices of f are 3-vertices;
this is the configuration described in Claim 6, which is forbidden.

We may thus assume that f is a bad 5-face having exactly one 4-vertex, 5-vertex or
weak 7-vertex v, while the other four vertices of f are 3-vertices. By Claim 8, actually v
cannot be a weak 7-vertex. Thus v is a 4-vertex or 5-vertex, and, by Claims 9 and 10, it
sends 2× ω′(v)

d(v) to f , while ω′(v)
d(v) ≥

1
2 . Then ω

′′(f) ≥ ω′(f) + 2× ω′(v)
d(v) ≥ −1 + 2× 1

2 = 0.

Thus, we now have

−12 =
∑

v∈V (D)

ω(v) +
∑

f∈F (D)

ω(f) =
∑

v∈V (D)

ω′′(v) +
∑

f∈F (D)

ω′′(f) ≥ 0,
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the desired contradiction. Thus, (D,B) cannot exist and the claim is true.

5. Conclusion

Following [3], we have investigated, in this work, the behaviour of the BMRN∗-index
of planar backboned digraphs, answering some open questions from that work. We have
exhibited planar spanned digraphs with BMRN∗-index 8, which meets the upper bound
for that class of digraphs. We have proved that the Planar k-BMRN∗-Colouring is NP-hard
for every k ∈ {3, ..., 6}, even when restricted to planar spanned digraphs. Finally, we have
investigated how the BMRN∗-index of a planar backboned digraph behaves in front of its
girth.

We however leave a few aspects open, which we believe might be interesting to study in
a later work. First, we have proved that the BMRN∗-index of a planar backboned digraph
can be as large as 8, and it thus makes sense wondering about the structure of planar
backboned digraphs with large BMRN∗-index. In particular:

Question 5.1. What is the complexity of Planar 7-BMRN∗-Colouring?

Our approach of using crossover gadgets is of course still applicable here. However, we
were not able to design 7-crossover gadgets. Designing such gadgets indeed requires lots of
interference arcs, which hardly comply with the planarity requirement. Nevertheless, our
bet is that Planar 7-BMRN∗-Colouring should also be NP-hard.

Another remaining algorithmic question is about the complexity of Planar k-BMRN-
Colouring for planar spanned digraphs, the variant of Planar k-BMRN∗-Colouring for BMRN-
colouring. Recall that the difference between BMRN-colouring and BMRN∗-colouring is
that, by the former, it is not mandatory, for every vertex, that all incident out-going
backbone arcs are assigned the same colour. Thus, the only context where BMRN-colouring
and BMRN∗-colouring coincide is when considering backbones B with ∆+(B) ≤ 1. As can
be noted in Figure 8, the tower we have designed for our 6-crossover gadget has vertices
incident to multiple out-going backbone arcs, which are crucial to ensure the planarity of
the whole graph. We were unfortunately unsuccessful in designing a similar 6-crossover
gadget (D,B) with ∆+(B) ≤ 1; however, we feel that Planar k-BMRN-Colouring should be
NP-hard when restricted to planar spanned digraphs.

Question 5.2. For every k ∈ {4, 5, 6, 7}, what is the complexity of Planar k-BMRN-
Colouring?

Regarding planar backboned digraphs with large girth, we were not able to exhibit
some better threshold above which 5-BMRN∗-colourings always exist. For instance, we
think the following question could be an interesting first step to consider:

Question 5.3. Is it true that every planar backboned digraph (D,B) with girth at least 11
has BMRN∗-index at most 5?

We believe the value 11 in that question would be a nice value, as this is the girth threshold
guaranteeing the existence of 2-threads in planar graphs with minimum degree 2 (recall
Theorem 4.2). Using this fact would be a nice enhancement of our proof of Theorems 4.5
and 4.6. However, we were not successful with this approach, as several types of 2-threads
cannot be reduced when five colours are allowed. It is likely that more sophisticated
arguments are needed here, or even new approaches.

Another related aspect is how much can the girth conditions in Theorem 4.1 be lowered,
namely for a given k ∈ {3, 4, 5, 6, 7}, what is the smallest g(k) such that planar backboned
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Figure 10: A planar backboned digraph (D,B) with girth 6 and BMRN∗-index 4, and a 4-BMRN∗-colouring
of (D,B). Thick solid arcs are backbone arcs. Thin dashed arcs are interference arcs.

digraphs (D,B) with g(D) ≥ g(k) have BMRN∗-index at most k. This is a legitimate
question, as the bounds we have exhibited seem far from optimal in general.

Question 5.4. For every k ∈ {3, ..., 7}, what is the smallest g(k) such that planar back-
boned digraphs (D,B) with g(D) ≥ g(k) have BMRN∗-index at most k?

As a first step towards the first case, that of k = 3, let us mention that there exist
planar backboned digraphs with girth 6 and BMRN∗-index 4, such as the one depicted in
Figure 10. Thus, 7 ≤ g(3) ≤ 21.

Finally, it might be interesting investigating how all these concerns behave for particular
classes of planar digraphs. For instance, in [3], the authors proved that the BMRN∗-index
of an outerplanar backboned digraph is at most 5, which is tight. Another interesting
class of planar digraphs to consider could be that of grids (triangular, square, etc.). An
intriguing case is that of square grids. It is fairly easy to see that the BMRN∗-index
of a backboned directed square grid (D,B) is at most 5, because grids admit distance-
2 5-colourings (which can be derived to 5-BMRN∗-colourings of (D,B), as mentioned
in the introduction). Regarding lower bounds, one can easily come up with example of
backboned directed square grids with BMRN∗-index 4. However, even via lots of computer
experimentations, we were not able to find backboned directed square grids with BMRN∗-
index 5. This makes us wonder about the following question, which would be interesting
to answer towards understanding better the connection between BMRN∗-colourings and
distance-2 colourings.

Question 5.5. Is it true that every backboned directed square grid has BMRN∗-index at
most 4?
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