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In a recent work, Bensmail, Blanc, Cohen, Havet and Rocha, motivated by applications for TDMA scheduling problems,
have introduced the notion of BMRN∗-colouring of digraphs, which is a type of arc-colouring with specific colouring
constraints. In particular, they focused on planar digraphs. They notably proved that every planar digraph can be 8-
BMRN∗-coloured, while there exist planar digraphs for which 7 colours are needed in a BMRN∗-colouring. They also
proved that the problem of deciding whether a planar digraph can be 3-BMRN∗-coloured is NP-hard.

In this work, we pursue these investigations on planar digraphs by answering some of the questions left open by the
authors in that seminal work. We exhibit planar digraphs needing 8 colours to be BMRN∗-coloured, thus showing
that the upper bound of Bensmail et al. cannot be decreased in general. We also generalize their complexity result
by showing that the problem of deciding whether a planar digraph can be k-BMRN∗-coloured is NP-hard for every
k ∈ {3, . . . , 6}. Finally, we investigate the connection between the girth of a planar digraph and the least number of
colours in its BMRN∗-colourings.
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1 Introduction
The colouring concepts studied in this work are motivated by the following real-life problem. Suppose
we have a network of entities communicating via radio waves. One particular of our entities, the center
of command, continuously, through time, emits messages that must be propagated to all the entities of the
network. Because all entities might not be in the range of the center of command, these transmissions
are performed in a multi-hop fashion. That is, for each entity (different from the center of command), a
preferred entity is defined, from which the messages are intended to be received. Entities and their respective
preferred entity define a set of links, which is commonly referred to as the network’s backbone, along which
the messages of the center of command will be propagated.

In an ideal world, an entity receiving a message from its preferred entity via its link would just forward
the message right away to some close entities. In practice, however, this is not feasible due to particular
types of physical rules and limitations. For instance, since messages are forwarded via radio waves, an
entity a will not only receive messages from its preferred entity, but also from any other entity that has a
in its range. In other words, interferences might occur, resulting in unexpected and unwanted alterations of
messages.

In the TDMA method, this issue is overcome by dividing time into several successive units of time,
called time slots, during which only some of the backbone links become active. The goal is then to design a
scheduling of the links which will be repeated through time, and prevent interferences during transmissions.
A downside of this method, however, is that links now become active during only a short period of time,
i.e., during the time slot they are active. The main objective is thus to find a scheduling that minimizes the
number of time slots, so that the waiting time of the links is minimized.

The problem above can be studied under a graph colouring formalism. The network is modelled by a
digraph D whose vertices are the entities, while the presence of an arc (u, v) indicates that v is in the
emission range of u. The backbone is modelled by a subdigraph B of D being a spanning subdigraph
in which all connected components are out-trees, i.e., oriented trees with all arcs oriented from a root r
(modelling a local center of command) towards the leaves. We call the pair (D,B) a backboned digraph,
the arcs of B being the backbone arcs and the arcs in A(D) \ A(B) being the interference arcs. In case
B is connected, i.e., its underlying undirected graph und(B) has only one connected component, we call
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(a) A 2-BMRN-colouring. (b) A 3-BMRN∗-colouring.

Figure 1: Examples of BMRN-arc-colouring and BMRN∗-arc-colouring for a given spanned digraph. In
each picture, the white vertex is the root of the backbone. Thick solid arcs are backbone arcs. Thin dashed
arcs are interference arcs.

(D,B) a spanned digraph. Since, in the problem above, we are assuming that the center of command is
unique, the notion of spanned digraph is the precise one modelling our network context; however, the notion
of backboned digraph is more general and will be of great use in most of our investigations in this paper.

A scheduling of the backbone links is modelled by an arc-colouring of the arcs of B verifying certain
properties. In [3], Bensmail, Blanc, Cohen, Havet and Rocha introduced the notion of BMRN-colourings of
backboned digraphs, which are arc-colourings φ that avoid the following two configurations:

• Direct conflict: two ”consecutive” backbone arcs (u, v), (v, w) with φ((u, v)) = φ((v, w)).

• Indirect conflict: an interference arc (u1, v2) such that (u1, v1), (u2, v2) are two backbone arcs with
u1 6= u2 and φ((u1, v1)) = φ((u2, v2)).

Direct conflicts model the fact that, regarding the TDMA scheduling problem above, an entity v should
not both receive and emit messages during a same time slot. This is because entities can be assumed to be
very simple devices, that are not able to perform the actions of transmitting and receiving at the same time.
Indirect conflicts model interferences due to some entities being in the range of other emitting entities:
during a given time slot, an entity v2 should not receive a message from both its preferred entity v1 and
another entity u1 also sending a message.

For a backboned digraph (D,B), the least number of colours in a BMRN-colouring is called the BMRN-
index of (D,B), denoted by BMRN(D,B). The authors of [3] also considered the following slightly mod-
ified variation: a BMRN∗-colouring of (D,B) is a BMRN-colouring where it holds that, for every vertex v
of D with d+B(v) > 1, all backbone arcs of B out-going from v are assigned the same colour. The BMRN∗-
index of (D,B) is then the least number of colours (denoted BMRN∗(D,B)) in a BMRN∗-colouring of
(D,B). In the concrete network problem above, finding a BMRN∗-colouring would be equivalent to finding
a link scheduling where all entities send their messages during a unique time slot.

Refer to Figure 1 for an illustration of these concepts; in particular, note that the colouring on picture (a)
is not a BMRN∗-colouring, as the white vertex does not have all of its incident out-going backbone arcs
assigned a same colour.

In [3], the authors gave a number of general results on both the BMRN-index and the BMRN∗-index of
digraphs. Note that BMRN(D,B) ≤ BMRN∗(D,B) always holds. Although the authors proved that the
BMRN∗-index of a given spanned digraph can be arbitrarily larger than its BMRN-index, they observed that,
at least for particular classes of digraphs, considering BMRN∗-colourings can be a way to deduce optimal
BMRN-colourings, which is a reason why this modified notion is worth studying. They also considered
algorithmic aspects related to the problem of determining the BMRN-index or the BMRN∗-index of a given
spanned digraph, which in general is NP-hard, even if one is allowed to construct the backbone from a
given root. Also, they gave a number of more specific results for particular classes of digraphs, such as
bounded-degree digraphs, outerplanar digraphs, and more generally planar digraphs.

An interesting aspect of BMRN∗-colouring is its connection with the notion of distance-2 colourings of
undirected graphs, which are vertex-colourings where no two vertices at distance at most 2 are assigned the
same colour. For an undirected graph G, we denote by χ2(G) the least number of colours in a distance-2
colouring of G. It was noticed in [3] that, for any backboned digraph (D,B), a distance-2 colouring φ
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Figure 2: A planar spanned digraph (D,T ) with BMRN∗(D,T ) = 7. The white vertex is the root of the
backbone. Thick solid arcs are backbone arcs. Thin dashed arcs are interference arcs.

of und(D) yields a BMRN∗-colouring of (D,B) (by assigning, for every vertex v, colour φ(v) to all its
incident out-going backbone arcs); this is because having no two adjacent vertices receiving the same colour
by φ takes care of direct conflicts, while having no two vertices at distance 2 receiving the same colour takes
care of indirect conflicts. Then, BMRN∗(D,B) ≤ χ2(und(D)). Although these two chromatic parameters
seem related, there are actually cases where they differ a lot. A good illustration is the case of planar graphs:
while χ2(G) is bounded below by ∆(G) + 1 for every (planar) graph G, we have BMRN∗(D,B) ≤ 8 for
every planar backboned digraph (D,B) (see below). This phenomenon is quite intriguing, and it motivates
one of our aims in this work, which is to further understand BMRN∗-colourings.

The current paper is devoted to investigating further the case of planar digraphs, more precisely the
behaviour of the BMRN∗-index for these digraphs, as many questions raised in [3] remain open to date.
Focusing further on this class of digraphs is motivated by the central role they play in colouring problems,
and by the fact that, regarding the practical problem introduced earlier, planar digraphs stand as a rather
realistic class to consider. Making use of the Four-Colour Theorem [1, 2], the authors of [3] proved that
for every planar backboned digraph (D,B), we have BMRN∗(D,B) ≤ 8. They also noticed that there
exist planar spanned digraphs (D,T )(i) with BMRN∗(D,T ) = 7, such as that one depicted in Figure 2. An
interesting property of this example is that its backbone is a directed path; on the one hand, this implies
that even BMRN(D,T ) = 7 holds, while, on the other hand, it illustrates the fact that, even in a planar
backboned digraph, having a simple backbone topology does not prevent the BMRN-index and BMRN∗-
index from being relatively large. Yet, the authors left open the question of whether their upper bound is
tight or not.

Question 1.1 ([3]). Do we have BMRN(D,T ) ≤ 7 for every planar spanned digraph (D,T )? Similarly,
do we always have BMRN∗(D,T ) ≤ 7?

As a first result in this paper, we answer negatively to Question 1.1 by exhibiting, in Section 2, a planar
spanned digraph (D,T ) verifying BMRN(D,T ) = BMRN∗(D,T ) = 8. This shows that the upper bound
above is tight.

We then consider algorithmic aspects in Section 3. In [3], the authors proved that deciding whether
BMRN∗(D,B) ≤ 3 (and similarly BMRN(D,B) ≤ 3) holds for a given planar backboned digraph
(D,B) is NP-hard, even when restricted to planar spanned digraphs. As mentioned earlier, we know
that the BMRN-index and BMRN∗-index of a planar backboned digraph can be as large as 8. Thus, it
makes sense investigating, for such a planar backboned digraph (D,B), the complexity of deciding whether
BMRN∗(D,B) ≤ k (and similarly BMRN(D,B) ≤ k) for k ∈ {4, .., 7}.

Question 1.2 ([3]). For every k ∈ {4, 5, 6, 7}, what is the complexity of the Planar k-BMRN∗-Colouring
problem? What is that of the Planar k-BMRN-Colouring problem?

(i) Throughout this work, to make the distinction between backboned digraphs and spanned digraphs clear, whenever possible we write
(D,B) for a backboned digraph and (D,T ) for a spanned digraph.
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Towards Question 1.2, we prove that deciding whether BMRN∗(D,B) ≤ k holds for a given planar back-
boned digraph (D,B) is NP-hard for every k ∈ {4, . . . , 6}, even when restricted to planar spanned di-
graphs.

For a planar backboned digraph, the BMRN∗-index can be as large as 8. In all our extremal examples
(such as those in Figure 2 and upcoming Figure 3) we note that small cycles are one of the main reasons
why the number of needed colours is that high. Thus, it seems judicious to investigate the behaviour of the
BMRN∗-index of planar backboned digraphs when small cycles are excluded, which is a classical aspect in
graph colouring theory. Consequently, Section 4 is devoted to investigating the effects of a large girth on
the BMRN∗-index of a planar backboned digraph.

Conclusions and perspectives are gathered in Section 5.

Definitions, notation and terminology
An undirected graphH is a minor of another undirected graphG ifH can be obtained fromG by deleting

edges, deleting vertices, and contracting edges.
For a given digraph D, we denote by V (D) and A(D) its vertex and arc sets, respectively. The in-degree

(resp. out-degree) d−D(v) (resp. d+D(v)) of a vertex v of D is the number of in-coming (resp. out-going)
arcs incident to v. The subscript in this notation will be omitted whenever no ambiguity is possible. The
minimum in-degree (resp. minimum out-degree) δ−(D) (resp. δ+(D)) of D is the minimum in-degree
(resp. out-degree) over the vertices of D. Conversely, the maximum in-degree (resp. maximum out-degree)
∆−(D) (resp. ∆+(D)) of D is the maximum in-degree (resp. out-degree) over the vertices of D.

Abusing notions and notations, we voluntarily employ some terms or notations usually defined for undi-
rected graphs in the context of digraphs. Whenever we do so for a digraph D, it should be understood
that we are referring to und(D), the undirected graph underlying D. In particular, we consider that D is
connected as soon as und(D) is. The degree d(v) of a vertex v ofD is its degree in und(D). The maximum
degree ∆(D) ofD is the maximum degree of und(D). We sayD is planar if und(D) itself is planar. Given
a planar embedding of D in the plane, we denote by F (D) the set of the faces of D. The degree d(f) of a
face f is the length of a shortest walk enclosing f (in particular, if f is incident to a pendant arc, then that
arc is counted twice). The girth g(D) of D is the girth of und(D), which is the length of its smallest cycles.

In turn, whenever referring to a digraph notion or notation for a backboned digraph (D,B), we implicitly
refer to the corresponding notion or notation for D.

2 Planar spanned digraphs with BMRN-index 8

Answering Question 1.1 negatively, we point out that there exist planar spanned digraphs with BMRN-
index (and BMRN∗-index) 8. Thus, according to the upper bound exhibited in [3], the maximum value of
BMRN(D,T ) (and BMRN∗(D,T )) over all planar spanned digraphs (D,T ) is 8. Our result is built upon
the following straight observation:

Observation 2.1. Let (D,B) be a backboned digraph. For every backboned surdigraph (D′, B′) (i.e.,
V (D′) = V (D) and A(D) ⊆ A(D′)), we have BMRN(D,B) ≤ BMRN(D′, B′) and BMRN∗(D,B) ≤
BMRN∗(D′, B′).

Observation 2.1 is obvious, as adding backbone arcs or interference arcs to a backboned digraph cannot
make its BMRN-index and BMRN∗-index decrease.

Now consider the planar backboned digraph depicted in Figure 3.

Observation 2.2. The backboned digraph depicted in Figure 3 is a planar backboned digraph with BMRN-
index 8.

Proof: As shown via the embedding depicted in the figure, this backboned digraph (D,B) is indeed planar.
The backbone B has exactly eight arcs, and it can be checked that no two of them can be assigned the
same colour by a BMRN-colouring, either because they are incident to a same vertex or because of an
interference arc. In particular, for every backbone arc (u, v), we have precisely d−B(u) + d+D−A(B)(u) +

d+B(v) + d−D−A(B)(v) = 7. Thus, BMRN(D,B) = 8.

Theorem 2.3. There exist planar spanned digraphs with BMRN-index 8.
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Figure 3: A planar backboned digraph (D,B) with BMRN(D,B) = 8. Thick solid arcs are backbone arcs.
Thin dashed arcs are interference arcs.

Proof: Consider the planar backboned digraph in Figure 3 (which has BMRN-index 8 by Observation 2.2).
It can easily be turned into a planar spanned digraph by adding, for instance, a backbone arc from v2 to v6,
and a backbone arc from v2 to v9. Since, in the depicted embedding, v2 and v6 belong to a common face,
and similarly v2 and v9 belong to a common face, adding these two arcs does not break planarity. Then
the backbone becomes an out-tree with root v1. By Observation 2.1 the resulting planar spanned digraph
retains BMRN-index at least 8. The equality follows from the upper bound in [3].

3 On the complexity of Planar k-BMRN∗-Colouring

Throughout this section, for any k ≥ 1 the k-BMRN∗-Colouring problem refers to the problem where,
given a backboned digraph (D,B), the task is to determine whether BMRN∗(D,B) ≤ k. The Planar
k-BMRN∗-Colouring problem is the restriction of k-BMRN∗-Colouring to planar backboned digraphs.

In [3], the authors noticed that k-BMRN∗-Colouring is equivalent to the usual k-Colouring problem
(where one aims at deciding, for a given undirected graph G, whether χ(G) ≤ k, i.e., whether G admits
proper k-vertex-colourings), and is thus polynomial-time solvable for k = 1, 2, and NP-hard for every
k ≥ 3 even when restricted to spanned digraphs. Regarding Planar k-BMRN∗-Colouring, they proved
that Planar 3-BMRN∗-Colouring is also NP-hard, even when restricted to planar spanned digraphs. As
seen previously in Section 2, planar spanned digraphs can have BMRN∗-index as large as 8, and it thus
makes sense wondering about those digraphs with BMRN∗-index exactly k for every k ∈ {4, . . . , 7} (recall
Question 1.2).
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(a) An oriented graph ~G.
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(b) The matched digraph (D~G
,M~G
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Figure 4: An oriented graph ~G and the corresponding matched digraph (D~G,M~G). In figure (b), thick
solid arcs are backbone arcs. Thin dashed arcs are interference arcs. The colours show a proper 3-vertex-
colouring of und(~G) (a) and the equivalent 3-BMRN∗-colouring of (D~G,M~G) (b).

3.1 Auxiliary tools, and main result
The complexity results above were established using the following construction (illustrated in Figure 4).
Given an oriented graph ~G, let (D~G,M~G) be the backboned digraph obtained from ~G as follows:

• For every vertex a of ~G, add a backbone arc (ua, va) to M~G, where ua, va are two new vertices.

• For every arc (a, b) of ~G, add the interference arc (ua, vb) to A(D~G) \A(M~G).

We call the resulting backboned digraph (D~G,M~G) the matched digraph associated to ~G. Every vertex of
~G corresponds to a backbone arc of (D~G,M~G), while every arc of ~G corresponds to an interference arc of
(D~G,M~G). There is then a straight equivalence between finding a proper k-vertex-colouring of und(~G)
and a k-BMRN∗-colouring of (D~G, B~G).

Observation 3.1. For every oriented graph ~G, we have χ(und(~G)) = BMRN∗(D~G,M~G).

Note that (D~G, B~G) can be far from planar, in particular if ~G itself is far from planar. The other way
around, the authors of [3] proved that, given that ~G is an oriented graph with orientation properties inherited
from a particular planar drawing, also (D~G, B~G) is planar. Because the Planar 3-Colouring problem is
NP-hard [5], this implies that Planar 3-BMRN∗-Colouring is NP-hard. A simple connecting operation, to
be described later, implies that this problem remains NP-hard for planar spanned digraphs as well.

Since all planar graphs are 4-colourable [1, 2], the same arguments cannot be used to prove that Planar
k-BMRN∗-Colouring is NP-hard for any k > 3, as it would require the corresponding Planar k-Colouring
problem to be NP-hard. To overcome this point, we come up with an improved reduction scheme, which
allows us to establish the NP-hardness of Planar k-BMRN∗-Colouring for every k ∈ {3, 4, 5, 6}, even
when restricted to planar spanned digraphs. This is by means of an adaptation of the so-called crossover
gadgets, which were, to the best of our knowledge, first used by Garey, Johnson and Stockmeyer to estab-
lish the NP-hardness of the Planar 3-Colouring problem [5]. Crossover gadgets are graphs with certain
colouring properties that can be used to “replace” edge crossings in a non-planar embedding of a graph,
while preserving the k-colourability of the whole graph.

Before defining what is a crossover gadget in our context, we first need to introduce a particular way
to draw a matched digraph defined over an acyclic oriented graph. Let ~G be an acyclic orientation of an
undirected graph G. This orientation defines an ordering w1, . . . , wn of the vertices of ~G, such that all arcs
are directed “to the right” (i.e., if (wi, wj) is an arc, then i < j). We now consider the matched digraph
(D~G,M~G) associated to ~G, which we here draw in the plane in a specific way (see Figure 5), which we call
a good drawing. For every i ∈ {1, . . . , n}, let us assume (ui, vi) denotes the backbone arc of (D~G,M~G)

associated to vertex wi of ~G. We first draw (u1, v1) vertically, having some length `. We then draw (u2, v2)
vertically too, of length `, but positioned at some horizontal distance x to the right of (u1, v1) and at some
vertical distance x above (u1, v1). We draw all (ui, vi)’s this way, i.e., each (ui, vi) is drawn vertically,
of length `, positioned at horizontal distance x to the right of (ui−1, vi−1) and at vertical distance x above
(ui−1, vi−1).

We now draw the interference arcs. By the orientation ~G, for every arc (wi, wj) of ~G, we want to add
to (D~G,M~G) an interference arc (ui, vj), where vj is located somewhere above and at the right of ui. We
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(a) An acyclic oriented graph ~G. (b) A good drawing of (D~G
,M~G

).

Figure 5: An acyclic oriented graph ~G, and a good drawing of the matched digraph (D~G,M~G). The colours
show, for every vertex of ~G, the corresponding backbone arc of (D~G,M~G). In figure (b), thick solid arcs are
backbone arcs. Thin dashed arcs are interference arcs. Note that the tails of the backbone arcs of (D~G,M~G)
lie on the outer face, and that the arc crossings involve interference arcs originating from different backbone
arcs.

draw this interference arc (ui, vj) in the following way: We make the arc leave ui from the right, then
immediately go vertically until the altitude of vj is attained, and then going straight horizontally to vj . Note
that this way we may have lots of arc crossings involving at least three arcs, and many pairs of interference
arcs intersecting on more than just one point. However, we can make the interference arcs go to their
destination in a clean way, as follows (see Figure 5). For every two interference arcs (ui, vj) and (ui, vk)
out-going from ui, we make them leave ui with different angles so that they do not intersect and there is
some horizontal “delay” before they start going vertically, in a non-intersecting parallel way. This delay, to
avoid any crossing involving these two arcs, is as follows: if j < k, i.e., the destination of (ui, vk) is farther
to the right than that of (ui, vj), then we grant more horizontal delay to (ui, vj), as this arc will stop its
ascension and “turn” right first. Reversely, we do not make every two interference arcs (ui, vk), (uj , vk),
both supposed to reach vk, attain vk following a same horizontal line. Instead, assuming i < j, i.e., ui is
somewhere on the left of uj , we add some vertical delay to (ui, vk) to the moment it stops its ascension and
turns right.

By this good drawing of (D~G,M~G), all interference arcs are drawn following an “S” shape, and it is thus
easy to see that all ui’s lie on the “outer face” (to be more formal, in the digraph obtained by replacing all
arc crossings by dummy vertices). Also, all arc crossings are perpendicular, involve exactly two interference
arcs originating from different vertices, and the intersection between any two interference arcs (if any) is a
single point.

Let us now define what a crossover gadget is. In our context, a k-crossover gadget (for some k ≥ 3) will
be a backboned digraph (D,B) with the following properties:

1. B has four particular pending corner arcs e, e′, f, f ′ (i.e., they are each incident to a degree-1 vertex),
were e, e′ (and similarly f, f ′) are said to be opposite.

2. D has planar embeddings such that all of e, e′, f, f ′ have both their sides being incident to the outer
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(a) Initial configuration. (b) Copying backbone arcs.

(c) Adding crossover gadgets. (d) Replacing interference arcs.

Figure 6: Getting rid of arc crossings via crossover gadgets. Thick solid arcs are backbone arcs. Thin dashed
arcs are interference arcs. Backbone arcs with the same colour are copies of a same original backbone arc.
Gray boxes are crossover gadgets, where the four incident backbone arcs are their corner arcs.

face, and, as going along the outer face, no two opposite corner arcs appear consecutively (i.e., the
sequence of appearance must be e, f, e′, f ′, or reversely).

3. In every k-BMRN∗-colouring φ of (D,B), we have φ(e) = φ(e′) and φ(f) = φ(f ′).

4. There exist k-BMRN∗-colourings φ of (D,B) where φ(e) = φ(e′) = φ(f) = φ(f ′). Also, there
exist k-BMRN∗-colourings φ of (D,B) where φ(e) = φ(e′) 6= φ(f) = φ(f ′).

Such gadgets will be used in the following way (see Figure 6). Assume we have a non-planar matched
digraph (D,M) that we want to k-BMRN∗-colour. To ease the following explanations, let us consider a
good drawing of (D,M) on the plane. As pointed out earlier, all arc crossings involve two interference arcs
crossing perpendicularly, and originating from different vertices. Furthermore, no three arcs cross on a same
point, and the intersection (if any) between any two arcs is a point. Let us now consider every interference
arc (ua, vb) in turn (as in the definition of matched digraphs, for convenience we here write all backbone
arcs of (D,M) under the form (ua, va)). Since (ua, vb) is an interference arc, it means that (ua, va) and
(ub, vb) are backbone arcs, drawn vertically by assumption. Let us now go along (ua, vb), from ua towards
vb. Each time we encounter an arc crossing (involving (ua, vb)), let us add to the backboned digraph a copy
of (ua, va), being a new backbone arc (u′a, v

′
a) drawn vertically in such a way that u′a is located on (ua, vb)

right after the crossing, before the next crossing involving (ua, vb) (if any), and before vb. Free to make
(u′a, v

′
a) as small as desired, we might assume that this new backbone arc does not intersect anything (with

the exception of its tail lying on (ua, vb) at the moment).
We perform this transformation for all interference arcs of (D,M), resulting in an auxiliary backboned

digraph (D′,M ′) (Figure 6 (b)). For every original backbone arc (ua, va) of (D,M) and each interference
arc (ua, vb) out-going from ua, we have thus added x copies of (ua, va) to the digraph, where x denotes
the number of arc crossings in which (ua, vb) was involved. There are thus a certain number of copies of
(ua, va) in (D′,M ′), including the original copy of (ua, va), that are “surrounding” the crossings (meaning
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that, for every interference arc (ua, vb) that is crossed, there is a copy of (ua, va) lying on (ua, vb) before
and after every arc crossing involving (ua, vb)).

Let us now modify (D′,M ′) further. To each arc crossing of (D,M) involving two interference arcs
(ua, vb) and (uc, vd), we associate, in (D′,M ′), four “surrounding” backbone arcs, being, as going from
ua to vb, the copy of (ua, va) located before the crossing and the copy of (ua, va) located after the crossing,
and, as going from uc to vd, the copy of (uc, vc) located before the crossing and the copy of (uc, vc)
located after the crossing. We are now ready to get rid of the conflicts of (D,M). In (D′,M ′), remove all
interference arcs that are, in (D,M), involved in arc conflicts. Then, for every arc crossing of (D,M) that
involves two interference arcs (ua, vb) and (uc, vd), add, in (D′,M ′), a new k-crossover gadget where the
crossing was occurring, and embed that gadget in such a way that its four corner arcs fully lie in the face
surrounding the gadget, and so that no two opposite corner arcs appear consecutively in that face. Next,
identify two opposite corner arcs of the gadget with the two copies of (ua, va) associated to the crossing,
and identify the two other opposite corner arcs with the two copies of (uc, vc) associated to the crossing
(Figure 6 (c)). Once this has been done for all arc crossings, finally consider every interference arc (ua, vb)
that is involved in some crossings in (D,M), and, denoting (u′a, v

′
a) the last copy of (ua, va) (as going from

ua to vb) in (D′,M ′), add the interference arc (u′a, vb) to (D′,M ′) (Figure 6 (d)). Assuming we do have a
k-crossover in hand, we denote by UC(D,M) the backboned digraph obtained from (D,M) in this way,
where that k-crossover gadget is implicitly used to replace the arc crossings.

We now prove that, assuming we do have a k-crossover gadget, using it to construct UC(D,M) from
(D,M) results in UC(D,M) having the desired properties.

Proposition 3.2. Let (D,M) be a matched digraph drawn in a good way, and assume we have a k-
crossover gadget for some k ≥ 3. Then, the backboned digraph (D′,M ′) = UC(D,M), constructed as
described above using copies of that gadget, admits a planar embedding. Furthermore, BMRN∗(D,M) ≤ k
if and only if BMRN∗(D′,M ′) ≤ k.

Proof: The first part of the claim follows from arguments used to describe the construction of UC(D,M).
When adding to (D′,M ′) the backbone arcs that will later become the corner arcs of the crossover gadgets,
we note that, by how these arcs are positioned, when removing all interference arcs involved in arc crossings
we get a planar digraph. Adding the gadgets does not create new arc crossings, as these gadgets admit planar
embeddings with their four corner arcs being fully in the outer face (by definition), and, when identifying
their corner arcs to four existing arcs, we can “shape” the gadget so that it is roughly drawn like the arc
crossing it is locally replacing. This way, we make sure that no arc of the gadget is involved in a new arc
crossing.

We now focus on proving the last part of the statement.

• First assume that we have a k-BMRN∗-colouring φ of (D,M). We derive one φ′ of (D′,M ′). For
every backbone arc (ua, va) of (D,M), we set φ′((ua, va)) = φ((ua, va)). Now, for every other
copy (u′a, v

′
a) of (ua, va) in (D′,M ′), we set φ′((u′a, v

′
a)) = φ((ua, va)). Note that this does not

create any indirect conflict involving two backbone arcs (a, b) and (c, d), via, say, the interference
arc (a, d). Indeed, either (a, b) and (c, d) both belong to (D,M), in which case (a, d) also does
and we have φ((a, b)) = φ((c, d)), an indirect conflict that is a contradiction to the definition of φ.
Otherwise, we have, say, that (a, b) is actually a copy of an original backbone arc (a′, b′). By the
existence of (a, d), we deduce that, in (D,M), there is an interference arc (a′, d), which is involved
in arc crossings that resulted in the addition of (a, b) to (D′,M ′). By construction of φ′, we have
φ′((a′, b′)) = φ′((a, b)), while, if (a, b) and (c, d) are in conflict, φ′((a, b)) = φ′((c, d)). Thus, we
have φ((a′, b′)) = φ((c, d)), while (a′, d) exists in (D,M), which is an indirect conflict by φ. This
is a contradiction.

The only backbone arcs of (D′,M ′) that remain to be coloured are those of the k-crossover gad-
gets. Consider such a gadget in (D′,M ′), where (u′a, v

′
a), (u′′a, v

′′
a) and (u′b, v

′
b), (u

′′
b , v
′′
b ) are the

two pairs of opposite corner arcs, being copies of some original backbone arcs (ua, va) and (ub, vb),
respectively, of (D,M). By construction of φ′ so far, we have φ′((u′a, v

′
a)) = φ′((u′′a, v

′′
a)) and

φ′((u′b, v
′
b)) = φ′((u′′b , v

′′
b )). By the definition of a k-crossover gadget, φ′ can be extended to the

gadget provided each pair of its opposite corner arcs are assigned the same colour, which is the case
here. Thus, φ′ can be extended to all gadgets used to construct (D′,M ′), which thus admits φ′ as a
k-BMRN∗-colouring.
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• Now assume that we have a k-BMRN∗-colouring φ′ of (D′,M ′), which we wish to extend to one
φ of (D,M). Every backbone arc (ua, va) of (D,M) also exists in (D′,M ′); then we simply set
φ((ua, va)) = φ′((ua, va)). Now consider, in (D,M), two backbone arcs (ua, va) and (ub, vb)
such that (ua, vb) is an interference arc. If that interference arc is also present in (D′,M ′), then
we have φ′((ua, va)) 6= φ′((ub, vb)) and so, by φ, the backbone arcs (ua, va) and (ub, vb) are not
involved in an indirect conflict. Now, if (ua, vb) is not an interference arc of (D′,M ′), then it must
be that this arc is involved in arc crossings in (D,M). By construction, there is a copy (u′a, v

′
a)

of (ua, va) in (D′,M ′) (located right after the last arc crossing involving (ua, vb) in (D,M)) such
that (u′a, vb) is an interference arc (replacing (ua, vb)). Then φ′((u′a, v

′
a)) 6= φ′((ub, vb)). By the

definition of a k-crossover gadget, we have φ′((ua, va)) = φ′((u′a, v
′
a)). From this, we deduce that

φ((ua, va)) 6= φ((ub, vb)), and that there cannot be indirect conflicts by φ.

This concludes the proof.

We now show how to deduce the NP-hardness of Planar k-BMRN∗-Colouring from the previous results
and observations (assuming a k-crossover gadget exists).

Theorem 3.3. For any k ≥ 3, if k-crossover gadgets exist, then Planar k-BMRN∗-Colouring is NP-hard.

Proof: The proof is by reduction from the k-COLOURING problem, which is NP-hard for any k ≥ 3.
Let G be an undirected graph; we build a planar backboned digraph (D,B) such that G admits a proper
k-vertex-colouring if and only if (D,B) admits a k-BMRN∗-colouring.

Let ~G be an acyclic orientation of G (obtained, for instance, by labelling the vertices v1, . . . , vn and
orienting every edge towards the vertex with the largest index), and let (D~G,M~G) be the matched digraph of
~G. Consider a good drawing of (D~G,M~G), and, from it, build (D,B) the backboned digraph UC(D~G,M~G)
obtained from (D~G,M~G) by removing arc crossings using copies of a k-crossover gadget. Note that the
whole construction is achieved in polynomial time; in particular, by the properties of a good drawing of
a matched digraph, at most a quadratic number of k-crossover gadgets must be used to get rid of all arc
crossings.

By Proposition 3.2, (D,B) is planar. Furthermore, it preserves the BMRN∗-colourability of (D~G,M~G),
while, in (D~G,M~G), finding a k-BMRN∗-colouring is equivalent to finding a proper k-vertex-colouring of
G (Observation 3.1). Thus,G admits a proper k-vertex-colouring if and only if (D,B) admits a k-BMRN∗-
colouring.

In what follows, we prove that a 6-crossover gadget exists. At the end of this section, we will show how,
from that gadget, we can derive k-crossover gadgets for any k ∈ {3, 4, 5}.

3.2 A 6-crossover gadget

The 6-crossover gadget we exhibit is made of several pieces with particular colouring properties, which we
introduce little by little to ease the understanding.

The core of our 6-crossover gadget is the backboned digraph depicted in Figure 7. From now on, we
deal with its vertices and arcs using the terminology from the figure. Its backbone arcs (f1, f2), (f3, f4),
(f5, f6), (f7, f8) are the peripheral arcs. Its main property of interest is the following one:

Proposition 3.4. Let (D,B) be the backboned digraph depicted in Figure 7. In every 6-BMRN∗-colouring
φ of (D,B), we have φ((f1, f2)) = φ((f5, f6)) 6= φ((f3, f4)) = φ((f7, f8)).

Proof: Let φ be a 6-BMRN∗-colouring of (D,B). To avoid a direct conflict, we must have φ((e1, e2)) 6=
φ((e2, e3)). Similarly, no two of the arcs (a1, a2), (a2, a3), (a3, a4), (a4, a5) can be assigned the same
colour: either to avoid a direct conflict (case of two consecutive arcs), or an indirect conflict (otherwise).
Furthermore, the colour of (e1, e2) cannot be assigned to any (ai, ai+1) of these four arcs because of the
interference arc (ai, e2), while the colour of (e2, e3) cannot be assigned to (ai, ai+1) because of the inter-
ference arc (e2, ai+1). Thus, all six arcs (e1, e2), (e2, e3), (a1, a2), (a2, a3), (a3, a4), (a4, a5) are assigned
different colours by φ. Now, we note that none of the colours of (a1, a2), (a2, a3), (a3, a4), (a4, a5) can
be assigned to (f1, f2), because of the four interference arcs joining these arcs. A consequence is that
φ((f1, f2)) ∈ {φ((e1, e2)), φ((e2, e3))}.
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Figure 7: The core of the 6-crossover gadget, and one of its 6-BMRN∗-colourings. Thick solid arcs are
backbone arcs. Thin dashed arcs are interference arcs.

Repeating these arguments for the arcs (f3, f4), (f5, f6), (f7, f8), we get that each of the arcs (f1, f2),
(f3, f4), (f5, f6), (f5, f6) must be assigned a colour from {φ((e1, e2)), φ((e2, e3))}. Because of the inter-
ference arcs (f1, f8), (f3, f2), (f5, f4), (f7, f6), we must have φ((f1, f2)) 6= φ((f3, f4)) 6= φ((f5, f6)) 6=
φ((f7, f8)). Thus, we must have φ((f1, f2)) = φ((f5, f6)) 6= φ((f3, f4)) = φ((f7, f8)).

Our 6-crossover gadget will also be made of towers, being copies of the backboned digraph depicted
in Figure 8. Again, from now on we refer to its vertices and arcs using the terminology in the figure.
The backbone arcs (i3, i4), (i4, i5), (g3, g4), (g4, g5) are its four left-side arcs, while the backbone arcs
(i1, i2), (i2, i

∗
2), (g1, g2), (g2, g

∗
2) are its four right-side arcs. Its backbone arc (f1, f2) is the base arc. It has

the following properties:

Proposition 3.5. Let (D,B) be the backboned digraph depicted in Figure 8. In every 6-BMRN∗-colouring
φ of (D,B), we have:

1. all of (g1, g2), (g2, g3), (g3, g4), (g4, g5) have different colours by φ, and similarly for all of (i1, i2),
(i2, i3), (i3, i4), (i4, i5);

2. {φ((g1, g2)), φ((g2, g3)), φ((g3, g4)), φ((g4, g5))}={φ((i1, i2)), φ((i2, i3)), φ((i3, i4)), φ((i4, i5))};

3. all of (g1, g2), (g2, g3), (i1, i2), (i2, i3) have different colours by φ, and similarly for all of (g3, g4),
(g4, g5), (i3, i4), (i4, i5);
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f1f2

f ′1

g1g2g3g4g5

g∗2

h1h2h3

i1i2i3i4i5

i′2

i∗2

Figure 8: A tower of the 6-crossover gadget, and one of its 6-BMRN∗-colourings. Thick solid arcs are
backbone arcs. Thin dashed arcs are interference arcs.

4. φ((f1, f2)) 6∈ {φ((g1, g2)), φ((g2, g3)), φ((g3, g4)), φ((g4, g5))}.

Proof: The first item is because no two arcs from these sets of four arcs can have the same colour by
φ, either because they are consecutive (direct conflict), or because they are joined by an interference arc
(indirect conflict).

The second item is because φ((h1, h2)) and φ((h2, h3)) must differ from all of φ((g1, g2)), φ((g2, g3)),
φ((g3, g4)), φ((g4, g5)), and similarly φ((h1, h2)) and φ((h2, h3)) must be different from all of φ((i1, i2)),
φ((i2, i3)), φ((i3, i4)), φ((i4, i5)). This is because of all interference arcs between h1, h2, h3 and these eight
arcs. Thus, by the first item, φ((g1, g2)), φ((g2, g3)), φ((g3, g4)), φ((g4, g5)) are four different colours, and
φ((h1, h2)), φ((h2, h3)) are the last two colours. All of φ((i1, i2)), φ((i2, i3)), φ((i3, i4)), φ((i4, i5)) must
be distinct colours (still by the first item), and must be different from φ((h1, h2)), φ((h2, h3)).

The third item is because of the four interference arcs (g2, i
′
2), (g2, i2), (i2, g2), (i1, g2). These interfer-

ence arcs force the four colours φ((g2, i
′
2)), φ((g2, i2)), φ((i2, g2)), φ((i1, g2)) to be different. By the first

and second items, we then deduce that {φ((i3, i4)), φ((i4, i5))} = {φ((g1, g2)), φ((g2, g3))}, and similarly
that {φ((i1, i2)), φ((i2, i3))} = {φ((g3, g4)), φ((g4, g5))}. Thus, the four left-side arcs receive different
colours, that are exactly the colours received by the four right-side arcs.

The fourth item is because of previous arguments, and because of the presence of the interference arcs
(f1, g2), (g2, f

′
1), (f1, g4), (g4, f2). That is, we have φ((g1, g2)) 6= φ((f1, f2)) because of (f1, g2), we have

φ((g2, g3)) 6= φ((f1, f2)) because of (g2, f
′
1), we have φ((g3, g4)) 6= φ((f1, f2)) because of (f1, g4), and

we have φ((g4, g5)) 6= φ((f1, f2)) because of (g4, f2).

Our 6-crossover gadget is depicted in Figure 9. The central octagon C is the core from Figure 7. Each
of the four peripheral backbone arcs of C serves as the base arc of a tower from Figure 8. Note that, going
anticlockwise, all four towers T0, . . . , T3 are “oriented” the same way (with respect to the four base arcs).
The four backbone arcs (y0, z0), . . . , (y3, z3) with both sides on the outer face are the corner arcs. The
tail yi of each such arc (yi, zi) is joined, via out-going interference arcs only, to the base arc of the tower
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Figure 9: The 6-crossover gadget, and one of its 6-BMRN∗-colourings. Thick solid arcs are backbone arcs.
Thin dashed arcs are interference arcs. The central octagon is the core of the gadget, to which four towers
are attached. Dashed edges show the outer face in the planar embedding of the core and towers we are
considering.

Ti, to the four left-side arcs from that tower Ti, and to the four right-side arcs from the next tower Ti+1

(modulo 4).

Proposition 3.6. The backboned digraph (D,B) depicted in Figure 9 is a 6-crossover gadget.

Proof: Figure 9 shows that (D,B) indeed admits planar embeddings where its four corner arcs have both
sides on the outer face. It remains to show that (D,B) has the desired colouring properties, i.e.,:

• (D,B) has 6-BMRN∗-colourings;

• in every 6-BMRN∗-colouring of (D,B), every two opposite corner arcs are assigned the same colour;

• there exist 6-BMRN∗-colourings of (D,B) where all four corner arcs are assigned the same colour;
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• there exist 6-BMRN∗-colourings of (D,B) where two opposite corner arcs are assigned some colour,
that is different from the colour assigned to the remaining two opposite corner arcs.

Figure 9 shows an example of an arc-colouring which is a 6-BMRN∗-colouring of (D,B). Let us now
prove thoroughly that (D,B) has the desired properties, by describing how a 6-BMRN∗-colouring φ of
(D,B) behaves, starting from the core C, continuing with its towers T0, . . . , T3, and propagating to the
corner arcs (y0, z0), . . . , (y3, z3). For simplicity, we assume below that φ assigns colours in {1, . . . , 6}.

By Proposition 3.4, the four peripheral backbone arcs of the core are assigned two different colours only,
in such a way that no two consecutive of them are assigned the same colour. Let us thus assume that the
backbone arcs of the core that are the base arcs of T0 and T2 are assigned colour 1, while the backbone
arcs of the core that are the base arcs of T1 and T3 are assigned colour 2. Let us now focus on T0. By
Proposition 3.5, the four left-side arcs of T0 must be assigned four different colours different from 1. We
distinguish two cases, depending on whether 2 is one of these colours or not.

• Assume 2 is not one of these colours. Then the four colours assigned to the left-side arcs of T0 are
3, 4, 5, 6. Still by Proposition 3.5, we deduce that the four right-side arcs of T0 are also assigned
colours 3, 4, 5, 6. By construction, we note that (y0, z0) cannot be assigned a colour assigned to the
four left-side arcs of T0 and to its base arc. Thus, we must have φ((y0, z0)) = 2. Similarly, (y3, z3)
cannot be assigned a colour assigned to the four right-side arcs of T0 and to the base arc of T3; the
only available colour for (y3, z3) is thus 1. In the tower T3, the four left-side arcs must be assigned
different colours, that must be different from that of (y3, z3) (because of interference arcs) and that
of the base of T3. Thus, the four left-side arcs of T3 are assigned colours 3, 4, 5, 6, which are also the
colours of the four right-side arcs of T3 by Proposition 3.5.

Repeating these last arguments to T2 and then T1, we successively deduce that (y2, z2) must be
assigned colour 2, the left-side arcs (and right-side arcs) of T2 must be assigned colours 3, 4, 5, 6,
the arc (y1, z1) must be assigned colour 1, and the left-side arcs (and right-side arcs) of T1 must be
assigned colours 3, 4, 5, 6. Then φ is a 6-BMRN∗-colouring where 1 = φ((y1, z1)) = φ((y3, z3)) 6=
φ((y0, z0)) = φ((y2, z2)) = 2.

• Assume 2 is one of the four colours assigned to the four left-side arcs of T0. Without loss of generality,
we may assume that these colours are 2, 3, 4, 5. By Proposition 3.5, these colours are also those of the
right-side arcs of T0. By the interference arcs leaving from y0 to T0, the colour assigned to (y0, z0)
must be different from 1, 2, 3, 4, 5, and it must thus be 6. We now consider T1: its four right-side arcs
must be assigned distinct colours different from that of (y0, z0) and that of the base arc of T1. Then
the four right-side arcs of T1 are assigned colours 1, 3, 4, 5, and these are also the colours of the four
left-side arcs of T1. Then (y1, z1) must be assigned a colour different from that of the four left-side
arcs of T1 and that of the base arc of T1. Then φ((y1, z1)) = 6. That colour cannot be assigned to the
right-side arcs of T2; since these colours must be different from the one of the base arc of T2, they are
2, 3, 4, 5. These colours are also the colours of the left-side arcs of T2 by Proposition 3.5.

Continuing that way, we deduce that (y2, z2) must be assigned colour 6, the left-side arcs (and right-
side arcs) of T3 must be assigned colours 1, 3, 4, 5, and the arc (y3, z3) must be assigned colour 6.
This results in φ being a 6-BMRN∗-colouring where φ((y0, z0)) = φ((y1, z1)) = φ((y2, z2)) =
φ((y3, z3)) = 6.

This concludes the proof.

3.3 Summarizing and going farther
From our 6-crossover gadget we can easily deduce, for any k ∈ {3, 4, 5}, a k-crossover gadget in which the
same colouring mechanisms apply. For instance:

• For k = 5, remove the arcs (a4, a5), (b4, b5), (c4, c5), (d4, d5) from the core, and the arcs (i4, i5),
(g1, g2) from the tower.

• For k = 4, additionally remove the arcs (a3, a4), (b3, b4), (c3, c4), (d3, d4) from the core, and the arcs
(i1, i2), (g4, g5) from the tower.
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• For k = 3, additionally remove the arcs (a2, a3), (b2, b3), (c2, c3), (d2, d3) from the core, and the arc
(h1, h2) from the tower.

It can easily be seen that, under those modifications, we do end up with a k-crossover gadget in each
case, essentially because some particular sets of arcs (with size k − 2 decreasing as k gets smaller) must
be assigned different colours. From this and Theorem 3.3, we immediately get that Planar k-BMRN∗-
Colouring is NP-hard for every k ∈ {3, 4, 5, 6}.
Theorem 3.7. Planar k-BMRN∗-Colouring is NP-hard for every k ∈ {3, 4, 5, 6}.

With some extra effort, we can also prove that, for k ∈ {3, 4, 5, 6}, Planar k-BMRN∗-Colouring re-
mains NP-hard when restricted to planar spanned digraphs. Note that the reduced backboned digraphs we
construct in the proof of Theorem 3.7 are far from being spanned, as the backbones we get have many con-
nected components (already note that the core of each copy of the 6-crossover gadget generates nine such
connected components). In the next result, we explain how to make these backbones connected without
altering the general colouring properties. We show this for k = 6 below, which is the most intricate case,
but the arguments also apply for the modified k-crossover gadgets with k ∈ {3, 4, 5} mentioned earlier.

Theorem 3.8. Planar 6-BMRN∗-Colouring is NP-hard when restricted to planar spanned digraphs.

Proof: Consider the reduction from the proof of Theorem 3.3, performed using copies of the 6-crossover
gadget exhibited in Proposition 3.6. Then (D,B) is a planar backboned digraph (obtained from G in
polynomial time), and G has a proper 6-vertex-colouring if and only if (D,B) has a 6-BMRN∗-colouring.
Furthermore, in the good drawing of (D,B), by shaping all crossover gadgets similarly to the crossings
they replace, we still retain the property that the ui’s lie on the outer face.

We now explain how to turn (D,B) into a planar spanned digraph (D′, T ), in such a way that the
colouring equivalence with G is preserved. We first add a vertex r at the very bottom of the drawing,
under all ui’s. This r will be the root of our eventual out-tree T . Our goal now, is to repeatedly add,
starting from r, directed paths from a connected component of B to another one, so that a bigger connected
component (actually an out-tree) is formed, until all connected components are absorbed to a unique out-
tree T with root r. The crucial point is the following. Assume (a, b), (c, d) are backbone arcs; if we add a
long directed path (made up of backbone arcs only) from, say, b to c, then we note that these added arcs do
not interfere with the colouring of (a, b) and (c, d) in a 6-BMRN∗-colouring. This is because the inner arcs
of such a directed path, if long enough, are subject to only two colour constraints. In other words, assuming
(a, b) and (c, d) are coloured, we can easily extend the colouring to the arcs of the joining directed path
(assuming again it is long enough).

So the question now is whether, starting from r, we can add long directed paths (made up of new backbone
arcs) going to all connected components of B (more precisely to their unique vertex with no in-coming
backbone arc), creating only one out-tree, without breaking planarity. Since all ui’s belong to the outer
face, we can freely add, for every ui, a long directed path from r to ui, so that all (ui, vi)’s now belong to
a single connected component (being an out-tree with root r) of T . It now remains to reach the connected
components of the crossover gadgets. As can be seen in the drawing of Figure 9, assuming the corner arc
(y0, z0) belongs to T , from y0 we can easily add three long directed paths navigating in faces and going
to the vertices i1, g1, f1 of the next tower T1, thus adding three connected components of that tower to T .
Once the vertex i2 of T1 is part of T , we can then easily add a long directed path to its vertex h1 of that
tower to add the last connected component of T1 to T . After that, assuming (y1, z1) (the other corner arc
adjacent to T1) is not already part of T , we can freely add a long directed path from, say, the vertex i5 of T1
(navigating in a common face) to y1, so that (y1, z1) is added as well. From (y1, z1), we can easily reach the
next tower T2, and so on. From this, we deduce that all copies of the original backbone arcs of (D~G,M~G)
can be added to T , and similarly the connected components of B belonging to the towers of the crossover
gadgets. For every crossover gadget, it just remains to connect to T the five inner connected components of
its core, which is easy to do assuming f1, f3, f5, f7 (which are incident to the base arcs of the towers) are
already part of T . Namely, navigating inside faces to preserve planarity, we can add a long directed path
from f2 to a1, from f4 to d1, from f6 to c1, from f8 to b1, and finally from a1 to e1.

Repeating this procedure to all crossover gadgets, we can make sure that T eventually is an out-tree with
root r, and we end up with a planar spanned digraph (D′, T ) such that G has a proper 6-vertex-colouring
if and only if (D′, T ) has a 6-BMRN∗-colouring. In particular, note that the number of connecting directed
paths we must add is polynomial, since the number of crossover gadgets is polynomial by the properties of
a good drawing. Thus, the whole construction is achieved in polynomial time.



16 J. Bensmail, F. Fioravantes

4 Connection between BMRN∗-index and girth
The planar backboned digraph depicted in Figure 3 has “large” BMRN∗-index (for a planar digraph), mainly
due to its several short cycles (with length 2 or 3). In this section, we investigate the effects of forbidding
small cycles on the BMRN∗-index.

We prove that, as one could expect, the BMRN∗-index of planar spanned digraphs decreases as the girth
grows. We prove this in the general case, i.e., when no further backbone restrictions are imposed. Under
an additional structural condition (backbone with bounded maximum degree), we give a result involving a
stronger girth assumption. To summarize, our results in this section are as follows:

Theorem 4.1. Let (D,B) be a planar backboned digraph. Then:

• if g(D) ≥ 5 and ∆+(B) ≤ 1, then BMRN∗(D,B) ≤ 7;

• if g(D) ≥ 7, then BMRN∗(D,B) ≤ 6;

• if g(D) ≥ 16, then BMRN∗(D,B) ≤ 4;

• if g(D) ≥ 21, then BMRN∗(D,B) ≤ 3;

• there is no k such that if g(D) ≥ k, then BMRN∗(D,B) ≤ 2.

4.1 General case
Throughout this section, we deal with vertices having certain degrees. A k-vertex is a vertex having degree
precisely k. A k−-vertex (resp. k+-vertex) is a vertex having degree at most (resp. at least) k. For some
` ≥ 1, an `-thread refers to a path (v1, . . . , v`+2) where the ` inner vertices v2, . . . , v`+1 are 2-vertices.
Under a mild minimum degree assumption, threads are well-known to exist in planar graphs with large
enough girth:

Theorem 4.2 (e.g. [4]). Every planar graph with minimum degree at least 2 and girth at least 5` + 1
contains an `-thread.

In some of the upcoming proofs, we will need the fact that trees have low BMRN∗-index:

Theorem 4.3. Let (D,B) be a backboned digraph. If D is a tree, then BMRN∗(D,B) ≤ 2.

Proof: The proof is by induction on |V (D)| + |A(D)|. As the claim can easily be verified for trees with
small order, we focus on the general case. In particular, we may assume that all vertices of D are part of the
backbone, as otherwise we could remove “useless” vertices, and a 2-BMRN∗-colouring of the remaining
backboned digraph would also be one of (D,B). Also, we may assume that no interference arc (u, v) is
“useless”, i.e., we have d+B(u) ≥ 1 and d−B(v) = 1.

IfB has only one connected component, then (D,B) has no interference arcs (as otherwiseD would have
cycles). In this case, we only have to deal with direct conflicts, which can be done by simply considering
the bipartition (V1, V2) of D, and, for i = 1, 2, assigning colour i to all backbone arcs originating from a
vertex in Vi. Thus, we may assume that B has several connected components, connected via interference
arcs. If we contract, inD, all connected components ofB to vertices, resulting in an oriented multigraph ~G,
then und(~G) cannot have cycles as otherwise D would as well. This implies that ~G is actually an oriented
graph, and that two connected components of B are joined by at most one interference arc.

Since (D,B) is assumed to have no useless interference arcs, und(~G) is actually connected, and ~G is
thus an oriented tree. For every vertex v of ~G, letC(v) denote the connected component ofB corresponding
to v. We deduce a 2-BMRN∗-colouring of each connected component of B, one after another, such that
all colourings comply with each other and give a 2-BMRN∗-colouring of the whole (D,B). This is done
by considering the connected components of B as the corresponding vertices of und(~G) are encountered
during a BFS performed from an arbitrary root r of ~G.

We thus start with r. Since nothing is coloured yet, we can freely choose, as a 2-BMRN∗-colouring of
C(r), any 2-BMRN∗-colouring, which exists by the induction hypothesis. Let us now consider the general
case, i.e., that during the BFS of und(~G), we are now dealing with a vertex v, whose parent in und(~G) (by
the BFS ordering) is u. Recall that either (u, v) or (v, u) can be the corresponding arc in ~G. We assume
in what follows that (u, v) is the arc, but the symmetric arguments, in case the arc is (v, u), also hold. Let
xu denote the vertex of C(u) from which the corresponding interference arc originates in (D,B), and xv
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denote the vertex of C(v) at which the interference arc terminates in (D,B). By the induction hypothesis,
C(v) admits a 2-BMRN∗-colouring. Free to permute the colours, we may assume that the colour assigned
to the unique backbone arc in-coming to xv is different from the unique colour assigned to the backbone
arcs out-going from xu. Then, there is no indirect conflict raised, and the whole partial colouring is a partial
2-BMRN∗-colouring of (D,B).

Going on like this until all vertices of ~G have been treated by the BFS, we end up with a 2-BMRN∗-
colouring of (D,B).

We now prove all results (but the first one, postponed to the next subsection) in Theorem 4.1, by dedi-
cating a theorem or observation to each item. We voluntarily modify the order in which these results are
delivered, as some of the proofs depend on other ones.

We start off by observing that, in general, planar backboned digraphs with arbitrarily large girth might
require at least three colours in a BMRN∗-colouring:

Observation 4.4. There is no k such that planar backboned digraphs (D,B) with girth at least k have
BMRN∗(D,B) < 3.

Proof: This is because large girth does not prevent a backboned digraph to have an odd number of backbone
arcs, each of which acting as a constraint for another in a “cyclic” way (i.e., which would correspond to an
odd-length cycle for proper vertex-colouring of undirected graphs). Such backbone arcs force the use, in a
BMRN∗-colouring, of at least three colours. This occurs, for instance, when a planar backboned digraph
(D,B) contains the following configuration. Let k ≥ 3 be any odd integer. For every i ∈ {0, . . . , k − 1},
assume (D,B) has a backbone arc (vi, v

′
i), and, modulo k, the interference arc (vi, v

′
i+1). Then it is

easy to see that two “consecutive” backbone arcs (vi, v
′
i) and (vi+1, v

′
i+1) must receive different colours

by a BMRN∗-colouring. Since there is an odd number of arcs in that “cycle”, at least three colours are
needed.

We now prove that, in general, if the girth of a planar backboned digraph is larger than some threshold,
then its BMRN∗-index becomes less than some value.

Theorem 4.5. Let (D,B) be a planar backboned digraph. IfD has girth at least 21, then BMRN∗(D,B) ≤
3.

Proof: Assume the statement is wrong, and let (D,B) be a planar backboned digraph with girth at least 21
verifying BMRN∗(D,B) > 3. We consider such a (D,B) that is minimum in terms of |V (D)|+ |A(D)|.
This property implies that D is connected. It also implies that, for every interference arc (u, v), we must
have d+B(u) ≥ 1 and d−B(v) = 1, as otherwise this arc could not be involved in any indirect conflict, and we
could just remove it from (D,B), and deduce a 3-BMRN∗-colouring of the remaining backboned digraph
(in which every connected component is either a backboned oriented tree, which has 3-BMRN∗-colourings
by Theorem 4.3, or a smaller planar backboned digraph with girth at least 21) that is also one of (D,B), a
contradiction. This in turn implies that every vertex v of D must be part of B, as otherwise we could find,
in (D,B), interference arcs that are useless.

Our aim is to find a 4-thread in D by means of Theorem 4.2. That theorem tells us that the existence of
such threads is, despite the girth of D, not guaranteed if δ(D) = 1. We thus first need to investigate how
1-vertices behave in D.

First off, we note that if v is a vertex of D adjacent to 1-vertices, then v is adjacent to at most two 1-
vertices. Indeed, if v is adjacent to three 1-vertices u1, u2, u3, then we must have two arcs, say (v, u1)
and (v, u2), being backbone arcs. This is because every vertex must be incident to a backbone arc (by
minimality of (D,B)), and every vertex has in-degree at most 1 in the backbone. In that case, we consider
(D′, B′) the backboned digraph obtained when removing u1 from D. Since (D′, B′) is a planar backboned
digraph with girth at least 21 that is smaller than (D,B), it has a 3-BMRN∗-colouring which we can extend
to (v, u1) by simply assigning the colour of (v, u2) to (v, u1). This is correct since these two backbone arcs
are subject to the same colour constraints. Thus, we get a 3-BMRN∗-colouring of (D,B), a contradiction.
Consequently, if a vertex v of D is adjacent to 1-vertices, then it is adjacent to at most two 1-vertices.
Furthermore, if u1, u2 are two 1-vertices adjacent to v, then, without loss of generality, (u1, v) and (v, u2)
are backbone arcs.

Assume now thatD has a 1-vertex u, and let v be its unique neighbour. By minimality of (D,B), vertices
v and u must be joined by a backbone arc. Assume (v, u) is that backbone arc. We claim that v must be a
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4+-vertex. Indeed, consider the backboned digraph (D′, B′) obtained from (D,B) by removing u; again,
(D′, B′) admits a 3-BMRN∗-colouring. If we cannot extend it to (v, u), thus to (D,B), then this means
that the three colours appear “around” v. The colours that cannot be assigned to (v, u) are the following:
the one assigned to the unique backbone arc (w, v) (if any), and, for every interference arc (v, w) incident
to v, the one assigned to the unique backbone arc in-coming to w (if any). In other words, every arc incident
to v in (D′, B′) prevents us from assigning at most one colour to (v, u). Thus, for the three colours to be
not assignable to (v, u), it must be that v has degree at least 3 in (D′, B′), and thus at least 4 in (D,B).
These arguments also hold in the case where (u, v) is a backbone arc ((u, v) cannot be assigned the unique
colour assigned to the backbone arcs out-going from v (if any), and, for every interference arc (w, v), the
unique colour assigned to the backbone arcs out-going from w).

Now, assume that D has a vertex v adjacent to two 1-vertices u1, u2. By arguments above, we may
assume that (u1, v) and (v, u2) are backbone arcs of (D,B). We claim that v is a 6+-vertex. Indeed, first
consider the backboned digraph (D′, B′) obtained when removing u1 from (D,B). Again, (D′, B′) has
a 3-BMRN∗-colouring. We try to extend it to (u1, v). The colour assigned to (u1, v) must be different
from that of (v, u2). It must also be different, for every interference arc (w, v), from the unique colour
assigned to the backbone arcs out-going from w, if any. Thus, there must be at least two interference arcs
in-coming to v, to make sure that the colouring cannot be extended to (u1, v) (in which case we would get
a contradiction). Now consider (D′, B′) the backboned digraph obtained from (D,B) by removing u2.
Note that we may suppose that v is not incident to other out-going backbone arcs, as otherwise we could
just assign their colour to (v, u2). Now, by symmetric arguments as above, for a 3-BMRN∗-colouring of
(D′, B′) to be not extendable to (v, u2), there must be at least two interference arcs out-going from v. We
thus deduce that v has degree at least 6 in D.

We are now ready to combine all these arguments for deducing the existence of a 4-thread inD. We apply
the following simple iterative procedure: As long as D has a 1-vertex, we just remove it. Let D′ denote the
resulting digraph once all 1-vertices have been peeled off (and thus no 1-vertex remains). It is easy to see
that D′ cannot be a tree, unless D was one (as the presence of any cycle in D makes it impossible for D′

to be a tree, and removing 1-vertices from a graph cannot disconnect it). Also, D′ cannot be empty. Then
D′ is a (connected) planar digraph with girth at least 21 and δ(D′) ≥ 2. Then, by Theorem 4.2, D′ has
a 4-thread (v1, . . . , v6), where v2, . . . , v5 are its 2-vertices. The crucial point is that this 4-thread is also a
4-thread in D. This is because, although seemingly iterative, the process of repeatedly removing 1-vertices
from D actually only removes vertices that were already of degree 1 in D. This is because vertices of D are
adjacent to at most two 1-vertices, and vertices v of D adjacent to 1-vertices are of large degree. Indeed,
either v is adjacent to only one 1-vertex in D, in which case v is a 4+-vertex in D and it becomes a 3+-
vertex once its adjacent 1-vertex has been removed, or v is adjacent to two 1-vertices in D, in which case
v is a 6+-vertex in D and thus it becomes a 4+-vertex once its two adjacent 1-vertices have been removed.
Hence, all 2-vertices v2, . . . , v5 of the 4-thread in D′ are also 2-vertices in D, and this thread is thus also a
4-thread in D.

We now deal with this 4-thread (v1, . . . , v6) in (D,B). Assume first that (v3, v4) is a backbone arc.
If (v3, v2) is not a backbone arc, then we consider the backboned digraph (D′, B′) obtained by removing
(v3, v4) from (D,B). By arguments similar to that above, (D′, B′) admits a 3-BMRN∗-colouring, which
we wish to extend to (v3, v4). This is possible because (v3, v4) is subject to at most two colour constraints.
Indeed, there are two possibilities regarding the arc joining v2 and v3: either (v2, v3) is a backbone arc,
or (v3, v2) is an interference arc (in which case (v1, v2) must be a backbone arc). Then (v3, v4) must be
assigned a colour different from either the colour of (v2, v3) (first case) or the unique one assigned to the
backbone arcs out-going from v1 (that of (v1, v2), second case), and that of (v4, v5) (case where this is a
backbone arc), or that of (v5, v6) (otherwise: if (v4, v5) is not a backbone arc, then (v5, v4) must be an
interference arc, and thus (v5, v6) must be a backbone arc). This is a contradiction.

Now assume that both (v3, v2) and (v3, v4) are backbone arcs. We here consider (D′, B′) to be the back-
boned digraph obtained after removing (v3, v2), (v3, v4). Again, it admits a 3-BMRN∗-colouring which
we wish to extend to the two removed arcs, assigning them a same colour. We claim that, here as well, at
most two colours only must be avoided. Indeed, we cannot assign to (v3, v2), (v3, v4) the colour of (v2, v1)
(case where that arc is a backbone arc), or the unique colour assigned to the backbone arcs out-going from
v1 (otherwise: if (v2, v1) is not a backbone arc, then (v1, v2) must be an interference arc by minimality of
(D,B)). Similarly, we cannot assign to (v3, v2), (v3, v4) the colour of (v4, v5) (case where it is a backbone
arc), or the colour of (v5, v6) (otherwise: if (v4, v5) is not a backbone arc, then (v5, v4) must be an inter-
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ference arc, and (v5, v6) must be a backbone arc). Thus one of the three colours is not used around, and we
can freely assign it to (v3, v2), (v3, v4), resulting in a 3-BMRN∗-colouring of (D,B), a contradiction.

The last case to consider is when the arc joining v3 and v4 is an interference arc. By symmetry, we may
assume that (v3, v4) is an interference arc. Then, by minimality of (D,B), both (v3, v2) and (v5, v4) are
backbone arcs. In that case, we consider (D′, B′) the backboned digraph obtained when removing (v3, v2)
from (D,B). A 3-BMRN∗-colouring of (D′, B′) can be extended to (v3, v2), thus to (D,B), because this
arc is subject to at most two colour constraints only: either the colour of (v2, v1) (if it is a backbone arc) or
the unique colour assigned to the backbone arcs out-going from v1 (otherwise), and the colour of (v5, v4).
This is yet another contradiction, which concludes the proof.

Theorem 4.6. Let (D,B) be a planar backboned digraph. IfD has girth at least 16, then BMRN∗(D,B) ≤
4.

Proof: The proof starts similarly as that of Theorem 4.5. Let (D,B) be a minimum counterexample to the
claim. Since we are now working with four colours, from arguments we have used earlier the following
properties of D and D′ (the digraph obtained when removing all 1-vertices from D) can be deduced:

• every vertex of D is adjacent to at most two 1-vertices;

• every vertex of D adjacent to a 1-vertex is a 5+-vertex;

• every vertex of D adjacent to two 1-vertices is an 8+-vertex;

• D′ has 3-threads, each of which is a 3-thread of D.

Let (v1, . . . , v5) be a 3-thread of D, where v2, . . . , v4 are its 2-vertices. Note that we may assume that
v1, v5 are 3+-vertices, as otherwise D would have a 4-thread, from which we could deduce a 4-BMRN∗-
colouring of (D,B) just as in the proof of Theorem 4.5. In most cases, a 4-BMRN∗-colouring of (D,B)
can be deduced from this 3-thread (v1, . . . , v5). Actually, only one case is not reducible. Let us first prove
that all other cases are indeed reducible.

Assume first that v3 is incident to out-going backbone arcs. There are two cases to consider. First, assume
that both (v3, v2) and (v3, v4) are backbone arcs. We here remove v3 from (D,B); the remaining backboned
digraph admits a 4-BMRN∗-colouring that can be extended to (v3, v2) and (v3, v4), a contradiction. Indeed,
we must avoid either the colour of (v2, v1) (if it is a backbone arc) or the unique colour assigned to the
backbone arcs out-going from v1 (otherwise), and the colour of (v4, v5) (if it is a backbone arc) or the unique
colour assigned to the backbone arcs out-going from v5 (otherwise). Second, assume that only (v3, v2) is
a backbone arc. By minimality of (D,B), (v3, v4) is an interference arc, and (v5, v4) is a backbone arc.
We here remove only (v3, v2) from (D,B). Here, for extending a 4-BMRN∗-colouring of the remaining
backboned digraph to (v3, v2), we must avoid either the colour of (v2, v1) (if it is a backbone arc) or the
colour assigned to the backbone arcs out-going from v1 (otherwise), and the unique colour assigned to the
backbone arcs out-going from v5 (i.e., the colour of (v5, v4)). Since we have four colours in hand, we can
find an open colour for (v3, v2), a contradiction.

Thus, we now assume that v3 is incident to only one in-coming backbone arc. Assume (v2, v3) is that
backbone arc. Regarding the arc joining v3 and v4, by minimality there are two cases: either (v3, v4) is a
backbone arc, or (v4, v3) is an interference arc (in which case (v4, v5) must be a backbone arc). In the first
case, we just remove (v3, v4) from (D,B), deduce a 4-BMRN∗-colouring, and extend it to (v3, v4) as this
arc is subject to at most two colour constraints. Indeed, we must avoid the colour of (v2, v3), and the colour
of either (v4, v5) (when (v4, v5) is a backbone arc) or the colour assigned to the backbone arcs out-going
from v5 (when (v5, v4) is an interference arc). In the second case, if (v2, v1) is an interference arc, then
we are done, because we can just remove (v2, v3) from (D,B), deduce a 4-BMRN∗-colouring, an extend
it to (v2, v3) as this arc is subject to at most two colour constraints. Indeed, we must avoid the colour of the
unique backbone arc in-coming to v1 (if any), and the colour of (v4, v5).

It can be checked that the remaining type of 3-thread (v1, . . . , v5), which is when (v2, v1), (v2, v3),
(v4, v5) are backbone arcs while (v4, v3) is an interference arc, cannot be reduced that simply, via counting
arguments only. We call such 3-threads bad threads. Before going on, we need to exhibit a few properties
of these bad threads in (D,B).

A first important property is deduced from the fact that, for a bad 3-thread (v1, . . . , v5), we have the
backbone arcs (v2, v1) and (v4, v5). This means that, in (D,B), a vertex v can be incident to at most one
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bad thread, as otherwise v would have two backbone arcs coming in. Another property is that v1 and v5 must
be 4+-vertices; this is again deduced by removing either (v2, v1) and (v2, v3) (for establishing the bound
on the degree v1), or (v4, v5) (for establishing the bound on the degree of v5), and counting the number of
colour constraints around. Lastly, for a 3-thread (v1, . . . , v5) of (D,B), the vertex v1 (and similarly v5)
can be adjacent to at most one 1-vertex (via an out-going backbone arc), and, in that case, we recall that v1
(resp. v5) is a 5+-vertex.

We are now ready to conclude. Start from (D,B), and, as in the proof of Theorem 4.5, remove 1-vertices
as long as possible. The remaining digraph (D′, B′) cannot be a tree, remains connected, it is planar
with girth at least 16, and, as mentioned earlier, it has minimum degree 2. (D′, B′) thus has a 3-thread
T1 = (v1, . . . , v5), which is also a 3-thread in (D,B). If T1 is not bad, then we are done. So assume that
T1 is a bad 3-thread. Back in (D′, B′), we remove the vertices v2, v3, v4, resulting in a backboned digraph
(D′′, B′′). Recall that, in (D,B), both v1 and v5 are 4+-vertices, and, if any of them is also adjacent to a
unique 1-vertex, then it is even a 5+-vertex. This implies that, in (D′′, B′′), both v1 and v5 are 3+-vertices,
and they do not have any backbone arc coming in. Also, D′′ remains of minimum degree at least 2.

Although D′′ might have several connected components, they all have girth at least 16. Thus, in D′′,
by Theorem 4.2 we can again find a 3-thread T2, which is also a 3-thread in D. Again, if T2 is not a bad
3-thread in (D,B), then we are done. Thus we may assume that T2 is bad, and, by the properties we have
on the first and last vertices of bad threads, we know that T1 and T2 do not intersect. Next, we again remove
the inner degree-2 vertices of T2 from the current digraph; it remains of minimum degree at least 2, and it
remains a planar digraph whose all connected components have girth at least 16.

We continue this process as long as possible. That is, for a backboned digraph obtained from D after
removing the 1-vertices and the inner vertices from some bad 3-threads T1, . . . , Tk of (D,B), we deduce
the existence of another 3-thread Tk+1 by Theorem 4.2, which is also present in (D,B). If Tk+1 is not
a bad thread, then we are done. Otherwise, we remove its three inner vertices from the current digraph,
and we go on. We know that the two ends of Tk+1 remain of degree strictly more than 2, and thus so do
all vertices. Furthermore, all resulting connected components remain of girth at least 16. Also, recall that
no two threads Ti, Tj can share vertices (because any vertex of (D,B) can be incident to at most one bad
thread, and after removing a bad thread no new 2-vertex can be created). The process will thus end up
with finding a 3-thread that is no bad. Back in (D,B), this is a 3-thread that can be reduced, and from its
existence we get that (D,B) has 4-BMRN∗-colourings; a contradiction.

Theorem 4.7. Let (D,B) be a planar backboned digraph. If D has girth at least 7, then BMRN∗(D,B) ≤
6.

Proof: This is proved by designing a particular vertex-colouring φ of D. To every vertex v of D with
d+B(v) ≥ 1, we assign a 2-element colour φ(v) = {c1(v), c2(v)} so that, when assigning colour φ(v)
to all backbone arcs out-going from v, the resulting “derived” arc-colouring forms a BMRN∗-colouring
of (D,B). The function c1 will take value in {1, 2}, while c2 will take value in {1, 2, 3}, so that φ is a
6-colouring.

We construct φ in the following way. Let (V1, V2) denote the bipartition of B (in case B has several
connected components, we consider any bipartition of each component). For every vertex v ∈ V1, we
set c1(v) = 1, while we set c1(v) = 2 for every v ∈ V2. This way, note that, in (D,B), we have al-
ready dealt with direct conflicts by the arc-colouring derived from φ (because no two consecutive backbone
(u, v), (v, w) arcs originate from vertices in the same partite set). It remains to deal with indirect conflicts,
which is done by defining c2 appropriately.

For i = 1, 2, we denote by Di the digraph obtained from (D,B) and c1 as follows. The vertices of
Di are the vertices v of D verifying c1(v) = i. The arcs of Di model the potential indirect conflicts in
(D,B) between vertices v with c1(v) = i. That is, for every two vertices u, v with c1(u) = c1(v) = i,
we add the arc (u, v) to Di if (u, v′) is an interference arc of (D,B), where (v, v′) is a backbone arc.
That is, the presence of the arc (u, v) in Di indicates that u and v should receive distinct colours by a
BMRN∗-colouring of (D,B) (to avoid an indirect conflict), while its direction indicates the direction of
the corresponding interference arc (it goes from u to an out-neighbour of v). Note that Di, in general, is a
multidigraph.

Observe that eachDi is a planar digraph. Indeed, seen differently,Di was obtained fromD by deleting all
arcs out-going from vertices in V3−i, and contracting all backbone arcs out-going from vertices in Vi. This
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means that Di is a minor of D; since D was assumed planar, so is Di, as planar graphs form a minor-closed
family of graphs.

Let us now focus on D1. Recall that its arcs join vertices (with the same colour by c1) whose out-going
backbone arcs must not be assigned the same colour in a BMRN∗-colouring of (D,B) (to avoid some
indirect conflict). Thus, by the arc-colouring derived from φ, no colour conflict involving two vertices of
D1 will arise as soon as c2, when restricted to D1, is a proper vertex-colouring. We claim that, because D
has girth at least 7, D1 itself has girth at least 4, and thus admits a proper 3-vertex-colouring by Grötzsch
Theorem [6].

Assume the contrary, i.e., that D1 has a 2-cycle or 3-cycle C.

• If C = (u, v, u) has length 2, then there are two possible orientations for C in D1.

– On the one hand, assume there are two arcs from u to v inD1. SinceD is simple, this means that
there are two interference arcs (u, v1), (u, v2) in (D,B), where (v, v1), (v, v2) are two backbone
arcs. Then (u, v1, v, v2, u) is a 4-cycle of D, a contradiction to it having girth at least 7.

– On the other hand, assume D1 has two arcs (u, v) and (v, u). This means that (D,B) has two
interference arcs (u, v′), (v, u′), where (u, u′), (v, v′) are backbone arcs. Then (u, u′, v, v′, u)
is a 4-cycle, a contradiction.

• If C = (u, v, w, u) has length 3, then there are two possible (non-isomorphic) orientations in D1:

– On the one hand, assume the three arcs are (u, v), (v, w), (w, u). This means that (D,B) has
three interference arcs (u, v′), (v, w′), (w, u′), where (u, u′), (v, v′), (w,w′) are three backbone
arcs. Then (u, v′, v, w′, w, u′, u) is a 6-cycle in D, a contradiction.

– On the other hand, assume that the three arcs are (u, v), (v, w), (u,w). This means that, in
(D,B), one of the following two situations occurs:

∗ (D,B) has three interference arcs (u, v′), (u,w′), (v, w′), where (v, v′), (w,w′) are two
backbone arcs. Then (u, v′, v, w′, u) is a 4-cycle, a contradiction.
∗ (D,B) has three interference arcs (u, v′), (u,w′), (v, w′′), where (v, v′), (w,w′), (w,w′′)

are two backbone arcs. Then (u, v′, v, w′′, w, w′, u) is a 6-cycle, a contradiction.

Thus, D1 has girth at least 4, meaning it admits a proper 3-vertex-colouring. Similarly, D2 admits a proper
3-vertex-colouring as well. These two colourings yield our c2.

4.2 Bounded-degree backbone
One notable property of the spanned digraph (D,T ) in Figure 2 is that T is a directed path, i.e., it has max-
imum outdegree 1. This indicates that having, in a planar backboned digraph, the backbone arcs inducing
a very simple topology is sometimes sufficient to have “large” BMRN∗-index. The other way around, in
planar spanned digraphs the interference arcs are sufficient to make the number of colours large. Yet, in the
following result we show how to take advantage of a simple backbone to prove that Question 1.1 is true for
planar spanned digraphs with even smaller girth, and that eight colours are not necessary to colour them.

Theorem 4.8. Let (D,B) be a planar backboned digraph. If D has girth at least 5 and ∆+(B) ≤ 1, then
BMRN∗(D,B) ≤ 7.

Proof: Assume the claim is wrong, and consider (D,B) a smallest counterexample to the claim (in terms
of |V (D)|+ |A(D)|). By minimality, we may suppose that D is connected, that all vertices are part of the
backbone, and that there are no useless interference arcs.

We might as well suppose that D has no bridge, say (u, v), such that none of u, v is a 1-vertex. Indeed,
on the one hand, if (u, v) is a backbone arc, then we can remove (u, v) from (D,B), resulting in the disjoint
union of two backboned digraphs (D1, B1), (D2, B2), where B1, B2 are the restrictions of B to D1, D2.
Because none of u, v is a 1-vertex, note that both (D1 + (u, v), B1 + (u, v)) and (D2 + (u, v), B2 +
(u, v)) admit a 7-BMRN∗-colouring (either by induction or Theorem 4.3). It is then easy to see that, when
permutting the colours of these two colourings so that (u, v) gets the same colour in each of them, a 7-
BMRN∗-colouring of (D,B) is obtained. On the second hand, if (u, v) is an interference arc, then we can
just, by freely permutting the colours, consider 7-BMRN∗-colourings of (D1, B1) and (D2, B2) such that
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the unique colour assigned to the backbone arcs out-going from u is different from the colour of the unique
backbone arc in-coming to v. This forms a 7-BMRN∗-colouring of (D,B), a contradiction. Thus, omitting
its arcs incident to 1-vertices, we may assume that D has no bridge.

Assuming (D,B) exists, we get to a contradiction through the use of the so-called discharging method,
which consists in the following steps. We first prove that some configurations (subdigraphs with certain
properties) are reducible in (D,B), meaning that if (D,B) had one of these reducible configurations, then
we would find a way to deduce a 7-BMRN∗-colouring of (D,B) from it, a contradiction. Next, through
the discharging phase itself, we will supply a precise amount of charge to the elements (vertices and faces)
of (D,B) and, because of the reducible configurations, show that, upon only moving charges between
elements in a very specific way, a contradiction to the initial provided amount of charges is obtained.

1. First reducible configurations

As a general tool, we start off by proving that, in (D,B), two vertices with small degree cannot be joined
by a backbone arc.

Claim 4.9. Let (u, v) be a backbone arc of (D,B). Then

d−B(u) + d+D−B(u) + d+B(v) + d−D−B(v) ≥ 7.

Proof of the claim. Assume to the contrary that (D,B) has a backbone arc (u, v) where d−B(u)+d+D−B(u)+

d+B(v) + d−D−B(v) < 7. Let (D′, B′) be the planar backboned digraph obtained by removing (u, v) from
(D,B). By minimality of (D,B), this (connected, by previous arguments on bridges) digraph (D′, B′),
which is still of girth at least 5 with ∆+(B′) ≤ 1, admits a 7-BMRN∗-colouring φ. We show below that φ
can be extended to (u, v), thus to (D,B), a contradiction.

By the definition of BMRN∗-colouring, those colours around (u, v) that cannot be assigned to (u, v) are
the following (assuming they all exist):

• the colour of the backbone arc in-coming to u;

• the colour of the backbone arc out-going from v;

• for every interference arc (u,w) out-going from u, the colour of the backbone arc in-coming to w;

• for every interference arc (w, v) in-coming to v, the colour of the backbone arc out-going from w.

It can easily be seen that any other arc incident to u or v does not yield any colouring constraint for extending
φ to (u, v). Also, any arc incident to u or v constrains the assignation of at most one colour to (u, v). Since
each of the seven colours we are playing with must be not assignable to (u, v), the result follows. ♦

In particular through Claim 4.9, we deduce properties of small-degree vertices in (D,B).

Claim 4.10. Let v be a vertex of (D,B) being adjacent to 1-vertices; then:

1. v is adjacent to at most two 1-vertices;

2. every arc between v and a 1-vertex is a backbone arc;

3. if v is adjacent to a one 1-vertex, then d(v) ≥ 8;

4. if v is adjacent to exactly two 1-vertices, then d(v) ≥ 14; moreover, the two backbone arcs joining v
and these two 1-vertices have opposite directions.

Proof of the claim. The first and second items, as well as the last part of the fourth item, are because every
vertex of (D,B) must be incident to a backbone arc, and we have ∆+(B) ≤ 1. The third item and the
first part of the fourth item follow from a direct application of Claim 4.9. Recall in particular that removing
a backbone arc from (D,B) results in a connected digraph (since bridges are incident to 1-vertices, by
previous arguments), which implies that the girth restriction is preserved upon removing single arcs. ♦

Claim 4.11. D has no 3-thread.
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Proof of the claim. Assume D has a 2-vertex v adjacent to two 2-vertices u,w. By minimality of (D,B), v
must be incident to a backbone arc; assume (u, v) or (v, u) is that backbone arc. Then we get a contradiction
to Claim 4.9, since both u and v have degree 2. ♦

From Claim 4.11, we know that all `-threads in (D,B), if there are any, verify ` ∈ {1, 2}. Some of these
threads are reducible because of Claim 4.9. The remaining irreducible threads, which we cannot reduce
immediately via the degree condition in the claim, have the following properties:

Claim 4.12. An irreducible thread of (D,B) is either:

• A 2-thread (v1, v2, v3, v4); in that case, (v1, v2) and (v3, v4) (resp. (v4, v3) and (v2, v1)) are backbone
arcs, while (v3, v2) (resp. (v2, v3)) is an interference arc. Furthermore, both v1 and v4 are 7+-vertices.

• A 1-thread (v1, v2, v3); in that case, at least one of (v1, v2), (v2, v1), (v3, v2), and (v2, v3) is a back-
bone arc. Furthermore, each of v1, v3 incident to such a backbone arc is a 7+-vertex.

Proof of the claim. First assume (v1, v2, v3, v4) is a 2-thread of (D,B). Note that the arc joining v2 and
v3 cannot be a backbone arc, as otherwise Claim 4.9 would yield a contradiction. Thus that arc must be
an interference arc, say (v2, v3) without loss of generality. By minimality of (D,B), this arc cannot be
removed, which means that (v2, v1) and (v4, v3) must be backbone arcs. Now, knowing that both (v2, v1)
and (v4, v3) are backbone arcs, and v2, v3 are 2-vertices, the last part of the first item follows from Claim 4.9.

Now assume (v1, v2, v3) is a 1-thread. If none of its two arcs is a backbone arc, then v2 could be just
removed from (D,B), contradicting its minimality. So one of its two arcs is a backbone arc, and its end
different from v2 must be a 7+-vertex by Claim 4.9. ♦

For an irreducible 2-thread (v1, v2, v3, v4), we define v1 (resp. v4) as the support vertex of v2 (resp. v3).
For an irreducible 1-thread (v1, v2, v3), we know that at least one of the two arcs is a backbone arc; we
here define the support vertex of v2 as being the end of that arc different from v2 (if the two of v1, v3 are
candidates, then we choose any of them). For every 2-vertex of D, we have thus defined a support vertex,
which is a 7+-vertex.

Similarly as for the previous claims, Claim 4.9 can be used to prove the following:

Claim 4.13. Let v be a vertex of (D,B) supporting some 2-vertices; then:

1. v supports at most two 2-vertices;

2. the number of 1-vertices adjacent to v plus the number of 2-vertices supported by v is at most 2;

3. if v is adjacent to a 1-vertex and a 2-vertex it supports, then d(v) ≥ 13;

4. if v is adjacent to two 2-vertices it supports, then d(v) ≥ 12.

Proof of the claim. The first item is because ∆+(B) ≤ 1 and, by definition, vertices support adjacent
2-vertices via backbone arcs. The second item follows from these reasons, and the fact that the only arc
incident to a 1-vertex must be a backbone arc, by the minimality of (D,B). The third and fourth items
follow from Claim 4.9, by considering the two backbone arcs incident to v going to the two vertices with
degree 1 or 2 (recall that these two backbone arcs have different directions with respect to v, due to the
backbone restrictions). ♦

2. First discharging process

To every vertex v of D, we assign an initial charge ω(v) = 2d(v) − 6. To every face f , we assign an
initial charge ω(f) = d(f)− 6. Playing with Euler’s formula, we get∑

v∈V (D)

ω(v) +
∑

f∈F (D)

ω(f) =
∑

v∈V (D)

(2d(v)− 6) +
∑

f∈F (D)

(d(f)− 6) = −12

This means that the total amount of charge is strictly negative. Throughout this proof, the goal is, without
creating any new charge, to move charge from elements to elements, before proving that the total amount
of charge eventually gets non-negative, a contradiction.

The discharging rules of the first discharging phase are the following:
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R1. Every face sends 2 to each of its incident 1-vertices.

R2. Every vertex sends 2 to each of its adjacent 1-vertices.

R3. Every vertex sends 2 to each of its adjacent 2-vertices it supports.

For every element (vertex or face) e of D, let us denote by ω′(e) the charge of e once rules R1 to R3
above have been performed. Let us now study the value of ω′(e) for each element e.

First assume that e = v is some vertex. Note that, by rules R1 to R3, only 1-vertices and 2-vertices
receive some charge. According to Claims 4.10 and 4.12, only 7+-vertices can send charge, because only
these types of vertices neighbour 2−-vertices. By Claim 4.13, vertices can send charge to at most two
adjacent vertices, and, from Claims 4.10 and 4.13, only 12+-vertices send charge to two adjacent vertices.
Thus:

• If v is a 1-vertex, then v does not send any charge. It however receives 2 from its unique neighbour,
via rule R2, and 2 from the unique face to which v is incident (rule R1). Thus ω′(v) = ω(v)+2×2 =
−4 + 4 = 0.

• If v is a 2-vertex, then, through rule R3, it receives 2 from its supporting vertex, while it does not send
any charge. Thus ω′(v) = ω(v) + 2 = −2 + 2 = 0.

• If v is a k-vertex for k ∈ {3, . . . , 6}, then v does not send nor receive charge; thus ω′(v) = ω(v) =
2k − 6 ≥ 0.

• If v is a k-vertex for k ∈ {7, . . . , 11}, then v sends 2 to at most one adjacent 1-vertex or 2-vertex it
supports (through rule R2 or R3), while v does not receive any charge. Thus ω′(v) = ω(v) − 2 ≥
(2k − 6)− 2 = 2k − 8 ≥ 14− 8 = 6.

• If v is a k-vertex with k ≥ 12, then v sends 2 to at most two adjacent 1-vertices or 2-vertices it
supports (through rule R2 or R3). Also v does not receive any charge. Thus ω′(v) = ω(v)− 2× 2 ≥
(2k − 6)− 4 = 2k − 10 ≥ 24− 10 = 14.

Let us finally assume that e = f is a face. Note that, through rules R1 to R3, f does not receive any
charge; but f sends 2 to each 1-vertex incident to it. Let f ′ denote the face obtained from f by deleting all
its incident 1-vertices, say there are x such. Since D has girth at least 5, we have d(f ′) ≥ 5. Actually, we
have d(f) = d(f ′) + 2x. Thus, ω′(f) = ω(f)− 2x, and f , after applying the discharging rules, eventually
has the same charge ω′(f) that a face with length d(f ′) would get by ω. Thus, ω′(f) < 0 only when f ′ is a
5-face, in which case we actually have ω′(f) = −1.

We note that, at this point, the only elements e of D that verify ω′(e) < 0 are faces f whose support, i.e.,
the cycle obtained after removing the 1-vertices incident to f , is a 5-cycle. More precisely, ω′(f) = −1
for such a face. In what follows, we apply additional discharging rules to make sure that such faces have
non-negative charge, to get our final contradiction. The main argument we will use is the fact that, for every
vertex v with d(v) > 3, its remaining charge ω′(v) is rather large. That is, all vertices v with d(v) ≥ 4

verify ω′(v)
d(v) > 0. More specifically, we note that ω′(v)

d(v) ≥ 1 whenever d(v) ∈ {6, 8, 9, . . . }, while, when

d(v) ∈ {4, 5, 7}, we have ω′(v)
d(v) ≥

1
2 . Even more specifically, we note that a 7-vertex v verifies ω′(v)

d(v) < 1

only when v is the support of exactly one adjacent 2-vertex (recall Claim 4.12), in which case ω′(v)
d(v) = 6

7 .
Below, we refer to such a 7-vertex as a weak 7-vertex.

3. More reducible configurations

We focus on the 5-faces of D (which cannot be incident to 1-vertices, since D has girth at least 5) having
most of their vertices being of small degree. More precisely, we say that a 5-face is bad if it has at most one
vertex that is not a 3−-vertex, and, if that vertex exists, it is a 4-vertex, 5-vertex or weak 7-vertex. In other
words, a 5-face is not bad as soon as it has at least two 4+-vertices, or whenever it has a 6-vertex, non-weak
7-vertex, or any k-vertex with k ≥ 8. Conversely, a face (of any length) of D is said heavy if it contains at
least three 4+-vertices, including two 6+-vertices. A face of D is said almost heavy if it contains at least
three 4+-vertices, including a 6+-vertex and a 5-vertex that does not belong to a bad 5-face.
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Claim 4.14. (D,B) has no bad 5-face f = (v1, . . . , v5, v1) where v1 is a 2-vertex, v2 is a weak 7-vertex,
and v3, v4, v5 are 3-vertices.

Proof of the claim. Assume (D,B) has such a bad 5-face f . For each vi of v3, v4, v5, we denote by v′i its
unique neighbour not on f .

By minimality of (D,B) and by Claim 4.9, the arc joining v1 and v5 cannot be a backbone arc, which
implies that the arc joining v1 and v2 must be a backbone arc. Let us assume that (v1, v2) is a backbone arc.
By minimality of (D,B), (v1, v5) is an interference arc. By the same arguments, we deduce sequentially
that (v′5, v5) and (v4, v

′
4) are backbone arcs, while (v4, v5) and (v4, v3) are interference arcs (this is because

two 3-vertices cannot be joined by a backbone arc, as otherwise Claim 4.9 would yield a contradiction).
Again by minimality, we know that one of the two arcs incident to v3 must be a backbone arc directed
toward v3; there are two possibilities:

• (v′3, v3) is a backbone arc, in which case (v2, v3) must be an interference arc, by minimality of
(D,B). Then we get a contradiction when applying Claim 4.9 onto (v1, v2), as this arc is subject to
at most six colour constraints.

• (v2, v3) is a backbone arc, in which case, applying Claim 4.9 onto (v1, v2), we deduce that the remain-
ing five arcs incident to v2 must be interference arcs directed toward v2. We then get a contradiction
when applying Claim 4.9 onto (v2, v3).

The case where (v2, v1) is a backbone arc can be dealt with in a very similar way, using symmetric
arguments. ♦

Claim 4.15. (D,B) has no bad 5-face f = (v1, . . . , v5, v1) where all vi’s are 3-vertices.

Proof of the claim. Assume (D,B) has such a bad 5-face f . According to Claim 4.9, none of the arcs
of f can be a backbone arc. By minimality of (D,B), this means that, for each vi, its unique incident
arc not belonging to f must be a backbone arc. For each vi, let us denote by v′i its unique neighbour not
in f . Assume without loss of generality that (v1, v

′
1) is a backbone arc. By minimality of (D,B), we

deduce that the two interference arcs incident to v1 (thus on f ) are directed towards v5 and v2. Again by
minimality, we deduce that both (v′2, v2) and (v′5, v5) are backbone arcs, and thus that (v3, v2) and (v4, v5)
are interference arcs. Going on this way, we deduce that (v3, v

′
3) and (v4, v

′
4) are backbone arcs. We finally

get to a contradiction, because the interference arc joining v3 and v4, whatever be its direction, cannot be
involved in an indirect conflict. This is a contradiction to the minimality of (D,B). ♦

Claim 4.16. (D,B) has no bad 5-face f = (v1, . . . , v5, v1) where v1 is a weak 7-vertex, and v2, . . . , v5 are
3-vertices.

Proof of the claim. For i = 2, 3, 4, 5, we denote by v′i the neighbour of vi not on f . Similarly as in the
proof of Claim 4.15, without loss of generality we may assume that (v3, v

′
3) and (v′4, v4) are backbone arcs,

while (v3, v2), (v3, v4) and (v5, v4) are interference arcs. Since v1 is weak, it is adjacent to a 2-vertex v′1,
thus not on f . Also, the arc joining v1 and v′1 is a backbone arc, since v1 supports v′1.

Assume (v1, v
′
1) is a backbone arc. By Claim 4.9, at least five of the other six arcs incident to v1 must be

interference arcs out-going from v1. If (v5, v1) or (v2, v1) is a backbone arc, then we get a contradiction by
applying Claim 4.9 onto it. Thus, both (v1, v2) and (v1, v5) are interference arcs. Also, (v5, v

′
5) and (v′2, v2)

are backbone arcs. In that situation, we get, in particular, that the arc (v1, v5) is useless, contradicting the
minimality of (D,B).

Lastly, if (v′1, v1) is a backbone arc, then reversing the arguments used to deal with the previous case also
gives a contradiction in all cases. ♦

Claim 4.17. If (D,B) has a bad 5-face f = (v1, . . . , v5, v1) where v1 is a 4-vertex and v2, . . . , v5 are
3-vertices, then v1 is also incident to a heavy face.

Proof of the claim. For i = 2, 3, 4, 5, we denote by v′i the neighbour of vi not on f . Similarly as in the
proof of Claim 4.15, without loss of generality we may assume that (v3, v

′
3) and (v′4, v4) are backbone arcs,

while (v3, v2), (v3, v4) and (v5, v4) are interference arcs. Also, since v1 is is a 4-vertex, still by Claim 4.9
none of the arcs joining v5 and v1, and v2 and v1 can be a backbone arc. By minimality of (D,B), we
deduce that (v5, v

′
5) and (v′2, v2) must be backbone arcs, while (v5, v1) and (v1, v2) are interference arcs.
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Still by minimality of (D,B), the presence of these two arcs imply that the two remaining arcs incident to
v1 must be backbone arcs, one (v1, v

′
1) being directed away from v1, one (v′′1 , v1) being directed toward v1.

Claim 4.9, applied to these arcs, now implies that v′1 and v′′1 are both 6+-vertices. The face that contains
v1, v

′
1, v
′′
1 is then the desired heavy face. ♦

Claim 4.18. If (D,B) has a bad 5-face f = (v1, . . . , v5, v1) where v1 is a 5-vertex and v2, . . . , v5 are
3-vertices, then v1 is also incident to a heavy face or to an almost-heavy face.

Proof of the claim. As in the proof of Claim 4.17, we may assume that (v′2, v2), (v3, v
′
3), (v′4, v4) and

(v5, v
′
5) are backbone arcs, while (v3, v2), (v3, v4), (v1, v2), (v5, v4) and (v5, v1) are interference arcs.

Again by minimality of (D,B), two of the three remaining arcs incident to v1 must be backbone arcs, one
being directed toward v1, one being directed away from v1. Let us thus denote (v1, v

′
1) and (v′′1 , v1) the two

backbone arcs incident to v1. Without loss of generality, we may assume that (v1, v
′′′
1 ) is an interference

arc, where v′′′1 6= v′1, v
′′
1 does not belong to f .

Note that, for any i ∈ {2, . . . , 5}, applying Claim 4.9 on the arc joining vi and v′i yields that v′i must
be a 6+-vertex. Applying Claim 4.9 on (v′′1 , v1), we deduce that v′′1 is a 6+-vertex. Applying the claim
on (v1, v

′
1), we deduce that v′1 is a 5+-vertex. If v′1 is a 6+ vertex, then we are done, because either v1, v′5

and one of v′1, v
′′
1 all belong to a same heavy face, or v1, v′2 and one of v′1, v

′′
1 all belong to a same heavy

face. Thus, we may assume that v′1 is a 5-vertex. Again, we note that the two faces containing the arc
(v′′1 , v1) cannot include one of v′2 or v′5, as otherwise we would get a heavy face including v1, v′′1 and v′2
or v′5. Thus, we may assume that one face incident to (v1, v

′
1) contains v′5, while one face incident to

(v1, v
′′′
1 ) contains v′2. Now, after removing (v1, v

′
1) from (D,B), if a 7-BMRN∗-colouring of the remaining

backboned digraph cannot be extended to (v1, v
′
1), then it means that each of the other four arcs incident

to v′1 must each be either a backbone arc out-going from v′1, or an interference arc in-coming to v′1. This
prevents v′1 from being part of a bad 5-face, as, as seen so far, a 5-vertex being the only 4+-vertex of a bad
5-face must be incident to an out-going interference arc and an in-coming interference arc (just as v1 in f ).
Since v′1 does not belong to any bad 5-face, we have that the face containing v1, v′1, v

′
5 is an almost-heavy

face containing v1. ♦

The arguments used in the proofs of Claims 4.17 and 4.18 yield another property of bad 5-faces having a
4-vertex or a 5-vertex.

Claim 4.19. If (D,B) has a bad 5-face f = (v1, . . . , v5, v1) where v1 is a 4-vertex or 5-vertex and
v2, . . . , v5 are 3-vertices, then v1 is not incident to another bad 5-face.

Proof of the claim. By the arguments used in the proof of Claim 4.18, if v1 is a 4-vertex or 5-vertex
being the only 4+-vertex of a bad 5-face f , then the two arcs incident to v1 on f must be one out-going
interference arc and one in-coming interference arc. Furthermore, two of the other arcs incident to v1 must
be one out-going backbone arc and one in-coming backbone arc. Also, f must have its five arcs being
interference arcs, and the four arcs incident to the four 3-vertices of f must be backbone arcs. From all
these arguments, it is easy to check that the statement is true. In particular, one way to see this is that, under
all these assumptions, all faces (different from f ) containing v1 include a backbone arc. ♦

4. Second discharging process

For the second discharging phase, we apply, from the charge function ω′, these rules:

R4. Every 4+-vertex v that is not a 4-vertex or a 5-vertex incident to a bad 5-face sends ω′(v)
d(v) to each of

the at most d(v) faces it is incident to.

R5. Every 4-vertex or 5-vertex v incident to a bad 5-face sends ω′(v)
d(v) to each of the at most d(v) non-heavy

and non-almost-heavy faces it is incident to. Furthermore, v sends another ω′(v)
d(v) to each bad 5-face it

is incident to.

For every vertex or face e of D, let us denote by ω′′(e) the charge of e once rules R4 and R5 have been
applied. We now analyze how ω′(e) was altered to ω′′(e), for each element e.

First, assume e = v is a vertex. Note that, by the rules, no vertex receives charge, and thus we necessarily
have ω′′(v) ≤ ω′(v). If d(v) ≤ 3, then no charge is sent by v, which means that ω′′(v) = ω′(v) = 0.
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If v is not a 4-vertex or 5-vertex incident to a bad 5-face, then, by rule R4, v splits its charge between the
at most d(v) faces it is incident to. Thus ω′′(v) ≥ ω′(v) − d(v) × ω′(v)

d(v) = 0. Now, if v is a 4-vertex
or 5-vertex incident to a bad 5-face, then, by Claims 4.17, 4.18 and 4.19, v is incident to at most one bad
5-face f and at least one heavy or almost-heavy face f ′. By rule R5, v sends ω′(v)

d(v) to each incident face

(including f ) but f ′, and instead sends another ω′(v)
d(v) to f . Thus v sends ω′(v)

d(v) at most d(v) times, and

ω′′(v) ≥ ω′(v)− d(v)× ω′(v)
d(v) = 0.

Second, assume e = f is a face. By rules R4 and R5, no face sends charge. Thus ω′′(f) ≥ ω′(f).
Furthermore, as stated earlier we already have ω′(f) ≥ 0 whenever the support of f is not a 5-cycle. So, we
may now focus on those cases where the support of f is a 5-cycle, in which case ω′(f) = −1. If f is not a
5-face, then f is incident to a 1-vertex u. By Claim 4.10, the neighbour v of u is an 8+-vertex, and v also is
incident to f . By rule R4, vertex v sends ω′(v)

d(v) ≥ 1 to f , and thus ω′′(f) ≥ ω′(f) + ω′(v)
d(v) ≥ −1 + 1 = 0.

The last case to consider is when f is actually a 5-face. First assume that f is not bad. If f is not heavy and
almost-heavy, then f contains at least two 4+-vertices v, v′ which, through rule R4, send ω′(v)

d(v) ,
ω′(v′)
d(v′) ≥

1
2

to f . Thus ω′′(f) ≥ ω′(f)+ ω′(v)
d(v) + ω′(v′)

d(v′) ≥ −1+2× 1
2 = 0. If f is heavy or almost-heavy, then f contains

either two 6+-vertices v, v′, or a 6+-vertex v and a 5-vertex v′ that does not belong to any bad 5-face. By
rule R4, v and v′ send ω′(v)

d(v) ,
ω′(v′)
d(v′) ≥

1
2 to f . Thus ω′′(f) ≥ ω′(f) + ω′(v)

d(v) + ω′(v′)
d(v′) ≥ −1 + 2× 1

2 = 0.
We may thus lastly assume that f is a bad 5-face. By definition, f thus has at most one 4+-vertex. By

Claim 4.15, f cannot have only 3-vertices. By Claim 4.12, f cannot have two consecutive 2-vertices (a 2-
thread), as otherwise f would have at least two 7+-vertices, and would thus not be bad. If f has a 2-vertex,
then, by the same claim, f must have a 7+-vertex v, which we may assume is a 7-vertex by definition of
a bad 5-face. We may also assume that v is weak, as otherwise, by rule R4, v would send ω′(v)

d(v) ≥ 1 to f ,

and thus ω′′(f) ≥ ω′(f) + ω′(v)
d(v) ≥ −1 + 1 = 0. Now, because v is the only 4+-vertex of f , a second

2-vertex of f must be adjacent to v (still by Claim 4.12). Furthermore, v must be the support of these two
2-vertices (by definition of a supporting vertex); this is a contradiction to Claim 4.13, which states that a
vertex adjacent to two 2-vertices must be a 12+-vertex. Consequently, if f is a bad 5-face containing a
2-vertex, then this 2-vertex is adjacent to a weak 7-vertex (that supports it) in f , and the remaining three
vertices of f are 3-vertices; this is the configuration described in Claim 4.14, which is forbidden.

We may thus assume that f is a bad 5-face having exactly one 4-vertex, one 5-vertex, or one weak 7-
vertex v, while the other four vertices of f are 3-vertices. By Claim 4.16, actually v cannot be a weak
7-vertex. Thus v is a 4-vertex or 5-vertex, and, by Claims 4.17 and 4.18, it sends 2 × ω′(v)

d(v) to f , while
ω′(v)
d(v) ≥

1
2 . Then ω′′(f) ≥ ω′(f) + 2× ω′(v)

d(v) ≥ −1 + 2× 1
2 = 0.

Thus, we now have

−12 =
∑

v∈V (D)

ω(v) +
∑

f∈F (D)

ω(f) =
∑

v∈V (D)

ω′′(v) +
∑

f∈F (D)

ω′′(f) ≥ 0,

the desired contradiction. Thus, (D,B) cannot exist and the claim is true.

5 Conclusion
Following [3], we have investigated, in this work, the behaviour of the BMRN∗-index of planar backboned
digraphs, answering some open questions from that seminal work. We have exhibited planar spanned di-
graphs with BMRN∗-index 8, which meets the upper bound for that class of digraphs. We have proved
that the Planar k-BMRN∗-Colouring problem is NP-hard for every k ∈ {3, . . . , 6}, even when restricted
to planar spanned digraphs. Finally, we have investigated how the BMRN∗-index of a planar backboned
digraph behaves in front of its girth.

We however leave a few aspects open, which we believe might be interesting to study in a later work.
First, we have proved that the BMRN∗-index of a planar backboned digraph can be as large as 8, and it
thus makes sense wondering about the structure of planar backboned digraphs with large BMRN∗-index. In
particular:

Question 5.1. What is the complexity of Planar 7-BMRN∗-Colouring?
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Our approach of using crossover gadgets is of course still applicable here. However, we were not able to
design 7-crossover gadgets. Designing such gadgets indeed requires lots of interference arcs, which hardly
comply with the planarity requirement. Nevertheless, our bet is that Planar 7-BMRN∗-Colouring should
also be NP-hard.

Another remaining algorithmic question is about the complexity of Planar k-BMRN-Colouring for
planar spanned digraphs, the variant of Planar k-BMRN∗-Colouring for BMRN-colouring. Recall that
the difference between BMRN-colouring and BMRN∗-colouring is that, by the former, it is not manda-
tory, for every vertex, that all incident out-going backbone arcs are assigned the same colour. Thus, the
only context where BMRN-colouring and BMRN∗-colouring coincide is when considering backbones B
with ∆+(B) ≤ 1. As can be noted in Figure 8, the tower we have designed for our 6-crossover gadget
has vertices incident to multiple out-going backbone arcs, which are crucial to ensure the planarity of the
whole graph. We were unfortunately unsuccessful in designing a similar 6-crossover gadget (D,B) with
∆+(B) ≤ 1; however, we feel that Planar k-BMRN-Colouring should be NP-hard when restricted to
planar spanned digraphs.

Question 5.2. For every k ∈ {4, 5, 6, 7}, what is the complexity of Planar k-BMRN-Colouring?

Note that it could be interesting as well to wonder about these algorithmic concerns for restricted families of
planar spanned digraphs. In particular, due to the results in [3], outerplanar spanned digraphs have BMRN∗-
index (and, thus, BMRN-index) at most 5 (which is tight in general), and the proof of that result implies
that the BMRN∗-index of such a digraph can be determined in polynomial time. The same, however, was
not proved for the BMRN-index of these digraphs, though we suspect it should hold true.

Question 5.3. For every k ∈ {3, 4}, what is the complexity of k-BMRN-Colouring when restricted to
outerplanar spanned digraphs?

Regarding planar backboned digraphs with large girth, we were not able to exhibit some better girth
threshold above which 5-BMRN∗-colourings always exist. For instance, we think the following question
could be an interesting first step to consider:

Question 5.4. Is it true that every planar backboned digraph (D,B) with girth at least 11 has BMRN∗-index
at most 5?

We believe the value 11 in that question would be a nice value, as this is the girth threshold guaranteeing
the existence of 2-threads in planar graphs with minimum degree 2 (recall Theorem 4.2). Using this fact
would be a nice enhancement of our proof of Theorems 4.5 and 4.6. However, we were not successful with
this approach, as several types of 2-threads cannot be reduced when five colours are allowed. It is likely that
more sophisticated arguments are needed here, or even new approaches.

Another related aspect is how much can the girth conditions in Theorem 4.1 be lowered, namely for
a given k ∈ {3, 4, 5, 6, 7}, what is the smallest g(k) such that planar backboned digraphs (D,B) with
g(D) ≥ g(k) have BMRN∗-index at most k. This is a legitimate question, as the bounds we have exhibited
seem far from optimal in general.

Question 5.5. For every k ∈ {3, . . . , 7}, what is the smallest g(k) such that planar backboned digraphs
(D,B) with g(D) ≥ g(k) have BMRN∗-index at most k?

As a first step towards the first case, that of k = 3, let us mention that there exist planar backboned digraphs
with girth 6 and BMRN∗-index 4, such as the one depicted in Figure 10. Thus, 7 ≤ g(3) ≤ 21.

Finally, it might be interesting to focus on particular classes of planar digraphs. For instance, in [3], the
authors proved that the BMRN∗-index of an outerplanar backboned digraph is at most 5, which is tight.
Another interesting class of planar digraphs to consider could be that of grids (triangular, square, etc.).
An intriguing case is that of square grids. It is fairly easy to see that the BMRN∗-index of a backboned
directed square grid (D,B) is at most 5, because grids admit distance-2 5-colourings (which can be derived
to 5-BMRN∗-colourings of (D,B), as mentioned in the introduction). Regarding lower bounds, one can
easily come up with example of backboned directed square grids with BMRN∗-index 4. However, even via
lots of computer experimentations, we were not able to find backboned directed square grids with BMRN∗-
index 5. This makes us wonder about the following question, which would be interesting to answer towards
understanding better the connection between BMRN∗-colourings and distance-2 colourings.

Question 5.6. Is it true that every backboned directed square grid has BMRN∗-index at most 4?
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Figure 10: A planar backboned digraph (D,B) with girth 6 and BMRN∗-index 4, and a 4-BMRN∗-
colouring of (D,B). Thick solid arcs are backbone arcs. Thin dashed arcs are interference arcs.
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