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Abstract 
In this paper, superelastic behavior of Nickel Titanium thin wires is characterized using the 
method of dynamic mechanical analysis. Nominal dynamic storage modulus 𝐸′ is measured as 
function of nominal strain and stress during isothermal superelastic tensile tests at three testing 
temperatures above the reverse martensitic transformation finish temperature. The method 
brings new information on deformation mechanisms compared to the consideration of only 
tensile stress-strain curves. It is shown that determination of the elastic moduli E, especially at 
high strain, requires to calculate the true storage modulus 𝐸𝑡

′. Using 𝐸𝑡
′ and not 𝐸′, elastic modulus 

of oriented martensite  𝐸𝑀   is determined equal to 73 GPa of the same order than the elastic 
modulus of austenite 𝐸𝐴 equal to 70 GPa. 
Two models are then proposed to simulate experimental storage moduli evolution during the 
tests. A first model explains the 𝐸′ evolution during stress plateau by the localization 
phenomenon ; it leads to express 𝐸′as function of the nominal strain. A second model describes 
the evolution of 𝐸𝑡

′
  after the stress plateau as function of true stress and test temperature. This 

model permits to determine the Clausius-Clapeyron coefficient of the forward transformation. 

 

1. Introduction 

Superelastic behavior of near equiatomic Nickel-Titanium based shape memory alloys 
(NiTi SMA) is due to the complex interaction between several deformation mechanisms including 
lattice elasticity, phase transformations between austenite (A), martensite (M) and R-phase (R), 
reorientations of R and/or M variants, twinning and detwinning phenomena and usual plasticity 
due to dislocations movements [1]. These phenomena are difficult to identify by considering only 
stress-strain curves of superelastic tensile tests. Using Dynamical Mechanical Analysis (DMA) to 
study shape memory alloys is a classical method to investigate phase transformation 
temperatures [2, 3, 4, 5, 6, 7], damping properties [8, 9, 10, 11, 12] or effect of fatigue [13]. 
Classically DMA tests are performed during a temperature sweep under a constant low stress; 
storage modulus and loss factor are measured as function of temperature. Consequently, phase 
transformation temperatures and damping properties are determined at low stress, what 
prevents from studying stress influence whereas this is of major importance. 

 
In this paper, superelastic behavior of NiTi thin wires was investigated by using a non-

conventional DMA which allows to measure the nominal storage modulus as function of nominal 
strain and stress during isothermal tensile tests at high level of stress. DMA tests were performed 
during cyclic superelastic tensile tests up to 10% of strain and monotonic tests up to failure at 
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three temperatures above Af the reverse martensitic transformation finish temperature. The goal 
is to identify and study elasticity, phase transformations, localization and plasticity, by analyzing 
storage modulus evolution during isothermal superelastic tensile tests. A detailed analysis of the 
storage modulus evolution allows to estimate the elastic moduli of austenite and oriented 
martensite. From experimental results two models are proposed to simulate storage modulus 
evolution in cases where deformation is localized (during the stress plateau) or uniform (after the 
stress plateau), respectively. The last model and the results of the three isothermal tests are used 
to determine the Clausius-Clapeyron coefficient for the forward transformation. 

2. Materials and experimental set-up 

2.1. Materials  

A commercial NiTi (Ti–50.9 at.% Ni) wire provided by Fort Wayne Metals (reference : 
FWM#1) with a diameter d=0.1mm was used. This is a straight annealed NiTi wire for medical 
applications. Fig. 1a shows the nominal stress-strain curve of a tensile test performed at room 
temperature. Fig. 1b shows the calorimetric curve obtained by Differential Scanning Calorimetry 
(DSC) with heating and cooling rates of 10°C min-1. A-R transformation was detected during 
cooling with a peak at 9.2°C. During heating, reverse finish transformation temperature Af   is 
determined equal to 26°C. 

 
 

2.2. Experimental set-up and performed tests 

All tests were performed with a commercial DMA Netzsch-Gabo Eplexor 500N device. 
Unlike a classical DMA device, this non-conventional tensile test combines a standard tensile test 
with a DMA device. Fig. 2a describes schematically the device which is composed of: 

1. a static unit on the upper side 
2. a dynamic unit on the lower side 
3. a thermal chamber 

 
A static load is applied by means of the static unit. The static load can be driven in 

displacement, nominal strain, force, or nominal stress. A dynamic load is applied by the dynamic 
unit which is a shaker. The dynamic load can be driven in displacement, nominal strain, force, 
nominal stress. The thermal chamber permits to perform tests with a controlled temperature.  

 

2.2.1. DMA and Static Sweep (DMA-SS) test - Nominal storage modulus E’ 

Fig. 2b describes test named DMA and static sweep (DMA-SS). It consists in applying a 
sinusoidal displacement ∆𝐿𝑑𝑦𝑛(𝑡)  of amplitude ∆𝐿𝑑𝑦𝑛 with a frequency f superimposed on a 

static length 𝐿𝑠𝑡𝑎𝑡. The length 𝐿 of the sample at any moment t is given by:  
 

𝐿 = 𝐿𝑠𝑡𝑎𝑡 + ∆𝐿𝑑𝑦𝑛(𝑡)    with ∆𝐿𝑑𝑦𝑛(𝑡) =  ∆𝐿𝑑𝑦𝑛 sin(2𝜋𝑓𝑡)       (Eq. 1) 
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                During this test, force 𝐹 is measured; this force is composed by a static part 𝐹𝑠𝑡𝑎𝑡   and a 
sinusoidal dynamic part 𝐹𝑑𝑦𝑛(𝑡)  of amplitude 𝐹𝑑𝑦𝑛 and is given by:  

 
 𝐹 = 𝐹𝑠𝑡𝑎𝑡 + 𝐹𝑑𝑦𝑛(𝑡)   with    𝐹𝑑𝑦𝑛(𝑡) =  𝐹𝑑𝑦𝑛  𝑠𝑖𝑛(2𝜋𝑓(𝑡 − 𝑡𝛿)) (Eq. 2) 

 
𝑡𝛿  being the phase difference between ∆𝐿𝑑𝑦𝑛(𝑡) and 𝐹𝑑𝑦𝑛(𝑡). 

 
The nominal (or engineering) stress 𝜎 and nominal dynamic stress amplitude 𝜎𝑑𝑦𝑛  are 

determined by: 

𝜎 =
𝐹𝑠𝑡𝑎𝑡

𝑆0
  and   𝜎𝑑𝑦𝑛 =

𝐹𝑑𝑦𝑛

𝑆0
 (Eq. 3) 

with S0 being the initial cross sectional area of the sample 
 
 

The nominal (or engineering) strain 𝜀 and nominal dynamic strain amplitude 𝜀𝑑𝑦𝑛 are 

determined by: 
 

𝜀 =
𝐿𝑠𝑡𝑎𝑡−𝐿0

𝐿0
   and  𝜀𝑑𝑦𝑛 =

∆𝐿𝑑𝑦𝑛

𝐿0
 (Eq. 4) 

with 𝐿0 the initial length of the sample. 
 

For each dynamic cycle, the nominal storage modulus 𝐸′ is given by the quotient between 
𝜎𝑑𝑦𝑛  the amplitude of the nominal dynamic stress and 𝜀𝑑𝑦𝑛  the amplitude of the nominal dynamic 

strain : 

𝐸′ =
𝜎𝑑𝑦𝑛  

𝜀𝑑𝑦𝑛  

 (Eq. 5) 

2.2.2. Performed tests 

A first reference DMA-SS test was performed at T=60°C which is 34°C higher than Af . Two 
other tests were performed at two other temperatures above Af , i.e. at T=80°C and T =40°C 
respectively. The test at 60°C was used as the reference test because the test at 40°C can be 
influenced by the presence of R-phase (as shown by the DSC in Fig. 1.b). The test at 80°C implies 
higher stress and is more likely to be influenced by plasticity.  

 
 All samples were loaded up to 10% of nominal strain, unloaded then reloaded up to break. DMA-
SS cycles were performed with 𝜀𝑑𝑦𝑛=0.1% and f =100Hz. These parameters have been chosen to  

reduce the noise during the measure of E’ and to allow measurements of E’ at low static strain 
value of the order of 0.2% (the static strain value has to be greater than the dynamic strain 
amplitude). 
 

2.3. Definition of true storage modulus  𝑬𝒕
′  
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The nominal storage modulus 𝐸′ is, as shown in Eq. 5, calculated from the nominal stress 
and strain defined in Eq. 3 and Eq. 4 respectively. The true storage modulus 𝐸𝑡

′
 is calculated from 

the true strain 𝜀𝑡 = ln (
𝐿

𝐿0
) and from the true stress 𝜎𝑡 =

𝐹

𝑆
 with S the current cross section area. 

The true strain is given by: 
 

𝜀𝑡 = ln (
𝐿

𝐿0
) = ln (1 + 𝜀) (Eq. 6) 

 
 

By noting   the Poisson’s ratio, the current cross section area is : 
 

𝑆 = 𝑆0 exp(−2 𝜀𝑡)= (1 + 𝜀)−2 (Eq. 7) 
 

 The true stress  𝜎𝑡 is deduced from the nominal stress 𝜎 and strain 𝜀 by: 
 

𝜎𝑡 =
𝐹

𝑆
= 𝜎 exp(2 𝜀𝑡)=  𝜎 (1 + 𝜀)2 (Eq. 8) 

 
The true storage modulus 𝐸𝑡

′ is then given by: 
 

𝐸𝑡
′ =

𝑑𝜎𝑡

𝑑𝜀𝑡
= 𝐸′(1 + 𝜀)(1+2) + 2 𝜎 (1 + 𝜀)2 (Eq. 9) 

 
 
Perfect plastic or transformation deformation mechanisms occur without volume change. By 
assuming isotropy and incompressibility, the Poisson’s ratio   is equal to 0.5. Then the true stress 
and true storage modulus are given by: 
 

𝜎𝑡 = 𝜎(1 + 𝜀)     and              𝐸𝑡
′ = 𝐸′(1 + 𝜀)2 + 𝜎(1 + 𝜀)      (Eq. 10) 

 
In the following, when not specified, the true stress and true storage modulus are 

calculated Eq. 10, assuming no volume change. 
 
 

In order to illustrate the differences between nominal and true values, Figure 3 shows the 
stress-strain curves (Fig. 3a) and the storage modulus-strain curves (Fig. 3b) during a DMA-SS test 
performed on a soft annealed Cu wire of diameter 0.5mm. The DMA-SS parameters (𝜀𝑑𝑦𝑛= 0.1% 

and f = 100Hz) were identical to those used for the studied NiTi wire. The nominal values are 
plotted in red, the true values with  = 0.5  using Eq.10 are plotted in black. The difference 
between nominal and true stresses (Fig. 3a) is well-known, especially in plasticity. The difference 
between nominal and true storage moduli (Fig. 3b) is less known. In the majority of publications 
this difference is not clarified because conventional DMA are performed during a temperature 
sweep under small stress and strain [2, 3, 4, 5, 6, 7]. The results shown in Fig. 3b illustrate that for 
a nominal strain greater than 2%, the difference between nominal and true storage moduli is 
significant. For a strain equal to 10%, the true storage modulus 𝐸𝑡

′
   is 25% higher than  𝐸′ the 



 5 

nominal storage modulus. The true value of the storage modulus using Eq. 9  and  = 0.33 is 
plotted in blue; the true modulus is still more than 20% higher than 𝐸′ the nominal storage 
modulus. 

 
A second conclusion of the DMA-SS test performed on the Cu wire concerns the 

determination of the elastic modulus for an elastoplastic material. A first method consists in 
measuring the slope of the stress-strain curve in the elastic zone, i.e. for low values of strain and 
stress; in that case, it is not necessary to distinguish nominal and true values of strain and stress 
because the differences are very weak. The DMA-SS test performed in our study provides a 
second method. In fact, this method consists in performing small elastic unloadings during the 
tensile loading in the plastic zone ; the storage moduli are the slopes of the stress-strain unloading 
curves. As shown in Fig. 3b, the nominal storage modulus 𝐸′ decreases with increasing strain. On 
the contrary, the true storage modulus  𝐸𝑡

′
    is almost independent of the plastic strain. Thus the 

estimation of the elastic modulus from the nominal storage modulus during a DMA-SS test would 
imply that the elastic modulus would depend on the plastic strain, which is not relevant. On the 
contrary, the estimation of the elastic modulus from the true storage modulus during the DMA-
SS test on a elastoplastic material is not dependent on the plastic strain. This result is consistent 
with the definition of elastic modulus used in theoretical elastoplasticity [14].  
 

Thus, during a DMA-SS test, the elastic modulus has to be evaluated from the 
determination of the true storage modulus variation  𝐸𝑡

′
    and not from that of the nominal storage 

modulus 𝐸′  ; this conclusion is important for large static strain, typically higher than 2%.   
 

3. Experimental Results 

Fig. 4, Fig. 5 and Fig. 6 show DMA-SS results at 60°C, 80°C and 40°C, successively. The 
measure of loss factor is too noisy and will not be used. Upper and lower curves of subfigures a) 
show nominal stress 𝜎-nominal strain 𝜀 and nominal storage modulus 𝐸′-nominal strain 𝜀 curves, 
respectively for the specimen loaded up to 10% of strain and then unloaded. Subfigures b) show 
storage modulus 𝐸′

 as function of nominal stress 𝜎 during this cycle. Singular points have been 
numbered, (0) to (4) during loading and (5) to (8) during unloading. 
 

Similar curves are plotted using solid lines for the reloading up to break in the subfigures 
c) and d). Singular points (5') and (6') are associated to this test up to break.  

 

3.1. Test at 60 °C 

Cyclic stress 𝜎-strain 𝜀 curve (Fig. 4a) exhibits a classical superelastic behaviour. Loading 
and unloading plateaus occur for nominal stresses of 770 MPa and 530 MPa, respectively. During 
loading, 𝐸′ decreases monotonically between (0) and (1) with an initial value of 70 GPa.  At point 
(1), matching with the start of the loading stress plateau, 𝐸′ reaches 52 GPa. Plateau nominal 
stress is globally constant, after a little drop at point (2). Between (1) and (3), 𝐸′ continues to 
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decrease almost linearly to reach 35 GPa in (3). At the end of the plateau in (3), 𝐸′ starts to 
increase monotonically to reach 47 GPa in (4). 

 
During unloading, the reverse evolution is observed. 𝐸′ decreases between (4) and (5). 

The unloading plateau starts in (5) with a stress jump between (5) and (6), associated with a step 
increase of 𝐸′. During the stress plateau between (6) and (7), 𝐸′ increases almost linearly up to 56 
GPa at point (7) that corresponds to the end of the plateau. During the last stage of the unloading 
between (7) and (8), 𝐸′ continues to increase to reach 70 GPa at the end of unloading in (8).  
 

Figure 4b shows the evolution of 𝐸′ as function of stress during the previous cyclic test. 
During loading, 𝐸′ decreases monotonically before the stress plateau until point (1). 𝐸′ is almost 
constant during the stress drop between (1) and (2). Then 𝐸′ decreases sharply during the stress 
plateau between (2) and (3). After the stress plateau, 𝐸′ increases between points (3) and 
(4).Reverse evolution is observed during unloading. Initial and final values of 𝐸′ at zero stress in 
(0) and (8) respectively, are identical and equal to 70 GPa as shown in Fig. 4b. 

 
The test up to break (Fig. 4c and Fig. 4d), shows the same evolution than during the loading 

of the cyclic test. After the stress plateau, 𝐸′ increases ; the increase is slowing down with strain 
increasing. 𝐸′ reaches 53 GPa at point (6').  
 

 

 

3.2. Test at 80°C 

Figure 5 shows results for the test at T=80°C. Stress-strain curve (Fig. 5a) exhibits a 
classical superelastic behavior like at T=60°C. Loading and unloading stress plateaus occur for 
stresses of 900 MPa and 670 MPa respectively. 

Storage modulus-strain curve follows similar evolution than at T=60°C. Initial and final 
values of 𝐸′ at zero stress are identical (Fig. 5b) and equal to 70 GPa which is identical to the value 
measured at 60°C. The storage modulus variations on one hand between (0) and (1) and on the 
other hand between (7) and (8) are both smaller than the same variations measured at 60°C. 

 
The test up to break (Fig. 5c and Fig. 5d), shows the same evolution as at 60°C, and 𝐸′ 

increases up to point (6') to reach 50 GPa. 

3.3. Test at 40°C 

Figure 6 shows results for T=40°C. Similarly to the tests performed at 60°C and 80°C, the 
stress-strain curve (Fig. 6a) exhibits a classical superelastic behavior. Loading stress plateau occurs 
for a stress of 636 MPa and unloading plateau for a stress of 376 MPa. 
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Storage modulus-strain curve follows same evolution as T=60°C and T =80°C. Initial and 
final values of 𝐸′ at zero stress are identical (Fig. 6b), equal to 66 GPa, which is smaller than the 
value measured at 60°C and 80°C. The storage modulus variations on one hand between (0) and 
(1) and on the other hand between (7) and (8) are both larger than the same variations measured 
at 60°C and 80°C. 

 
The test up to break (Fig. 5c and Fig. 5d), shows the same evolution at 60°C and 80°C, and 

𝐸′ increases up to point (6') to reach 55 GPa. 

 

4. Analysis of DMA results 

4.1. Analysis of 𝑬′ evolution during loading 

The stage before the stress plateau (i.e. between (0) and (1)) is usually considered to be 
associated with the elastic deformation austenite [17]. Several authors [15, 16] have shown that 
strain is uniform along the wire during this stage. As shown in Figures 4, 5, 6, the storage modulus 
𝐸′ decreases monotonically between (0) and (1). The monotonic decrease of 𝐸′ between (0) and 
(1) during a DMA and Static Sweep (DMA-SS) test on a NiTi wire proves that deformation 
mechanisms other than elasticity and plasticity are involved during this stage. It can be assumed 
that these additional deformation mechanisms are due to stress induced phase transformations, 
either A-R and/or A-M transformations [18], even at low stress. At point (0) the wire is mainly in 
austenite with some amount of martensite and Rphase. The storage modulus is estimated by 𝐸′ =
𝜎𝑑𝑦𝑛

𝜀𝑑𝑦𝑛
. In this stage, the total dynamic strain 𝜀𝑑𝑦𝑛  can be expressed as the sum of a lattice elastic 

dynamic strain (𝜀𝑑𝑦𝑛)
𝑒𝑙

and of a phase transformation dynamic strain (𝜀𝑑𝑦𝑛)
𝑡𝑟𝑎𝑛𝑠𝑓

. Introducing 

the elastic modulus 𝐸 =
𝜎𝑑𝑦𝑛

(𝜀𝑑𝑦𝑛)
𝑒𝑙

, the storage modulus is expressed as 𝐸′ = 𝐸
(𝜀𝑑𝑦𝑛)

𝑒𝑙

𝜀𝑑𝑦𝑛
=

𝐸 (1 −
(𝜀𝑑𝑦𝑛)

𝑡𝑟𝑎𝑛𝑠𝑓

𝜀𝑑𝑦𝑛
). The monotonic decrease of the storage modulus 𝐸′ with increasing static 

strain (or static stress) during stage (0) and (1) is thus only due to the increase of transformation 
mechanisms. 

 
During the stress plateau, between (2) and (3), the nominal stress is almost constant and 

the nominal storage modulus 𝐸′ decreases almost linearly with increasing strain. It was shown 
that deformation is localized along the wire in this stage [15, 16]. The number of regions and the 
number of fronts are increasing with increasing strain rate, as shown by Ng and Sun [19]. For low 
strain rate, the wire is divided into two regions (a) and (b), separated by a localization front as 
illustrated in Fig. 8. The fraction of martensite and the strain in region (a) are very high whereas 
they are very low in region (b). The front of localization moves from left to right with increasing 
wire strain. At point (3) localization is completed, the sample is fully in state (a) and uniform 
deformation replaces localized deformation. The quasi-linear evolution of the storage modulus 
with strain during the stress plateau can be explained by this deformation localization 
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phenomenon and by a storage modulus difference between regions (a) and (b). A model will be 
proposed in subsection 6.1. 

 
After the stress plateau, the deformation is usually associated with the elasticity of 

oriented martensite [17]. The wire deformation is uniform, as shown in [15, 16]. Similarly to the 
stage between (0) and (1), the continuous increase of 𝐸′ during the stage between (3) and (4) 
shows that deformation is not only elastic and that phase transformations and/or variants 
reorientation occur.  

 
The evolution up to rupture between (4) and (5') is presented in figures 4c and 4d at 60°C. 

𝐸′ tends to be constant with increasing strain. This is explained by the decrease of the 
transformation and reorientation deformation mechanisms with increasing strain, being replaced 
by plasticity mechanisms between (5') and (6').  
 

4.2. Analysis of 𝑬′ evolution during unloading 

The stage between (4) and (5) is usually associated with the elastic deformation of 
oriented martensite [17]. It was shown that the wire deformation is uniform during this stage [15, 
16]. 𝐸′ continuous decrease shows that this stage is not only elastic and that reverse 
transformation occurs. 

 
The stage during the lower stress plateau, between (6) and (7), is similar to the stage 

during the upper stress plateau, between (2) and (3), during loading. Nominal stress is nearly 
constant and 𝐸′ increases almost linearly with decreasing strain. Similarly than during the upper 
plateau, the 𝐸′ evolution between (6) and (7) is due to the localization phenomenon and to the 
existence of regions with different states along the wire. 

The stage between (7) and (8) corresponds to the stage between (0) and (1) during the 
loading and a similar analysis can be done. The increase of 𝐸′ with decreasing strain shows that 
this stage is not purely elastic (Fig. 8), and that a reverse transformation occurs during this stage. 
Values at point (8) are the same as for the initial stage, i.e 70 GPa for 60°C and 80°C, and 65 GPa 
for 40°C (close to Af ). 

 

4.3. Identification of deformation phenomena present in NiTi wire from 
stress and storage modulus 𝑬′ evolutions 

In conclusion, analyzing both stress 𝜎(𝜀) and 𝐸′(𝜀) curves during a tensile test allows 
identifying the majority of the phenomena. 𝐸′ evolution measurement brings new information 
and clarifies the ambiguities we may have by analyzing only stress as function of strain. Table 1 
shows the evolution of 𝜎(𝜀) and 𝐸′(𝜀) to identify elasticity, transformation and or reorientation, 
localization and plasticity during loading. To simplify interpretation, arrows are used to code 
evolution. →, ,  mean that the value is constant, increases and decreases with increasing 
strain successively. 
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For the NiTi wire studied, there is no stage with constant value of the storage modulus; it 
means that there is no deformation stage for which the deformation is purely elastic or purely 
plastic, even for tests performed in the temperature range of superelastic behavior. Phase 
transformations and/or variant reorientations occur at the beginning and the ending of the 
loading, separated by a deformation stage characterized by a deformation localization 
phenomenon. 

 

5.  How to determine elastic moduli of austenite and oriented 
martensite from DMA tests ? 

5.1. Measurement methods 

For a usual elastoplastic alloy such as the soft annealed Cu wire shown in Figure 3, a first 
method to determine the elastic modulus is based on the measurement of the slope of a tensile 
stress-strain curve. For an elastoplastic alloy, the elastic modulus is the initial slope. This first 
method is called “the slope method”. A second method is to deduce this elastic modulus from the 
measurement of the storage modulus evolution during a DMA-SS test. It was shown in Fig.3 that 
the elastic modulus for an elastoplastic alloy is equal to the true storage modulus independently 
of the strain/stress . This second method is called “the storage modulus method”.  

 
The behavior of a NiTi SMA is much more complicated than a usual elastoplastic alloy; it 

is due to complex interaction between several deformation mechanisms, including lattice 
elasticity, phases transformations and plasticity. In order to determine elastic moduli of austenite 
and oriented martensite, table 2 shows the values deduced from the slopes of the stress-strain 
curves during the tensile tests at 40°C, 60°C and 80°C. Table 3 presents measurements deduced 
from the storage moduli evolution during these same tests. 
 

Table 2 presents values of slopes of the tensile stress-strain curves at different stages of 
the cyclic stress-strain curves plotted in Fig. 4.a, 5.a and 6.a. All the slopes are calculated with a 
stress range ∆𝜎 = 200 MPa. They are calculated from the nominal stress-strain curves 
(∆𝜎/∆𝜀) or from the true stress-strain curves (∆𝜎𝑡/∆𝜀𝑡). The second column shows the slopes 
calculated in point (0). ∆𝜎/∆𝜀 and ∆𝜎𝑡/∆𝜀𝑡 are identical in this deformation range. The third and 
fourth columns are the slopes calculated during loading after the stress plateau in (3). The fifth 
and sixth columns are the slopes calculated at the start of unloading in (4). 

 
Table 3 presents values deduced from the DMA-SS tests. The second column shows the 

values of the initial nominal storage modulus 𝐸′ at point (0); 𝐸′ is identical to the true storage 
modulus  𝐸′  in this deformation range. The third and fourth columns show the values of 𝐸′  and 
𝐸′𝑡  in (4), respectively; as shown in Fig.4.b, 5.b, and 6.b, the values of the storage moduli in (4) at 
the end of the loadings are equal to those at the start of the unloadings. The fifth and sixth 
columns show the values of 𝐸′  and 𝐸′𝑡   at the rupture point in (6’) of Fig. 4.d, 5.d and 6.d. 

 



 10 

5.2. Elastic modulus of austenite 𝐸𝐴   

The first method to determine elastic modulus of austenite 𝐸𝐴  consists in using the “slope 
method”, which is the most popular method [17]. From the second column of table 2,  𝐸𝐴  is 
determined equal to 69 GPa at 60°C and 80°C and a little smaller 63 GPa at 40 °C.  The DMA-SS 
tests performed in this paper allow using the “storage modulus method”. By using the second 
column of table 3, 𝐸𝐴  it is determined equal to 66 GPa at 40 °C and 70 GPa at higher temperatures. 
The values determined using the two methods are very close for the three test temperatures. The 
lower values at 40°C can be easily explained by the residual Rphase transformation which occurs 
between (0) and (1). 

 
In conclusion, the elastic modulus of austenite 𝐸𝐴 is estimated equal to 70 GPa using both 

“slope method” and “storage modulus method”. 
 

5.3. Elastic modulus of oriented martensite 𝐸𝑀  

Macroscopic elastic modulus of oriented martensite 𝐸𝑀  is usually estimated from the 
slope of the nominal stress-strain curve after the stress plateau [17, 20]. The slopes are taken 
either during loading after the stress plateau, which are the values in the column (3) of the table 
2, or at the start of the unloading after the stress plateau which are the values in the column (5). 
The values of the slopes during loading in column (3)  are very low, of the order of 17 GPa,  and 
almost independent of the temperature.  Using column (5) gives higher values ranging from 
38GPa at 40°C to 30GPa at 80°C.  All the values in columns (3) and (5) are low compared to the 
elastic modulus of austenite. The low values of columns (3) are explained by the fact that the 
transformation is not completed after stress plateau as explained in paragraph 4.3. The low values 
of columns (5) mean that reverse transformation mechanisms occur upon unloading ; the 
decrease of the slope with increasing temperature is likely due to the increase of reverse 
transformation and/or reverse detwinning due to higher back stress, prior to the unloading stress 
plateau. 

 
The slopes can be estimated from the true stress-strain curves rather than from the 

nominal stress-strain curves. The values in column (4) are increased compared to those of the 
column (3). Similarly, the values in column (6) are also increased compared to the column (5), 
ranging from 41GPa at 40°C to 34GPa at 80°C. The difference between values obtained from 
nominal or true stress-strain curves is easily explained by the fact that the reduction of current 
specimen section and the increase of current specimen length is taken into account when using 
true stress-strain curves. This precaution is scarcely taken.  

 
Using either nominal or true stress-strain curves, the highest value of the estimation of 

martensite modulus is 41 GPa. As pointed out in [29], the best measurement of martensite 
modulus which can be reached from stress-strain curve is obtained during unloading of stress-
induced martensite. This value is of the same order that the elastic modulus proposed by the 
provider for wire in martensitic state [28]. However, it is still low compared to the elastic modulus 
of austenite. 
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The “storage modulus method” is an alternative way to estimate elastic modulus of 

oriented martensite. As shown in column (3) of table 3, at point (4) the nominal storage modulus 
decreases from 50 GPa at 40°C to 42 GPa at 80°C. These values are higher than the values 
determined by the slope method at the same point (38 GPa at 40°C to 30 GPa at 80°C) , as 
summarized in columns (5) of table 2. Indeed, the “storage modulus method” is based on the 

measurement of 𝐸′ =
𝜎𝑑𝑦𝑛

𝜀𝑑𝑦𝑛
 as shown in eq (5).  𝐸′ is measured with a dynamic strain of 0.1% 

which corresponds approximately to a dynamic stress 𝜎𝑑𝑦𝑛  of the order of 50 GPa. The slope 

method uses a stress range ∆𝜎 = 200 MPa. As 𝜎𝑑𝑦𝑛  is lower than ∆𝜎 , the moduli estimated at 

point (4) by the “storage modulus method” are higher than by the “slope method”  due to 
activation of less inelastic deformation mechanisms by the first method. An other way to decrease 
the inelastic deformation mechanisms is to increase the strain till the rupture of the specimen. At 
the rupture, the nominal storage modulus is equal to 55 GPa at 40°C and of 50 GPa at 80°C. These 
values are higher than the values at point (4) to the activation of less inelastic deformation 
mechanisms. 

 
The values deduced from the determination of the true storage modulus using Eq. 10 are 

given in columns (4) and (6) of table 3 for the point (4) and (6’) of fig.4,5 and 6 respectively. 
Comparison of columns (3) and (4) for the point (4) and columns (5) and (6) for the point (6’) show 
that the differences between the nominal and the true storage moduli is important at this strain 
level. This effect was not taken into account in [24] and leads to an underestimated value for the 
macroscopic elastic modulus of oriented martensite 𝐸𝑀 .  

 
In figure 9, the true storage modulus using Eq. 10 is plotted in full lines for stress higher 

than the plateau stresses as function of the true stress for the three tested temperatures, for the 
tests at rupture shown in Fig. 4.c, 5.c and 6.c. The best estimation for the macroscopic modulus 
of martensite is the asymptotic value of these three curves, which is equal to 73 GPa. Using Eq. 9 
and a Poisson’s ratio  = 0.33, the asymptotic value is equal to 70 GPa. 

 
In conclusion, the elastic modulus of martensite can not be deduced from nominal or true 

stress-strain curves. It can be estimated using “storage modulus method” by considering the true 
storage modulus and not the nominal storage modulus. With this method, the macroscopic elastic 
modulus 𝐸𝑀   of oriented martensite of the studied wire is estimated equal to 73 GPa.  

 

5.4. Comparison with values of literature 

Many articles proposed experimental values of elastic moduli of austenite and martensite 
[20, 21, 22, 23, 24]. In this paper, the elastic moduli have been determined at room temperature 
for a thin Ti–50.9 at.% Ni wire in austenitic state under stress-free condition. The elastic moduli 
of austenite and of stress-induced martensite were measured during a tensile test, at low and 
high stress respectively. The stress-strain deformation response include contributions from 
elastic, transformation, twinning and plastic deformation ; this lead to a strong coupling between 
activity of deformation mechanisms such as stress induced B2=> B19’=>B2T martensitic 
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transformation into twinned austenite coupled with dislocation slip [25bis].   The main difficulty 
of the measure is to separate the elastic deformation mechanisms from all the other deformation 
mechanisms occurring during the deformation of the wire. In our experiments, the Dynamic 
Mechanical Analysis has been used . 

The process of fabrication induces different textures, and elastic moduli are different 
between a rod [21, 20, 22, 23] and a thin wire [20, 24]. Moreover, elastic moduli, especially for 
stress induced martensite, can be strongly anisotropic [24, 25]. As pointed out by Bucsek et al 
[29], “the Young’s modulus of polycrystalline NiTi alloys is not a fixed number and changes with 
both processing and in operando deformations”. 

The obtained values in the present study are compared to the values obtained by Young 
et al. [20]  which determined the elastic moduli of austenite and stress induced martensite during 
a tensile test of a similar wire. These last authors measured microscopic elastic moduli with in situ 
X-ray diffraction extensometry. For the austenite B2, Young et al determine Young's moduli for 
(100),(110),(200) and (211) direction ranging between 51 GPa and 72 GPa, with an average value 
of 57 GPa. For the martensite B19' (001), they obtained a value of 69 GPa. The results obtained 
in the present work using Dynamic Mechanical Analysis are within range of values reported by 
Young et al. and confirm that for the studied wire the elastic modulus of oriented martensite is 
of the same order than of austenite and even a little higher.  

6. From the modelling of DMA results to determination of Clausius-
Clapeyron coefficients 

Experimental results concerning the storage modulus measurement during superelastic 
tensile tests have been presented in section 4. In section 5, the true storage moduli evolutions 
𝐸′𝑡  with strain have been used to determine the austenite elastic modulus 𝐸𝐴  as the initial value 
of 𝐸′𝑡   at low strain-stress and the elastic modulus of oriented martensite, 𝐸𝑀 ,  as the asymptotic 
value of 𝐸′𝑡 during the test at rupture for high values of strain/stress. 
 

This section is devoted to further analyze the evolution of storage modulus during all the 
tensile tests by proposing a first model to simulate the evolution of the nominal storage modulus 
during the stress plateau and a second model to simulate the evolution of the true storage 
modulus after the plateau. This second model permits to determine the Clausius-Clapeyron 
coefficient of the forward transformation. 

 
During loading, three zones are identified in Fig. 4c and 4d. Zones (I) and (III) correspond 

to uniform wire deformation stages, associated to the start and end of A/R-M uniform 
transformation, respectively. Zone (II) corresponds to the stress plateau during which the 
deformation is localized. In the following subsections, models are proposed to simulate the 
evolution of storage moduli for zones (II) and (III). The model proposed in the subsection 6.1 takes 
into account the deformation localization during the stress plateau. This model is based on 
mixture law ; and simulates the evolution of the nominal storage modulus 𝐸′ as function of the 
nominal strain during a tensile test.  
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The model proposed in the subsections 6.2 and 6.3 takes into account that the 

deformation is uniform during the stage after the stress plateau, and that the true nominal 
storage modulus 𝐸𝑡

′  is function of temperature and true stress. In subsection 6.2, the dependence 
of 𝐸𝑡

′ on true stress is modeled at 60°C. In subsection 6.3, it is shown that the dependence of 𝐸𝑡
′ 

on true stress at 40°C and 80°C can be deduced from the model established at 60°C by a Clausius-
Clapeyron like relation; this allows to estimate the Clausius-Clapeyron coefficient of the forward 
transformation without using the plateau stress, which is now well-known not to be the onset of 
the transformation but that of the localization phenomenon [18]. 

6.1. Modelling of nominal storage modulus 𝑬′ evolution during the stress 
plateau 

Figure 8 shows a scheme of the deformation of the tested wire in the zone II. At point (0), 
the initial sample length is 𝐿0. The deformation is uniform between point (0) and (2). 

 
During the stress plateau between (2) and (3), for a given static nominal strain 𝜀, the 

specimen length is 𝐿0(1 + 𝜀). The specimen is constituted of two regions (a) and (b) separated by 
a localization front. The lengths of regions are 𝐿𝑎(𝜀) and 𝐿𝑏(𝜀)respectively.  

 
The nominal strains are constant and uniform in the regions (a) and (b), as shown in [16, 

18, 26] ; they are noted   𝜀𝑎 for the higher deformed region (a) and 𝜀𝑏 for the region (b) which is 
mostly in austenitic phase. The nominal nominal stress 𝜎𝑎 in region (a) is equal to 𝜎𝑏 the nominal 
stress in region (b) and equal to the nominal stress 𝜎 applied to the wire.  

 
Delobelle et al. [16] observed that for a small unloading that occurs when the deformation 

is localized, the front of localization does not move. This observation leads to assume that during 
a storage modulus measurement the localization front does not move, since the DMA consists of 
small cycles of loading/unloading. Thus during DMA tests around a static strain 𝜀, 𝐿𝑎(𝜀) and 𝐿𝑏(𝜀) 
are constant. During a DMA measurement, all regions are under the same dynamic stress 𝜎𝑑𝑦𝑛  

and the length variation ∆𝐿𝑑𝑦𝑛 is the sum of ∆𝐿𝑑𝑦𝑛(𝑎) and ∆𝐿𝑑𝑦𝑛(𝑏) of regions (a) and (b). Thus : 

  

∆𝐿𝑑𝑦𝑛 = 𝜎  
𝜎𝑑𝑦𝑛

𝐸′  𝐿0 =  ∆𝐿𝑑𝑦𝑛(𝑎) +  ∆𝐿𝑑𝑦𝑛(𝑏) (Eq. 11) 

with : ∆𝐿𝑑𝑦𝑛(𝑎) =
𝜎𝑑𝑦𝑛

𝐸′
𝑎

𝐿𝑎0 and ∆𝐿𝑑𝑦𝑛(𝑏) =
𝜎𝑑𝑦𝑛

𝐸′
𝑏

 𝐿𝑏0, 𝐿𝑎0 and 𝐿𝑏0 being the undeformed lengths 

of regions (a) and (b) given by : 
 

𝐿𝑎0 =
𝐿𝑎(𝜀)

1+𝜀𝑎
 ;  𝐿𝑏0 =

𝐿𝑏(𝜀)

1+𝜀𝑏
  (Eq. 12) 

 
By assuming that nominal storage modulus 𝐸𝑎

′  and 𝐸𝑏
′  are uniform in region (a) and (b), 

the equation (11) leads to the following equation:  
𝐿0

𝐸′ =
𝐿𝑎0

𝐸𝑎
′ +

𝐿𝑏0

𝐸𝑏
′  (Eq. 13) 
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The initial and current lengths of the wire are respectively  : 
 
                                 𝐿0 = 𝐿𝑎0 + 𝐿𝑏0    and   𝐿0 (1 + 𝜀) =  𝐿𝑎(𝜀) + 𝐿𝑏(𝜀)  (Eq. 14) 

 
The combination of equations 12, 13 and 14 gives :  

𝐸′(𝜀) =
𝐸𝑎

′ 𝐸𝑏
′ (𝜀𝑎−𝜀𝑏)

𝐸𝑏
′ (𝜀−𝜀𝑏)+𝐸𝑎

′ (𝜀𝑎−𝜀)
 (Eq. 15) 

 
which permits to express the evolution of 𝐸′ as function of the given nominal strain 𝜀 of the 
nominal storage moduli 𝐸𝑎

′  and 𝐸𝑏
′  and of the nominal strains 𝜀𝑎 and 𝜀𝑏 of regions (a) and (b). 

 
For a test performed at low strain rate, nominal plateau stress is constant, 𝜎2 = 𝜎3 so that :  
𝐸𝑎

′ = 𝐸3
′  ; 𝐸𝑏

′ = 𝐸2
′  ; 𝜀𝑎 = 𝜀3 ; 𝜀𝑏 = 𝜀2 and :  

 

𝐸′(𝜀) =
𝐸3

′ 𝐸2
′ (𝜀3−𝜀2)

𝐸2
′ (𝜀−𝜀2)+𝐸3

′ (𝜀3−𝜀)
 (Eq. 16) 

 
 
These 𝐸′ evolutions for zone (II) as predicted by Eq. 16 are plotted in dashed lines in Fig. 

4c, Fig. 5c, Fig. 6c and fit well with the experimental curves.  

6.2. Modelling of 𝐸𝑡
′ evolution during uniform deformation stage (III) at 

T=60°C 

The experimental evolution of the true storage modulus 𝐸𝑡
′ during uniform deformation 

stage (III) at T=60°C is plotted in full lines in Fig. 9. During this stage, deformation mechanisms 
include elasticity, plasticity and martensitic transformation. When the deformation of an alloy is 
only due to the two first mechanisms,  𝐸𝑡

′  is constant as shown in Fig.3 for a soft annealed Cu 
wire. Fig. 9 shows that for the studied NiTi wire, 𝐸𝑡

′ increases after the stress plateau to reach 
asymptotically the elastic modulus 𝐸𝑀 of the oriented martensite. This increase is due to the 
decreasing transformation mechanism with increasing strain and stress. 

 
At the point (3), the beginning of zone (III), the true stress and true storage modulus at 

60°C are 𝜎𝑡3 and 𝐸𝑡3
′  respectively. It is proposed to fit the evolution of 𝐸𝑡

′ with the true stress 𝜎𝑡  

in the zone (III) at 60°C by a hyperbolic tangent function  
 

𝐸𝑡
′(𝜎𝑡, 𝑇0 = 60°𝐶) = 𝐸𝑡3

′ + (𝐸𝑀 − 𝐸𝑡3
′ )𝑡𝑎𝑛ℎ [𝐾3

𝜎𝑡−𝜎𝑡3

𝐸𝑀−𝐸𝑡3
′ ] (Eq. 17) 

𝐾3 is a fitting parameter and represents the slope of the curve 𝐸𝑡
′

 -true stress at point (3) in Fig. 
9. 

The equation 17 fitted with 𝐾3= 41 is plotted in dashed lines in Fig. 9 and fits very well 
with experimental true storage modulus evolution at 60°C. 

6.3. Determination of Clausius Clapeyron coefficient for A-M 
transformation 
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Martensitic transformations are first order transformations which can be stress induced. 
During a test performed at a reference temperature T0 , the  transformation stress is noted 
𝜎𝑆𝐼𝑀(𝑇0). The transformation stress 𝜎𝑆𝐼𝑀(𝑇)  at any other test temperature T above Af   is deduced 
from 𝜎𝑆𝐼𝑀(𝑇0) by using the Clausius-Clapeyron relation [27] which writes :  

 
𝜎𝑆𝐼𝑀(𝑇) =  𝜎𝑆𝐼𝑀(𝑇0) + 𝐶𝐴𝑀(𝑇 − 𝑇0)             (Eq. 18) 
 

The Clausius-Clapeyron relation expresses that there is a linear relation between the 
transformation stress and the test temperature, 𝐶𝐴𝑀 being the Clausius-Clapeyron coefficient for 
the A-M transformation.   
 

For tensile tests of NiTi shape memory alloys, 𝜎𝑆𝐼𝑀  is estimated with the value of the 
plateau stress in stress-strain curves, assuming that transformation starts only for stress equal to 
the plateau stress. In our experiments, values of forward plateau stresses were calculated for a 

strain of 4%. A linear fitting allowed to determine 𝐶𝐴𝑀 = 6.6 ± 0.5 MPa K-1. However, it is now 
well known that the stress plateaus are due to the localization phenomena and not only to the 
transformation [26]. Thus estimating the transformation stress as the plateau stress can lead to 
inaccurate measures of 𝐶𝐴𝑀. 

 
 Another method to evaluate 𝐶𝐴𝑀 is proposed in this paper. It is based on the dependence 

on temperature T of the evolution of 𝐸𝑡
′ with the true stress 𝜎𝑡. Eq. (17) proposes an equation 

𝐸𝑡
′ (𝜎𝑡, 𝑇0) to model this evolution for the test at T0=60°C. The Clausius-Clapeyron relation shown 

in Eq. (18) allows to extend this model to other test temperatures T by :  
 

𝐸𝑡
′ (𝜎𝑡, 𝑇) = 𝐸𝑡

′ (𝜎𝑡 − 𝐶𝐴𝑀(𝑇 − 𝑇0), 𝑇0) (Eq. 19) 
 
This relation expresses that the intensity of the transformation at the temperature T and for the 
true stress  𝜎𝑡  is identical to that at the temperature T0  and for the true stress  
𝜎𝑡 − 𝐶𝐴𝑀(𝑇 − 𝑇0).  
 

 
The  𝐶𝐴𝑀 Clausius Clapeyron coefficient in Eq. 19  was chosen to minimize the gap between 

model and experimental curves both at 40 °C and 80°C. Fig. 9 shows the results of the model 

(dashed line) with 𝐶𝐴𝑀 = 7.9 ± 0.5 MPaK-1. 𝐶𝐴𝑀 determined by this method is close to 𝐶𝐴𝑀 =

6.6 ± 0.5 MPaK-1 determined by using stress plateau.  
 

The dependence on the temperature of the true storage evolution with true stress allows 
thus to determine Clausius-Clapeyron coefficient ; this method can be used in the absence of 
stress plateau, when the superelastic tensile tests are uniform. 

7. Conclusion 

The deformation mechanisms involved in the superelastic behavior of NiTi thin wires are 
still often explained by considering the tensile nominal stress-strain curve. In the usual 
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presentation, four successive stages are distinguished during loading up to rupture. During the 
first stage, stress is considered as increasing linearly with strain, which is attributed to elastic 
deformation of austenite. The second stage is characterized by a stress plateau justified by the 
transformation from austenite to martensite. During the third stage, the stress is considered as 
increasing again linearly with strain which is explained by the elastic deformation of the oriented 
martensite. During the fourth stage, the slowdown of the stress increase is ascribed to martensite 
plasticity. The plateau stress during the second stage is considered as the transformation stress ; 
the Clausius Clapeyron coefficient is determined from the linear increase of this plateau stress 
with temperature. 

In this paper, Dynamic Mechanical Analysis was used to measure storage moduli during 
superelastic tensile tests of NiTi thin wires as function of strain and stress at three temperatures 
above Af. The main conclusions are the following : 

- during the first stage, nominal storage modulus 𝐸′ is neither constant. Its continuous 
decrease with increasing strain is due to the occurrence of non elastic deformation 
mechanisms due to phase transformations A-R, R-M, and A-M  

- during the third and fourth stages, continuous increase of the nominal storage 
modulus is due to deformation mechanisms other than elastic and plastic 
mechanisms, including phase transformation and twinning-detwinning phenomena, 

- the evolution of the nominal storage modulus 𝐸′ during the stress plateau is only due 
to the localization phenomenon as shown by a simple model proposed in this paper. 

In this paper, it was shown that DMA results allows : 

- to estimate the elastic modulus of austenite as the initial value at low stress of the 
nominal storage modulus during the first stage.  Estimation is better for highest test 
temperature to reduce the effect of the R phase. With this method, elastic modulus 
of austenite EA is estimated equal to 70 GPa, independently of the test temperature. 

- to estimate the elastic modulus of oriented martensite from the evolution of the 
storage modulus during the fourth stage, just before the rupture. In this high stress 
and strain ranges, it is mandatory to calculate the true storage modulus 𝐸𝑡

′ from the 
true strain and stress. The elastic modulus of oriented martensite 𝐸𝑀  is estimated as 
the asymptotic value of the true storage modulus 𝐸𝑡

′ during the last stage preceding 
the rupture. With this method, elastic modulus of oriented martensite EM  is estimated 
equal to 73 GPa, slightly higher than the elastic modulus of the austenite. 

- to propose a method to determine the Clausius Clapeyron coefficient 𝐶𝐴𝑀 of the 
forward martensitic transformation without using the stress plateau stage 
characterized by localized deformation.  This method is based on a model 𝐸𝑡

′(𝜎𝑡, 𝑇0) of 
the evolution of the true storage modulus 𝐸𝑡

′ as function of true stress 𝜎𝑡 at a 
reference temperature T0. 𝐶𝐴𝑀 is the coefficient which allows to extent this model to 

other temperature T under the form 𝐸𝑡
′ (𝜎𝑡, 𝑇) = 𝐸𝑡

′ (𝜎𝑡 − 𝐶𝐴𝑀(𝑇 − 𝑇0), 𝑇0). 
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Table 1 : Identification of elasticity, plasticity, uniform and localized deformation phenomena from 
nominal stress-strain and storage modulus-strain evolutions during loading 

𝜎(𝜀) 𝐸′(𝜀) Phenomena 
 → Elasticity 
→ → Plasticity 
  Starting transformation 
  Ending transformation 
→ almost linear evolution Localization 

 

Table 2 : Values of the slopes  
∆𝜎

∆𝜀
  and 

∆𝜎𝑡

∆𝜀𝑡
 determined from the nominal stress-strain and true stress-

strain curves, respectively. The points (0), (3) and (4) are defined in figures 6, 4 and 5 for T= 40, 60°C and 

80°C successively. The slopes are calculated with a stress range ∆𝜎 =200MPa. 

 Point (0) Loading in (3) Unloading in (4) 

Temperature 
∆𝜎

∆𝜀
 =

∆𝜎𝑡

∆𝜀𝑡
 

∆𝜎

∆𝜀
  

∆𝜎𝑡

∆𝜀𝑡
  

∆𝜎

∆𝜀
  

∆𝜎𝑡

∆𝜀𝑡
  

40°C 63 GPa 17 GPa 19 GPa 38 GPa 41 GPa 

60°C 69 GPa 16 GPa 18 GPa 35 GPa 39 GPa 

80°C 69 GPa 18 GPa 21 GPa 30 GPa 34 GPa 

 

Table 3 : Values of the nominal 𝐸′  and true 𝐸t
′ storage moduli. The points (0), (4) and (6’) are defined in 

figures 6, 4 and 5 for T= 40, 60°C and 80°C successively 

Temperature 
Point (0) Loading and unloading in (4) Loading in (6’) 

𝐸′  = 𝐸t
′ 𝐸′   𝐸t

′ 𝐸′   𝐸t
′ 

40°C 66 GPa 50 GPa 62 GPa 55 GPa 73 GPa 

60°C 70 GPa 47 GPa 58 GPa 53 GPa 70 GPa 

80°C 71 GPa 42 GPa 52 GPa 50 GPa 70 GPa 

 

 


